Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular

ilustraciones, diagramas

Autores:
Urrego Orrego, Karen Yurany
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86328
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86328
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::612 - Fisiología humana
570 - Biología::572 - Bioquímica
Acondicionamiento Pretrasplante
Biotecnología
Congelación
Cordón Umbilical
Transplantation Conditioning
Biotechnology
Freezing
Umbilical Cord
Sangre de cordón umbilical
Trasplante de progenitores hematopoyéticos
Criopreservación
Dilución
Lavado
Apoptosis
Necrosis
Umbilical cord blood
Hematopoietic stem cell transplantation
Cryopreservation
Dilution
Washing
Apoptosis
Necrosis
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_4c64851abec727af6cfefaebec03ae93
oai_identifier_str oai:repositorio.unal.edu.co:unal/86328
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
dc.title.translated.eng.fl_str_mv Pretransplantation procedure optimization of umbilical cord blood units thawing: prevention of cell death
title Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
spellingShingle Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
610 - Medicina y salud::612 - Fisiología humana
570 - Biología::572 - Bioquímica
Acondicionamiento Pretrasplante
Biotecnología
Congelación
Cordón Umbilical
Transplantation Conditioning
Biotechnology
Freezing
Umbilical Cord
Sangre de cordón umbilical
Trasplante de progenitores hematopoyéticos
Criopreservación
Dilución
Lavado
Apoptosis
Necrosis
Umbilical cord blood
Hematopoietic stem cell transplantation
Cryopreservation
Dilution
Washing
Apoptosis
Necrosis
title_short Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
title_full Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
title_fullStr Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
title_full_unstemmed Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
title_sort Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
dc.creator.fl_str_mv Urrego Orrego, Karen Yurany
dc.contributor.advisor.none.fl_str_mv Perdomo Arciniegas, Ana María
Fontanilla Duque, Martha Raquel
dc.contributor.author.none.fl_str_mv Urrego Orrego, Karen Yurany
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Medicina transfusional, tisular y celular (GYMTIC)
dc.contributor.orcid.spa.fl_str_mv Urrego Orrego, Karen Yurany [000000023762826X]
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::612 - Fisiología humana
570 - Biología::572 - Bioquímica
topic 610 - Medicina y salud::612 - Fisiología humana
570 - Biología::572 - Bioquímica
Acondicionamiento Pretrasplante
Biotecnología
Congelación
Cordón Umbilical
Transplantation Conditioning
Biotechnology
Freezing
Umbilical Cord
Sangre de cordón umbilical
Trasplante de progenitores hematopoyéticos
Criopreservación
Dilución
Lavado
Apoptosis
Necrosis
Umbilical cord blood
Hematopoietic stem cell transplantation
Cryopreservation
Dilution
Washing
Apoptosis
Necrosis
dc.subject.decs.spa.fl_str_mv Acondicionamiento Pretrasplante
Biotecnología
Congelación
Cordón Umbilical
dc.subject.decs.eng.fl_str_mv Transplantation Conditioning
Biotechnology
Freezing
Umbilical Cord
dc.subject.proposal.spa.fl_str_mv Sangre de cordón umbilical
Trasplante de progenitores hematopoyéticos
Criopreservación
Dilución
Lavado
Apoptosis
Necrosis
dc.subject.proposal.eng.fl_str_mv Umbilical cord blood
Hematopoietic stem cell transplantation
Cryopreservation
Dilution
Washing
Apoptosis
Necrosis
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-28T14:37:21Z
dc.date.available.none.fl_str_mv 2024-06-28T14:37:21Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86328
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86328
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akel, S., Regan, D., Wall, D., Petz, L., & McCullough, J. (2014). Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion, 54(11), 2997–3009. https://doi.org/10.1111/TRF.12719
Alberts Bruce, Johnson Alexander, Lewis Julian, Martin Raff, Keith Roberts, and P. W. (2002). Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK21054/
Andersen, M. R. (2023, June 6). Cell counters – the secrets of the world of cell counters. ChemoMetec. https://chemometec.com/the-ultimate-guide-to-cell-counters/
Arav, A. (2022). Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs. Cells, 11(7). https://doi.org/10.3390/CELLS11071072
Ary, M., Aughlin, J. L., Uliet, J., Arker, B., Arbara, B., Ambach, B., Oc, M. N. K., Izzieri, A. A. R., Ohn, J., Agner, E. W., Tanton, S., Erson, L. G., Azarus, I. M. L., Itchell, M., Airo, C., Ladd, C., Tevens, E. S., Ablo, P., Ubinstein, R., … Urtzberg, K. (2001). Hematopoietic Engraftment and Survival in Adult Recipients of Umbilical-Cord Blood from Unrelated Donors. Https://Doi.Org/10.1056/NEJM200106143442402, 344(24), 1815–1822. https://doi.org/10.1056/NEJM200106143442402
Arrazola. (1994). Biología de la membrana celular. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia, 14(4), 418–426. https://www.revistanefrologia.com/es-biologia-membrana-celular--articulo-X021169959400663X
Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., & Stacey, G. N. (2020). Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine, 15(3), 1463–1491. https://doi.org/10.2217/RME-2019-0145/ASSET/IMAGES/LARGE/FIGURE1.JPEG
Ballen, K. K., Gluckman, E., & Broxmeyer, H. E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood, 122(4), 491–498. https://doi.org/10.1182/BLOOD-2013-02-453175
Ballen, K. K., Verter, F., & Kurtzberg, J. (2015). Umbilical cord blood donation: Public or private? In Bone Marrow Transplantation (Vol. 50, Issue 10, pp. 1271–1278). Nature Publishing Group. https://doi.org/10.1038/bmt.2015.124
Baust, J. G., Snyder, K. K., Van Buskirk, R., & Baust, J. M. (2017). Integrating Molecular Control to Improve Cryopreservation Outcome. Https://Home.Liebertpub.Com/Bio, 15(2), 134–141. https://doi.org/10.1089/BIO.2016.0119
Berz, D., McCormack, E. M., Winer, E. S., Colvin, G. A., & Quesenberry, P. J. (2007). Cryopreservation of Hematopoietic Stem Cells. American Journal of Hematology, 82(6), 463. https://doi.org/10.1002/AJH.20707
Bhattacharya, S. (2016). A Review on Cryoprotectant and its Modern Implication in Cryonics | Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-on-Cryoprotectant-and-its-Modern-in-Bhattacharya/6bf59e0acdb26b2a60c9bd549ef497f4b5e0762e
Bissoyi, A., Nayak, B., Pramanik, K., & Sarangi, S. K. (2014). Targeting cryopreservation-induced cell death: a review. Biopreservation and Biobanking, 12(1), 23–34. https://doi.org/10.1089/BIO.2013.0032
Bojic, S., Murray, A., Bentley, B. L., Spindler, R., Pawlik, P., Cordeiro, J. L., Bauer, R., & de Magalhães, J. P. (2021). Winter is coming: the future of cryopreservation. BMC Biology 2021 19:1, 19(1), 1–20. https://doi.org/10.1186/S12915-021-00976-8
Broxmeyer, H. E., Douglas, G. W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., & Boyse, E. A. (1989). Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3828. https://doi.org/10.1073/PNAS.86.10.3828
Builes, N., Niño-Serna, L., & Combariza, J. F. (2023). Side effects after use of bedside thaw method in an umbilical cord blood stem cells for allogeneic transplantation in a children cohort: A single-center experience. Hematology/Oncology and Stem Cell Therapy, 17(1). https://doi.org/10.56875/2589-0646.1110
Campos De Carvalho, E., Carolina, A., & Vieira Curcioli, J. (2010). Infusión de células madre hematopoyéticas: tipos, características, reacciones adversas y de transfusión y sus implicaciones para la enfermería1. Scielo.Br. Retrieved January 24, 2024, from https://www.scielo.br/j/rlae/a/zrStPfTGbcFPL9Y8SFSYvGf/?format=pdf&lang=es
Caocci, G., Greco, M., & La Nasa, G. (2017). Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterranean Journal of Hematology and Infectious Diseases, 9(1), 2017032. https://doi.org/10.4084/MJHID.2017.032
Cava, C. (2015). Comparación de dos soluciones de Lavado para el Trasplante de Progenitores Hematopoyéticos sin Dimetil Sulfóxido. PDF Descarga libre. https://digitum.um.es/digitum/bitstream/10201/47027/1/Catalina%20Cava%20Tesis%20Doctoral.pdf
Chang, T., & Zhao, G. (2021). Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 8(6), 2002425. https://doi.org/10.1002/ADVS.202002425
Cheng, H., Zheng, Z., & Cheng, T. (2020). New paradigms on hematopoietic stem cell differentiation. Protein and Cell, 11(1), 34–44. https://doi.org/10.1007/S13238-019-0633-0/FIGURES/4
Chow, R. Y. K., Li, Q., Chow, C., Guo, V., Dang, T., Rao, A., Zeng, T., Chow, D. T.-L., Wang, B., & Chow, M. (2017). Cord Blood Stem Cell Processing, Banking and Thawing. Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine. https://doi.org/10.5772/65033
Cloutier, M., Simard, C., Jobin, C., Fournier, D., & Néron, S. (2016). An alternative to dextran for the thawing of cord blood units. Transfusion, 56(7), 1786–1791. https://doi.org/10.1111/TRF.13633
Cooper, G. (2000). The Cell: A Molecular Approach - Structure of the Plasma Membrane. https://www.ncbi.nlm.nih.gov/books/NBK9898/
DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019a). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004
DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019b). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004
Díaz, D. (2011). Terapia celular en el sistema nervioso central: recuperación estructural y funcional en un modelo murino de muerte neuronal selectiva. Core.ac.uk. Retrieved January 24, 2024, from https://core.ac.uk/download/pdf/9527374.pdf
Djuwantono, T., Wirakusumah, F. F., Achmad, T. H., Sandra, F., Halim, D., & Faried, A. (2011). A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells. BMC Research Notes, 4, 371. https://doi.org/10.1186/1756-0500-4-371
Duggleby, R. C., Querol, S., Davy, R. C., Fry, L. J., Gibson, D. A., Horton, R. B. V., Mahmood, S. N., Gomez, S. G., & Madrigal, J. A. (2012). Flow cytometry assessment of apoptotic CD34+ cells by annexin V labeling may improve prediction of cord blood potency for engraftment. Transfusion, 52(3), 549–559. https://doi.org/10.1111/J.1537-2995.2011.03305.X
Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/J.CRYOBIOL.2017.04.004
Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495. https://doi.org/10.1080/01926230701320337
Feher, J. (2012). Active Transport: Pumps and Exchangers. Quantitative Human Physiology, 134–140. https://doi.org/10.1016/B978-0-12-382163-8.00016-5
Fernández, M. L., & Reigada, R. (2014). Effects of dimethyl sulfoxide on lipid membrane electroporation. Journal of Physical Chemistry B, 118(31), 9306–9312. https://doi.org/10.1021/JP503502S
Forrest, L. R., Krämer, R., & Ziegler, C. (2011). The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(2), 167–188. https://doi.org/10.1016/J.BBABIO.2010.10.014
Frallicciardi, J., Melcr, J., Siginou, P., Marrink, S. J., & Poolman, B. (2022). Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-29272-x
Fry, L. J., Querol, S., Gomez, S. G., Mcardle, S., Rees, R., & Madrigal, J. A. (2015). Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sanguinis, 109(2), 181–190. https://doi.org/10.1111/VOX.12267
Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018a). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/J.JCYT.2018.03.033
Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018b). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/j.jcyt.2018.03.033
Garnacho-Montero, J., Fernández-Mondéjar, E., Ferrer-Roca, R., Herrera-Gutiérrez, M. E., Lorente, J. A., Ruiz-Santana, S., & Artigas, A. (2015). Cristaloides y coloides en la reanimación del paciente crítico. Medicina intensiva, 39(5), 303–315. https://doi.org/10.1016/j.medin.2014.12.007
Golstein, P., & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 32(1), 37–43. https://doi.org/10.1016/J.TIBS.2006.11.001
González-Acero, L. X., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Characterization of a novel HLA-C allele, HLA-C*01:166, in a Colombian Umbilical Cord Blood Bank Donor. In HLA (Vol. 94, Issue 4, pp. 386–387). Blackwell Publishing Ltd. https://doi.org/10.1111/tan.13611
Gorin, N. C. (2019). Bone Marrow Harvesting for HSCT. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 109–115. https://doi.org/10.1007/978-3-030-02278-5_14
Gupta, A. O., & Wagner, J. E. (2020). Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Frontiers in Pediatrics, 8, 629. https://doi.org/10.3389/FPED.2020.570282/BIBTEX
Gutensohn, K., Magens, M., Krüger, W., Kröger, N., & Kühnl, P. (2006). Comparison of flow cytometry vs. a haematology cell analyser-based method to guide the optimal time-point for peripheral blood stem cell apheresis. Vox Sanguinis, 90(1), 53–58. https://doi.org/10.1111/J.1423-0410.2005.00720.X
Guttridge, M. G., Soh, T. G., Belfield, H., Sidders, C., & Watt, S. M. (2014). Storage time affects umbilical cord blood viability. Transfusion, 54(5), 1278–1285. https://doi.org/10.1111/TRF.12481
Hall, J., Hall, M. (2021). Transport of Substances Through Cell Membranes - ClinicalKey. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323597128000047
Harris, D. T. (2016). Long-term frozen storage of stem cells: challenges and solutions. Journal of Biorepository Science for Applied Medicine, 4, 9–20. https://doi.org/10.2147/BSAM.S90142
Heiblig, M., Elhamri, M., Thomas, X., Plesa, A., Raffoux, E., & Hayette, S. (2018). A phase 1 study of chemosensitization with plerixafor plus G-CSF in adults with relapsed acute myeloid leukemia. Leukemia Research, 72, 7–11. https://doi.org/10.1016/J.LEUKRES.2018.07.017
Higgins, A. Z., & Karlsson, J. O. (2008). Coincidence error during measurement of cellular osmotic properties by the electrical sensing zone method. Cryo Letters, 29(6). https://pubmed.ncbi.nlm.nih.gov/19280049/
Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135(7), 1311–1323. https://doi.org/10.1016/J.CELL.2008.10.044
Hordyjewska, A., Popiołek, Ł., & Horecka, A. (2015). Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 67(3), 387. https://doi.org/10.1007/S10616-014-9796-Y
Hunt, C. J. (2019). Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfusion Medicine and Hemotherapy, 46(3), 134–150. https://doi.org/10.1159/000497289
Hunt, C. J., Armitage, S. E., & Pegg, D. E. (2003). Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology, 46(1), 76–87. https://doi.org/10.1016/S0011-2240(02)00181-5
Ikeda, K., Ohto, H., Okuyama, Y., Yamada-Fujiwara, M., Kanamori, H., Fujiwara, S. ichiro, Muroi, K., Mori, T., Kasama, K., Iseki, T., Nagamura-Inoue, T., Fujii, N., Ashida, T., Kameda, K., Kanda, J., Hirose, A., Takahashi, T., Nagai, K., Minakawa, K., & Tanosaki, R. (2018). Adverse Events Associated With Infusion of Hematopoietic Stem Cell Products: A Prospective and Multicenter Surveillance Study. Transfusion Medicine Reviews, 32(3), 186–194. https://doi.org/10.1016/J.TMRV.2018.05.005
Jahan, S. (2020). Impact of Storage and Cryoprotectants on the Function of Cord Blood Hematopoietic Stem Cells. https://doi.org/10.20381/RUOR-24519
Jahan, S., Kaushal, R., Pasha, R., & Pineault, N. (2021). Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfusion Medicine Reviews, 35(2), 95–102. https://doi.org/10.1016/J.TMRV.2021.01.003
Jaime, J., Dorticós, E., Pavón, V., & Cortina, L. (2004). Trasplante de células progenitoras hematopoyéticas: tipos, fuentes e indicaciones. Rev Cubana de Hematología, Inmunología y Hemoterapia. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892004000200002
Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12–18. https://doi.org/10.1016/J.IMR.2016.12.001
Jara-Segura, E., Jensen-Gamboa, E., & Clínico Jensen, L. (2018). Recuento de células CD34+ por citometría de flujo Count of CD34 + cells by flow cytometry. Rev. Colegio de Microb. Quim. Clin. de Costa Rica, 24(2), 2215–3713.
Johnson, D., Hashaikeh, R., & Hilal, N. (2021). Basic principles of osmosis and osmotic pressure. Osmosis Engineering, 1–15. https://doi.org/10.1016/B978-0-12-821016-1.00011-5
Karam Khaddour; Caroline K. Hana; Prerna Mewawalla. (2022). Hematopoietic Stem Cell Transplantation. In Abeloff’s Clinical Oncology. StatPearls Publishing. https://doi.org/10.1016/B978-0-323-47674-4.00028-1
Kim, A. R., Olsen, J. L., England, S. J., Huang, Y. S., Fegan, K. H., Delgadillo, L. F., McGrath, K. E., Kingsley, P. D., Waugh, R. E., & Palis, J. (2015). Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 4(6), 995. https://doi.org/10.1016/J.STEMCR.2015.05.003
Kim, K. M., Huh, J. Y., Hong, S. S., & Kang, M. S. (2015). Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion, 55(8), 2017–2022. https://doi.org/10.1111/TRF.13120
Kuang, S. Y. (2018). Tonicity and Osmolarity, Why Are They Confusing? The FASEB Journal, 31, 576.55-576.55. https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.576.55
Kurtzberg, J. (2017). A history of cord blood banking and transplantation. In Stem Cells Translational Medicine (Vol. 6, Issue 5, pp. 1309–1311). AlphaMed Press. https://doi.org/10.1002/sctm.17-0075
Kurtzberg, J., Cairo, M. S., Fraser, J. K., Baxter-Lowe, L. A., Cohen, G., Carter, S. L., & Kernan, N. A. (2005). Results of the Cord Blood Transplantation (COBLT) Study unrelated donor banking program. Transfusion, 45(6), 842–855. https://doi.org/10.1111/J.1537-2995.2005.04428.X
Laroche, V., McKenna, D. H., Moroff, G., Schierman, T., Kadidlo, D., & McCullough, J. (2005). Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion, 45(12), 1909–1916. https://doi.org/10.1111/J.1537-2995.2005.00638.X
Laterra, J., Keep, R., Betz, L.A., Goldstein, G. W. (1999). Membrane Transport Processes. https://www.ncbi.nlm.nih.gov/books/NBK28227/
Lee, J. Y., & Hong, S. H. (2020). Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. International Journal of Stem Cells, 13(1), 1. https://doi.org/10.15283/IJSC19127
Liggett, L. A., & Sankaran, V. G. (2020). Unraveling Hematopoiesis through the Lens of Genomics. Cell, 182(6), 1384–1400. https://doi.org/10.1016/J.CELL.2020.08.030
Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 104(4), 487–501. https://doi.org/10.1016/S0092-8674(01)00237-9
Lombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, 9(1), 1–35. https://doi.org/10.1186/S13062-014-0032-7/FIGURES/11
Lund, T. C., Boitano, A. E., Delaney, C. S., Shpall, E. J., & Wagner, J. E. (2014). Advances in umbilical cord blood manipulation—from niche to bedside. Nature Reviews Clinical Oncology 2014 12:3, 12(3), 163–174. https://doi.org/10.1038/nrclinonc.2014.215
Madeleine K., A. (2020). Recherche uO Research: Improving the Engraftment Activities of Cryopreserved Human Umbilical Cord Blood Through the Development of Novel Glyco(peptide)-Based Aryl Ice Recrystallization Inhibitors [University of Ottawa]. https://doi.org/http://dx.doi.org/10.20381/ruor-25034
Madsen, B. K., Hilscher, M., Zetner, D., & Rosenberg, J. (2018). Adverse reactions of dimethyl sulfoxide in humans: a systematic review. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16642.2
Malard, F., Huang, X. J., & Sim, J. P. Y. (2020). Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020 34:5, 34(5), 1229–1240. https://doi.org/10.1038/s41375-020-0804-2
Mayani, H., Wagner, J. E., & Broxmeyer, H. E. (2019). Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplantation 2019 55:1, 55(1), 48–61. https://doi.org/10.1038/s41409-019-0546-9
Mazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology, 14(3), 251–272. https://doi.org/10.1016/0011-2240(77)90175-4
Medina, C. B., & Ravichandran, K. S. (2016). Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 23(6), 979–989. https://doi.org/10.1038/CDD.2016.13
Megías, M., Molist, P., Pombal, M. (2019). Atlas de histología vegetal y animal. La célula. https://mmegias.webs.uvigo.es/5-celulas/3-propiedades1.php
Mendoza, J. A., Dulin, P., & Warren, T. (2000). The Lower Hydrolysis of ATP by the Stress Protein GroEL Is a Major Factor Responsible for the Diminished Chaperon in Activity at Low Temperature. Cryobiology, 41(4), 319–323. https://doi.org/10.1006/CRYO.2000.2287
Meneghel, J., Kilbride, P., & Morris, G. J. (2020). Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies—A Review. Frontiers in Medicine, 7, 824. https://doi.org/10.3389/FMED.2020.592242/BIBTEX
Mera Reina Claudia, R. L. A. R. C. S. (2007). Células Madre Hematopoyéticas. Retrieved June 26, 2022, from https://www.studocu.com/es-ar/document/universidad-de-buenos-aires/hematologia/mera-2007-celulas-madre-hematopoyeticas/29080539
Mitchell, R., Wagner, J. E., Brunstein, C. G., Cao, Q., McKenna, D. H., Lund, T. C., & Verneris, M. R. (2015). Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes. Biology of Blood and Marrow Transplantation, 21(1), 50–54. https://doi.org/10.1016/j.bbmt.2014.09.002
Nadig, R. R. (2009). Stem cell therapy – Hype or hope? A review. Journal of Conservative Dentistry : JCD, 12(4), 131. https://doi.org/10.4103/0972-0707.58329
Navarrete, C. (2015). Cord blood banking: Operational and regulatory aspects. In Cord Blood Stem Cells Medicine (pp. 197–210). Elsevier Inc. https://doi.org/10.1016/B978-0-12-407785-0.00015-3
Navarro (2016). RUNX1 en la hematopoyesis embrionaria humana. Programa Oficial de Doctorado en Biomedicina. Ugr.Es. Retrieved January 24, 2024, from https://digibug.ugr.es/bitstream/handle/10481/44168/2622690x.pdf?sequence=6&isAllowed=y
Nirmala, J. G., & Lopus, M. (2020). Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145–164. https://doi.org/10.1007/S10565-019-09496-2
Oanne, J., Urtzberg, K., Ary, M., Aughlin, L., Raham, I. L. G., Lay, C., Mith, S., Anice, J., Lson, F. O., Dward, E., Alperin, C. H., Armelita, C., Arrier, C., Ladd, C., Tevens, E. S., Ablo, P., & Ubinstein, R. (1996). Placental Blood as a Source of Hematopoietic Stem Cells for Transplantation into Unrelated Recipients. Https://Doi.Org/10.1056/NEJM199607183350303, 335(3), 157–166. https://doi.org/10.1056/NEJM199607183350303
Pasha, R., Elmoazzen, H., & Pineault, N. (2017). Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion, 57(7), 1744–1754. https://doi.org/10.1111/TRF.14136
Pedrosa de Lira de Morais, C. C., Dias Alves Pinto, J., Wagner de Souza, K., Izu, M., Fernando da Silva Bouzas, L., & Henrique Paraguassú-Braga, F. (2022). Validation of the single-platform ISHAGE protocol for enumeration of CD34+ hematopoietic stem cells in umbilical cord blood in a Brazilian center. Hematology, Transfusion and Cell Therapy, 44(1), 49–55. https://doi.org/10.1016/j.htct.2020.09.151
Pope, B., Hokin, B., & Grant, R. (2015). Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion, 55(3), 629–635. https://doi.org/10.1111/TRF.12873
Pranke, P., Hendrikx, J., Alespeiti, G., Nardi, N., Rubinstein, P., Visser, J. (2006). (PDF) Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCountTMBD and ISHAGE protocols | Jan Hendrikx - Academia.edu. https://www.academia.edu/7631730/Comparative_quantification_of_umbilical_cord_ blood_CD34_and_CD34_bright_cells_using_the_ProCount_BD_and_ISHAGE_proto cols
Price, T. H., Chatta, G. S. & Dale, D. C. (1996). Effect of Recombinant Granulocyte Colony-Stimulating Factor on Neutrophil Kinetics in Normal Young and Elderly Humans. Blood, 88(1), 335–340.
Product: Cord Blood Standards, 7th EditionSeventh Edition NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration [Free Download]: FACT. (2019). https://www.factweb.org/forms/store/ProductFormPublic/seventh-edition-netcordfact-international-standards-for-cord-blood-collection-banking-and-release-foradministration-free-download
Querol, S., Gomez, S. G., Pagliuca, A., Torrabadella, M., & Madrigal, J. A. (2010). Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplantation, 45(6), 970–978. https://doi.org/10.1038/BMT.2010.7
Rall, W. F., Wood, M. J., Kirby, C., & Whittingham, D. G. (1987). Development of mouse embryos cryopreserved by vitrification. Journal of Reproduction and Fertility, 80(2), 499–504. https://doi.org/10.1530/JRF.0.0800499
Rebulla, P., & Lecchi, L. (2011). Towards responsible cord blood banking models. Cell Proliferation, 44(SUPPL. 1), 30–34. https://doi.org/10.1111/j.13652184.2010.00720.x
Regan, D. M., Wofford, J. D., & Wall, D. A. (2010). Comparison of cord blood thawing methods on cell recovery, potency, and infusion. Transfusion, 50(12), 2670–2675. https://doi.org/10.1111/J.1537-2995.2010.02803.X
Reich-Slotky, R., Bachegowda, L. S., Ancharski, M., Mendeleyeva, L., Rubinstein, P., Rennert, H., Shore, T., Van Besien, K., & Cushing, M. (2015). How we handled the dextran shortage: an alternative washing or dilution solution for cord blood infusions. Transfusion, 55(6), 1147–1153. https://doi.org/10.1111/TRF.13015
Rifón, J. J. (2006). Trasplante de progenitores hemopoyéticos Transplant of hemopoietic progenitors. An. Sist. Sanit. Navar, 29(2).
Riva, N. S., Ruhlmann, C., Iaizzo, R. S., López, C. A. M., & Martínez, A. G. (2018). Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assisted Reproduction, 22(4), 331. https://doi.org/10.5935/1518-0557.20180060
Rodríguez, L. (2005). RECONSTITUCIÓN DE PRODUCTOS HEMATOPOYÉTICOS CRIOPRESERVADOS: - PDF Descargar libre. https://docplayer.es/6645871Reconstitucion-de-productos-hematopoyeticos-criopreservados.html
Rodriguez, L., Azqueta, C., Azzalin, S., Garcia, J., & Querol, S. (2004). Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system*. Vox Sanguinis, 87(3), 165–172. https://doi.org/10.1111/J.14230410.2004.00550.X
Rubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10119–10122. https://doi.org/10.1073/pnas.92.22.10119
Rudloff, E., & Hopper, K. (2021). Crystalloid and Colloid Compositions and Their Impact. Frontiers in Veterinary Science, 8, 266. https://doi.org/10.3389/FVETS.2021.639848/BIBTEX
Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833(12), 3460–3470. https://doi.org/10.1016/J.BBAMCR.2013.06.028
Scaradavou, A., Avecilla, S. T., Tonon, J., Politikos, I., Horwitz, M. E., Kurtzberg, J., Milano, F., & Barker, J. N. (2020). Guidelines for Cord Blood Unit Thaw and Infusion. Biology of Blood and Marrow Transplantation, 26, 1780–1783. https://doi.org/10.1016/j.bbmt.2020.06.018
Schepers, K., Campbell, T. B., & Passegué, E. (2015). Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 16(3), 254–267. https://doi.org/10.1016/J.STEM.2015.02.014
Schiewe, M. C., & Anderson, R. E. (2017). Vitrification: the pioneering past to current trends and perspectives of cryopreserving human embryos, gametes and reproductive tissue. Journal of Biorepository Science for Applied Medicine, 5, 57–68. https://doi.org/10.2147/BSAM.S139376
Schwandt, S., Liedtke, S., & Kogler, G. (2017). The influence of temperature treatment before cryopreservation on the viability and potency of cryopreserved and thawed CD34+ and CD45+ cord blood cells. Cytotherapy, 19(8), 962–977. https://doi.org/10.1016/J.JCYT.2017.05.005
Seita, J., & Weissman, I. L. (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(6), 640–653. https://doi.org/10.1002/WSBM.86
Shim, J. S., Cho, B., Kim, M., Park, G. S., Shin, J. C., Hwang, H. K., Kim, T. G., & Oh, I. H. (2006). Early apoptosis in CD34+ cells as a potential heterogeneity in quality of cryopreserved umbilical cord blood. British Journal of Haematology, 135(2), 210213. https://doi.org/10.1111/J.1365-2141.2006.06270.X
Slack, J. M. W. (2018). What is a stem cell? Wiley Interdisciplinary Reviews. Developmental Biology, 7(5). https://doi.org/10.1002/wdev.323
Stillwell, W. (2016). Membrane Transport. An Introduction to Biological Membranes, 423. https://doi.org/10.1016/B978-0-444-63772-7.00019-1
Strong, A., Gračner, T., Chen, P., & Kapinos, K. (2018). On the Value of the Umbilical Cord Blood Supply. Value in Health, 21(9), 1077–1082. https://doi.org/10.1016/j.jval.2018.03.003
Subczynski, W. K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., & Raguz, M. (2017). High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 75(3–4), 369–385. https://doi.org/10.1007/S12013-017-0792-7
Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (2009). The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. Https://Home.Liebertpub.Com/Scd, 5(3), 213–226. https://doi.org/10.1089/SCD.1.1996.5.213
Toné, S., Sugimoto, K., Tanda, K., Suda, T., Uehira, K., Kanouchi, H., Samejima, K., Minatogawa, Y., & Earnshaw, W. C. (2007). Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 313(16), 3635–3644. https://doi.org/10.1016/J.YEXCR.2007.06.018
Tunçer, S., Gurbanov, R., Sheraj, I., Solel, E., Esenturk, O., & Banerjee, S. (2018). Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-33234-Z
Vanegas, D., Galindo, C. C., Páez-Gutiérrez, I. A., González-Acero, L. X., MedinaValderrama, P. T., Lozano, J. C., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Human Leukocyte Antigen and Red Blood Cells Impact Umbilical Cord Blood CD34+ Cell Viability after Thawing. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/IJMS20194875
Vanegas, D., Triviño, Lady, Galindo, C., Franco, L., Salguero, G., Camacho, B., & Perdomo-Arciniegas, A. M. (2017). A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content. Transfusion, 57(9), 2225–2233. https://doi.org/10.1111/TRF.14190
Vujovic, P., Chirillo, M., & Silverthorn, D. U. (2018). Learning (by) osmosis: An approach to teaching osmolarity and tonicity. Advances in Physiology Education, 42(4), 626635. https://doi.org/10.1152/ADVAN.00094.2018/ASSET/IMAGES/LARGE/ZU100418326 30003.JPEG
Wagner, J. E., Eapen, M., Carter, S., Wang, Y., Schultz, K. R., Wall, D. A., Bunin, N., Delaney, C., Haut, P., Margolis, D., Peres, E., Verneris, M. R., Walters, M., Horowitz, M. M., & Kurtzberg, J. (2014). One-Unit versus Two-Unit Cord-Blood Transplantation for Hematologic Cancers. New England Journal of Medicine, 371(18), 1685–1694. https://doi.org/10.1056/NEJMoa1405584
Waller-Wise, R. (2011). Umbilical Cord Blood: Information for Childbirth Educators. The Journal of Perinatal Education, 20(1), 54–60. https://doi.org/10.1891/10581243.20.1.54
Weng, L., & Beauchesne, P. R. (2020). Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology, 94, 9–17. https://doi.org/10.1016/J.CRYOBIOL.2020.03.012
Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplantation, 30. https://doi.org/10.1177/0963689721999617
Wong, J. (2008). Centrifugal recovery of embryonic stem cells for regenerative medicine bioprocessing. https://discovery.ucl.ac.uk/id/eprint/16358/1/16358.pdf
Woods, E. J., Thirumala, S., Badhe-Buchanan, S. S., Clarke, D., & Mathew, A. J. (2016). Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. In Cytotherapy (Vol. 18, Issue 6, pp. 697711). Elsevier Inc. https://doi.org/10.1016/j.jcyt.2016.03.295
Wu, L. K., Tokarew, J. M., Chaytor, J. L., Von Moos, E., Li, Y., Palii, C., Ben, R. N., & Allan, D. S. (2011). Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydrate Research, 346(1), 86–93. https://doi.org/10.1016/J.CARRES.2010.10.016
Yang, H., Acker, J. P., Cabuhat, M., & McGann, L. E. (2003). Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation. Bone Marrow Transplantation, 32(10), 1021–1026. https://doi.org/10.1038/SJ.BMT.1704247
Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., & Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276(17), 1393513940. https://doi.org/10.1074/JBC.M010677200
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future. Stem Cell Research and Therapy, 10(1), 1–22. https://doi.org/10.1186/S13287-019-1165-5/FIGURES/8
Zinno, F., Landi, F., Aureli, V., Caniglia, M., Pinto, R. M., Rana, I., Balduino, G., Miele, M. J., Picardi, A., Arcese, W., & Isacchi, G. (2010). Pre-transplant manipulation processing of umbilical cord blood units: Efficacy of Rubinstein’s thawing technique used in 40 transplantation procedures. Transfusion and Apheresis Science, 43(2), 173–178. https://doi.org/10.1016/J.TRANSCI.2010.07.005
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86328/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86328/2/1022383727.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86328/3/1022383727.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9338a51b53b88e533baa8e720cdb1bad
6f4ccae1494627c24985cf6b1e2ef18d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089455784427520
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Perdomo Arciniegas, Ana María5d532cf1dbb19f57c31006442e91ee7eFontanilla Duque, Martha Raquelf299f62941972508549340696d2c4908Urrego Orrego, Karen Yurany71d848b8bf1ea05194a4fa0194adc6d9Grupo de Investigación en Medicina transfusional, tisular y celular (GYMTIC)Urrego Orrego, Karen Yurany [000000023762826X]2024-06-28T14:37:21Z2024-06-28T14:37:21Z2024https://repositorio.unal.edu.co/handle/unal/86328Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa sangre de cordón umbilical (SCU) es una fuente de progenitores hematopoyéticos (PH) usados como terapia en diversas patologías, principalmente de tipo hematológico. En Colombia, el grupo de investigación en medicina transfusional, tisular y celular (GIMTTYC) del Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), desarrolló un programa clínico de captación de donantes y de banqueo de células de SCU, así como servicios de búsqueda de compatibilidad, reserva y distribución de unidades, bajo estándares internacionales de terapia celular. Los procedimientos de congelación y descongelación de SCU se validan en cada banco con el fin de mantener viables las células que se usarán en el trasplante. La variación de las condiciones en estos procedimientos impacta la recuperación y viabilidad celular, que puede afectar la potencia terapéutica de los trasplantes. Con el fin de corroborar la funcionalidad de las células, antes y después de la descongelación de las unidades de SCU, se realizan pruebas de viabilidad celular por citometría de flujo y clonogenicidad. Por lo tanto, establecer las condiciones para mantener el número y la viabilidad celular después de la criopreservación, antes del trasplante es clave para garantizar la calidad de unidades en esta etapa. Para descongelar las unidades de SCU, estas se diluyen o lavan para disminuir el efecto citotóxico del crioprotector. Sin embargo, el GIMTTYC todavía requiere estandarizar el procedimiento de descongelación. En este trabajo se validó la implementación in situ de un protocolo pretrasplante de descongelación de unidades de SCU con la perspectiva de establecer herramientas que mejoren la recuperación y viabilidad celular pretrasplante. (Texto tomado de la fuente)Umbilical cord blood (UCB) is a source of hematopoietic progenitors (HP), which are used as therapy in various pathologies, mainly hematological. In Colombia, the transfusion, tissue and cellular medicine research group (GIMTTYC) of the Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), developed a clinical program for donor recruitment and banking of SCU cells, as well as services of compatibility search, reservation and distribution of units, under international standards of cellular therapy. SCU freezing and thawing procedures are validated in each bank in order to maintain the viability of the cells to be used in transplantation. Varying conditions in these procedures impact cell recovery and viability, which can affect the therapeutic potency of transplants. In order to corroborate that the cells will be functional, before and after thawing of the SCU units, cell viability tests are performed by flow cytometry and clonogenicity. Therefore, establishing the conditions to maintain cell number and viability after cryopreservation prior to transplantation is key to ensure the quality of units at this stage. To thaw SCU units prior to transplantation, they are diluted or washed to decrease the cytotoxic effect of the cryoprotectant. However, in the GIMTTYC this process still requires standardization. This work validated the in situ implementation of a pretransplantation protocol for thawing SCU units with the perspective of establishing tools to improve pretransplantation cell recovery and viability.MaestríaMagíster en Ciencias - BioquímicaInvestigación en fisiología y patología de la hematopoyesis para el desarrollo y la innovación clínicaxviii, 90 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humana570 - Biología::572 - BioquímicaAcondicionamiento PretrasplanteBiotecnologíaCongelaciónCordón UmbilicalTransplantation ConditioningBiotechnologyFreezingUmbilical CordSangre de cordón umbilicalTrasplante de progenitores hematopoyéticosCriopreservaciónDiluciónLavadoApoptosisNecrosisUmbilical cord bloodHematopoietic stem cell transplantationCryopreservationDilutionWashingApoptosisNecrosisOptimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celularPretransplantation procedure optimization of umbilical cord blood units thawing: prevention of cell deathTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAkel, S., Regan, D., Wall, D., Petz, L., & McCullough, J. (2014). Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion, 54(11), 2997–3009. https://doi.org/10.1111/TRF.12719Alberts Bruce, Johnson Alexander, Lewis Julian, Martin Raff, Keith Roberts, and P. W. (2002). Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK21054/Andersen, M. R. (2023, June 6). Cell counters – the secrets of the world of cell counters. ChemoMetec. https://chemometec.com/the-ultimate-guide-to-cell-counters/Arav, A. (2022). Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs. Cells, 11(7). https://doi.org/10.3390/CELLS11071072Ary, M., Aughlin, J. L., Uliet, J., Arker, B., Arbara, B., Ambach, B., Oc, M. N. K., Izzieri, A. A. R., Ohn, J., Agner, E. W., Tanton, S., Erson, L. G., Azarus, I. M. L., Itchell, M., Airo, C., Ladd, C., Tevens, E. S., Ablo, P., Ubinstein, R., … Urtzberg, K. (2001). Hematopoietic Engraftment and Survival in Adult Recipients of Umbilical-Cord Blood from Unrelated Donors. Https://Doi.Org/10.1056/NEJM200106143442402, 344(24), 1815–1822. https://doi.org/10.1056/NEJM200106143442402Arrazola. (1994). Biología de la membrana celular. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia, 14(4), 418–426. https://www.revistanefrologia.com/es-biologia-membrana-celular--articulo-X021169959400663XAwan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., & Stacey, G. N. (2020). Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine, 15(3), 1463–1491. https://doi.org/10.2217/RME-2019-0145/ASSET/IMAGES/LARGE/FIGURE1.JPEGBallen, K. K., Gluckman, E., & Broxmeyer, H. E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood, 122(4), 491–498. https://doi.org/10.1182/BLOOD-2013-02-453175Ballen, K. K., Verter, F., & Kurtzberg, J. (2015). Umbilical cord blood donation: Public or private? In Bone Marrow Transplantation (Vol. 50, Issue 10, pp. 1271–1278). Nature Publishing Group. https://doi.org/10.1038/bmt.2015.124Baust, J. G., Snyder, K. K., Van Buskirk, R., & Baust, J. M. (2017). Integrating Molecular Control to Improve Cryopreservation Outcome. Https://Home.Liebertpub.Com/Bio, 15(2), 134–141. https://doi.org/10.1089/BIO.2016.0119Berz, D., McCormack, E. M., Winer, E. S., Colvin, G. A., & Quesenberry, P. J. (2007). Cryopreservation of Hematopoietic Stem Cells. American Journal of Hematology, 82(6), 463. https://doi.org/10.1002/AJH.20707Bhattacharya, S. (2016). A Review on Cryoprotectant and its Modern Implication in Cryonics | Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-on-Cryoprotectant-and-its-Modern-in-Bhattacharya/6bf59e0acdb26b2a60c9bd549ef497f4b5e0762eBissoyi, A., Nayak, B., Pramanik, K., & Sarangi, S. K. (2014). Targeting cryopreservation-induced cell death: a review. Biopreservation and Biobanking, 12(1), 23–34. https://doi.org/10.1089/BIO.2013.0032Bojic, S., Murray, A., Bentley, B. L., Spindler, R., Pawlik, P., Cordeiro, J. L., Bauer, R., & de Magalhães, J. P. (2021). Winter is coming: the future of cryopreservation. BMC Biology 2021 19:1, 19(1), 1–20. https://doi.org/10.1186/S12915-021-00976-8Broxmeyer, H. E., Douglas, G. W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., & Boyse, E. A. (1989). Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3828. https://doi.org/10.1073/PNAS.86.10.3828Builes, N., Niño-Serna, L., & Combariza, J. F. (2023). Side effects after use of bedside thaw method in an umbilical cord blood stem cells for allogeneic transplantation in a children cohort: A single-center experience. Hematology/Oncology and Stem Cell Therapy, 17(1). https://doi.org/10.56875/2589-0646.1110Campos De Carvalho, E., Carolina, A., & Vieira Curcioli, J. (2010). Infusión de células madre hematopoyéticas: tipos, características, reacciones adversas y de transfusión y sus implicaciones para la enfermería1. Scielo.Br. Retrieved January 24, 2024, from https://www.scielo.br/j/rlae/a/zrStPfTGbcFPL9Y8SFSYvGf/?format=pdf&lang=esCaocci, G., Greco, M., & La Nasa, G. (2017). Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterranean Journal of Hematology and Infectious Diseases, 9(1), 2017032. https://doi.org/10.4084/MJHID.2017.032Cava, C. (2015). Comparación de dos soluciones de Lavado para el Trasplante de Progenitores Hematopoyéticos sin Dimetil Sulfóxido. PDF Descarga libre. https://digitum.um.es/digitum/bitstream/10201/47027/1/Catalina%20Cava%20Tesis%20Doctoral.pdfChang, T., & Zhao, G. (2021). Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 8(6), 2002425. https://doi.org/10.1002/ADVS.202002425Cheng, H., Zheng, Z., & Cheng, T. (2020). New paradigms on hematopoietic stem cell differentiation. Protein and Cell, 11(1), 34–44. https://doi.org/10.1007/S13238-019-0633-0/FIGURES/4Chow, R. Y. K., Li, Q., Chow, C., Guo, V., Dang, T., Rao, A., Zeng, T., Chow, D. T.-L., Wang, B., & Chow, M. (2017). Cord Blood Stem Cell Processing, Banking and Thawing. Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine. https://doi.org/10.5772/65033Cloutier, M., Simard, C., Jobin, C., Fournier, D., & Néron, S. (2016). An alternative to dextran for the thawing of cord blood units. Transfusion, 56(7), 1786–1791. https://doi.org/10.1111/TRF.13633Cooper, G. (2000). The Cell: A Molecular Approach - Structure of the Plasma Membrane. https://www.ncbi.nlm.nih.gov/books/NBK9898/DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019a). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019b). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004Díaz, D. (2011). Terapia celular en el sistema nervioso central: recuperación estructural y funcional en un modelo murino de muerte neuronal selectiva. Core.ac.uk. Retrieved January 24, 2024, from https://core.ac.uk/download/pdf/9527374.pdfDjuwantono, T., Wirakusumah, F. F., Achmad, T. H., Sandra, F., Halim, D., & Faried, A. (2011). A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells. BMC Research Notes, 4, 371. https://doi.org/10.1186/1756-0500-4-371Duggleby, R. C., Querol, S., Davy, R. C., Fry, L. J., Gibson, D. A., Horton, R. B. V., Mahmood, S. N., Gomez, S. G., & Madrigal, J. A. (2012). Flow cytometry assessment of apoptotic CD34+ cells by annexin V labeling may improve prediction of cord blood potency for engraftment. Transfusion, 52(3), 549–559. https://doi.org/10.1111/J.1537-2995.2011.03305.XElliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/J.CRYOBIOL.2017.04.004Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495. https://doi.org/10.1080/01926230701320337Feher, J. (2012). Active Transport: Pumps and Exchangers. Quantitative Human Physiology, 134–140. https://doi.org/10.1016/B978-0-12-382163-8.00016-5Fernández, M. L., & Reigada, R. (2014). Effects of dimethyl sulfoxide on lipid membrane electroporation. Journal of Physical Chemistry B, 118(31), 9306–9312. https://doi.org/10.1021/JP503502SForrest, L. R., Krämer, R., & Ziegler, C. (2011). The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(2), 167–188. https://doi.org/10.1016/J.BBABIO.2010.10.014Frallicciardi, J., Melcr, J., Siginou, P., Marrink, S. J., & Poolman, B. (2022). Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-29272-xFry, L. J., Querol, S., Gomez, S. G., Mcardle, S., Rees, R., & Madrigal, J. A. (2015). Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sanguinis, 109(2), 181–190. https://doi.org/10.1111/VOX.12267Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018a). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/J.JCYT.2018.03.033Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018b). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/j.jcyt.2018.03.033Garnacho-Montero, J., Fernández-Mondéjar, E., Ferrer-Roca, R., Herrera-Gutiérrez, M. E., Lorente, J. A., Ruiz-Santana, S., & Artigas, A. (2015). Cristaloides y coloides en la reanimación del paciente crítico. Medicina intensiva, 39(5), 303–315. https://doi.org/10.1016/j.medin.2014.12.007Golstein, P., & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 32(1), 37–43. https://doi.org/10.1016/J.TIBS.2006.11.001González-Acero, L. X., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Characterization of a novel HLA-C allele, HLA-C*01:166, in a Colombian Umbilical Cord Blood Bank Donor. In HLA (Vol. 94, Issue 4, pp. 386–387). Blackwell Publishing Ltd. https://doi.org/10.1111/tan.13611Gorin, N. C. (2019). Bone Marrow Harvesting for HSCT. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 109–115. https://doi.org/10.1007/978-3-030-02278-5_14Gupta, A. O., & Wagner, J. E. (2020). Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Frontiers in Pediatrics, 8, 629. https://doi.org/10.3389/FPED.2020.570282/BIBTEXGutensohn, K., Magens, M., Krüger, W., Kröger, N., & Kühnl, P. (2006). Comparison of flow cytometry vs. a haematology cell analyser-based method to guide the optimal time-point for peripheral blood stem cell apheresis. Vox Sanguinis, 90(1), 53–58. https://doi.org/10.1111/J.1423-0410.2005.00720.XGuttridge, M. G., Soh, T. G., Belfield, H., Sidders, C., & Watt, S. M. (2014). Storage time affects umbilical cord blood viability. Transfusion, 54(5), 1278–1285. https://doi.org/10.1111/TRF.12481Hall, J., Hall, M. (2021). Transport of Substances Through Cell Membranes - ClinicalKey. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323597128000047Harris, D. T. (2016). Long-term frozen storage of stem cells: challenges and solutions. Journal of Biorepository Science for Applied Medicine, 4, 9–20. https://doi.org/10.2147/BSAM.S90142Heiblig, M., Elhamri, M., Thomas, X., Plesa, A., Raffoux, E., & Hayette, S. (2018). A phase 1 study of chemosensitization with plerixafor plus G-CSF in adults with relapsed acute myeloid leukemia. Leukemia Research, 72, 7–11. https://doi.org/10.1016/J.LEUKRES.2018.07.017Higgins, A. Z., & Karlsson, J. O. (2008). Coincidence error during measurement of cellular osmotic properties by the electrical sensing zone method. Cryo Letters, 29(6). https://pubmed.ncbi.nlm.nih.gov/19280049/Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135(7), 1311–1323. https://doi.org/10.1016/J.CELL.2008.10.044Hordyjewska, A., Popiołek, Ł., & Horecka, A. (2015). Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 67(3), 387. https://doi.org/10.1007/S10616-014-9796-YHunt, C. J. (2019). Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfusion Medicine and Hemotherapy, 46(3), 134–150. https://doi.org/10.1159/000497289Hunt, C. J., Armitage, S. E., & Pegg, D. E. (2003). Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology, 46(1), 76–87. https://doi.org/10.1016/S0011-2240(02)00181-5Ikeda, K., Ohto, H., Okuyama, Y., Yamada-Fujiwara, M., Kanamori, H., Fujiwara, S. ichiro, Muroi, K., Mori, T., Kasama, K., Iseki, T., Nagamura-Inoue, T., Fujii, N., Ashida, T., Kameda, K., Kanda, J., Hirose, A., Takahashi, T., Nagai, K., Minakawa, K., & Tanosaki, R. (2018). Adverse Events Associated With Infusion of Hematopoietic Stem Cell Products: A Prospective and Multicenter Surveillance Study. Transfusion Medicine Reviews, 32(3), 186–194. https://doi.org/10.1016/J.TMRV.2018.05.005Jahan, S. (2020). Impact of Storage and Cryoprotectants on the Function of Cord Blood Hematopoietic Stem Cells. https://doi.org/10.20381/RUOR-24519Jahan, S., Kaushal, R., Pasha, R., & Pineault, N. (2021). Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfusion Medicine Reviews, 35(2), 95–102. https://doi.org/10.1016/J.TMRV.2021.01.003Jaime, J., Dorticós, E., Pavón, V., & Cortina, L. (2004). Trasplante de células progenitoras hematopoyéticas: tipos, fuentes e indicaciones. Rev Cubana de Hematología, Inmunología y Hemoterapia. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892004000200002Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12–18. https://doi.org/10.1016/J.IMR.2016.12.001Jara-Segura, E., Jensen-Gamboa, E., & Clínico Jensen, L. (2018). Recuento de células CD34+ por citometría de flujo Count of CD34 + cells by flow cytometry. Rev. Colegio de Microb. Quim. Clin. de Costa Rica, 24(2), 2215–3713.Johnson, D., Hashaikeh, R., & Hilal, N. (2021). Basic principles of osmosis and osmotic pressure. Osmosis Engineering, 1–15. https://doi.org/10.1016/B978-0-12-821016-1.00011-5Karam Khaddour; Caroline K. Hana; Prerna Mewawalla. (2022). Hematopoietic Stem Cell Transplantation. In Abeloff’s Clinical Oncology. StatPearls Publishing. https://doi.org/10.1016/B978-0-323-47674-4.00028-1Kim, A. R., Olsen, J. L., England, S. J., Huang, Y. S., Fegan, K. H., Delgadillo, L. F., McGrath, K. E., Kingsley, P. D., Waugh, R. E., & Palis, J. (2015). Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 4(6), 995. https://doi.org/10.1016/J.STEMCR.2015.05.003Kim, K. M., Huh, J. Y., Hong, S. S., & Kang, M. S. (2015). Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion, 55(8), 2017–2022. https://doi.org/10.1111/TRF.13120Kuang, S. Y. (2018). Tonicity and Osmolarity, Why Are They Confusing? The FASEB Journal, 31, 576.55-576.55. https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.576.55Kurtzberg, J. (2017). A history of cord blood banking and transplantation. In Stem Cells Translational Medicine (Vol. 6, Issue 5, pp. 1309–1311). AlphaMed Press. https://doi.org/10.1002/sctm.17-0075Kurtzberg, J., Cairo, M. S., Fraser, J. K., Baxter-Lowe, L. A., Cohen, G., Carter, S. L., & Kernan, N. A. (2005). Results of the Cord Blood Transplantation (COBLT) Study unrelated donor banking program. Transfusion, 45(6), 842–855. https://doi.org/10.1111/J.1537-2995.2005.04428.XLaroche, V., McKenna, D. H., Moroff, G., Schierman, T., Kadidlo, D., & McCullough, J. (2005). Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion, 45(12), 1909–1916. https://doi.org/10.1111/J.1537-2995.2005.00638.XLaterra, J., Keep, R., Betz, L.A., Goldstein, G. W. (1999). Membrane Transport Processes. https://www.ncbi.nlm.nih.gov/books/NBK28227/Lee, J. Y., & Hong, S. H. (2020). Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. International Journal of Stem Cells, 13(1), 1. https://doi.org/10.15283/IJSC19127Liggett, L. A., & Sankaran, V. G. (2020). Unraveling Hematopoiesis through the Lens of Genomics. Cell, 182(6), 1384–1400. https://doi.org/10.1016/J.CELL.2020.08.030Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 104(4), 487–501. https://doi.org/10.1016/S0092-8674(01)00237-9Lombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, 9(1), 1–35. https://doi.org/10.1186/S13062-014-0032-7/FIGURES/11Lund, T. C., Boitano, A. E., Delaney, C. S., Shpall, E. J., & Wagner, J. E. (2014). Advances in umbilical cord blood manipulation—from niche to bedside. Nature Reviews Clinical Oncology 2014 12:3, 12(3), 163–174. https://doi.org/10.1038/nrclinonc.2014.215Madeleine K., A. (2020). Recherche uO Research: Improving the Engraftment Activities of Cryopreserved Human Umbilical Cord Blood Through the Development of Novel Glyco(peptide)-Based Aryl Ice Recrystallization Inhibitors [University of Ottawa]. https://doi.org/http://dx.doi.org/10.20381/ruor-25034Madsen, B. K., Hilscher, M., Zetner, D., & Rosenberg, J. (2018). Adverse reactions of dimethyl sulfoxide in humans: a systematic review. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16642.2Malard, F., Huang, X. J., & Sim, J. P. Y. (2020). Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020 34:5, 34(5), 1229–1240. https://doi.org/10.1038/s41375-020-0804-2Mayani, H., Wagner, J. E., & Broxmeyer, H. E. (2019). Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplantation 2019 55:1, 55(1), 48–61. https://doi.org/10.1038/s41409-019-0546-9Mazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology, 14(3), 251–272. https://doi.org/10.1016/0011-2240(77)90175-4Medina, C. B., & Ravichandran, K. S. (2016). Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 23(6), 979–989. https://doi.org/10.1038/CDD.2016.13Megías, M., Molist, P., Pombal, M. (2019). Atlas de histología vegetal y animal. La célula. https://mmegias.webs.uvigo.es/5-celulas/3-propiedades1.phpMendoza, J. A., Dulin, P., & Warren, T. (2000). The Lower Hydrolysis of ATP by the Stress Protein GroEL Is a Major Factor Responsible for the Diminished Chaperon in Activity at Low Temperature. Cryobiology, 41(4), 319–323. https://doi.org/10.1006/CRYO.2000.2287Meneghel, J., Kilbride, P., & Morris, G. J. (2020). Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies—A Review. Frontiers in Medicine, 7, 824. https://doi.org/10.3389/FMED.2020.592242/BIBTEXMera Reina Claudia, R. L. A. R. C. S. (2007). Células Madre Hematopoyéticas. Retrieved June 26, 2022, from https://www.studocu.com/es-ar/document/universidad-de-buenos-aires/hematologia/mera-2007-celulas-madre-hematopoyeticas/29080539Mitchell, R., Wagner, J. E., Brunstein, C. G., Cao, Q., McKenna, D. H., Lund, T. C., & Verneris, M. R. (2015). Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes. Biology of Blood and Marrow Transplantation, 21(1), 50–54. https://doi.org/10.1016/j.bbmt.2014.09.002Nadig, R. R. (2009). Stem cell therapy – Hype or hope? A review. Journal of Conservative Dentistry : JCD, 12(4), 131. https://doi.org/10.4103/0972-0707.58329Navarrete, C. (2015). Cord blood banking: Operational and regulatory aspects. In Cord Blood Stem Cells Medicine (pp. 197–210). Elsevier Inc. https://doi.org/10.1016/B978-0-12-407785-0.00015-3Navarro (2016). RUNX1 en la hematopoyesis embrionaria humana. Programa Oficial de Doctorado en Biomedicina. Ugr.Es. Retrieved January 24, 2024, from https://digibug.ugr.es/bitstream/handle/10481/44168/2622690x.pdf?sequence=6&isAllowed=yNirmala, J. G., & Lopus, M. (2020). Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145–164. https://doi.org/10.1007/S10565-019-09496-2Oanne, J., Urtzberg, K., Ary, M., Aughlin, L., Raham, I. L. G., Lay, C., Mith, S., Anice, J., Lson, F. O., Dward, E., Alperin, C. H., Armelita, C., Arrier, C., Ladd, C., Tevens, E. S., Ablo, P., & Ubinstein, R. (1996). Placental Blood as a Source of Hematopoietic Stem Cells for Transplantation into Unrelated Recipients. Https://Doi.Org/10.1056/NEJM199607183350303, 335(3), 157–166. https://doi.org/10.1056/NEJM199607183350303Pasha, R., Elmoazzen, H., & Pineault, N. (2017). Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion, 57(7), 1744–1754. https://doi.org/10.1111/TRF.14136Pedrosa de Lira de Morais, C. C., Dias Alves Pinto, J., Wagner de Souza, K., Izu, M., Fernando da Silva Bouzas, L., & Henrique Paraguassú-Braga, F. (2022). Validation of the single-platform ISHAGE protocol for enumeration of CD34+ hematopoietic stem cells in umbilical cord blood in a Brazilian center. Hematology, Transfusion and Cell Therapy, 44(1), 49–55. https://doi.org/10.1016/j.htct.2020.09.151Pope, B., Hokin, B., & Grant, R. (2015). Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion, 55(3), 629–635. https://doi.org/10.1111/TRF.12873Pranke, P., Hendrikx, J., Alespeiti, G., Nardi, N., Rubinstein, P., Visser, J. (2006). (PDF) Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCountTMBD and ISHAGE protocols | Jan Hendrikx - Academia.edu. https://www.academia.edu/7631730/Comparative_quantification_of_umbilical_cord_ blood_CD34_and_CD34_bright_cells_using_the_ProCount_BD_and_ISHAGE_proto colsPrice, T. H., Chatta, G. S. & Dale, D. C. (1996). Effect of Recombinant Granulocyte Colony-Stimulating Factor on Neutrophil Kinetics in Normal Young and Elderly Humans. Blood, 88(1), 335–340.Product: Cord Blood Standards, 7th EditionSeventh Edition NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration [Free Download]: FACT. (2019). https://www.factweb.org/forms/store/ProductFormPublic/seventh-edition-netcordfact-international-standards-for-cord-blood-collection-banking-and-release-foradministration-free-downloadQuerol, S., Gomez, S. G., Pagliuca, A., Torrabadella, M., & Madrigal, J. A. (2010). Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplantation, 45(6), 970–978. https://doi.org/10.1038/BMT.2010.7Rall, W. F., Wood, M. J., Kirby, C., & Whittingham, D. G. (1987). Development of mouse embryos cryopreserved by vitrification. Journal of Reproduction and Fertility, 80(2), 499–504. https://doi.org/10.1530/JRF.0.0800499Rebulla, P., & Lecchi, L. (2011). Towards responsible cord blood banking models. Cell Proliferation, 44(SUPPL. 1), 30–34. https://doi.org/10.1111/j.13652184.2010.00720.xRegan, D. M., Wofford, J. D., & Wall, D. A. (2010). Comparison of cord blood thawing methods on cell recovery, potency, and infusion. Transfusion, 50(12), 2670–2675. https://doi.org/10.1111/J.1537-2995.2010.02803.XReich-Slotky, R., Bachegowda, L. S., Ancharski, M., Mendeleyeva, L., Rubinstein, P., Rennert, H., Shore, T., Van Besien, K., & Cushing, M. (2015). How we handled the dextran shortage: an alternative washing or dilution solution for cord blood infusions. Transfusion, 55(6), 1147–1153. https://doi.org/10.1111/TRF.13015Rifón, J. J. (2006). Trasplante de progenitores hemopoyéticos Transplant of hemopoietic progenitors. An. Sist. Sanit. Navar, 29(2).Riva, N. S., Ruhlmann, C., Iaizzo, R. S., López, C. A. M., & Martínez, A. G. (2018). Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assisted Reproduction, 22(4), 331. https://doi.org/10.5935/1518-0557.20180060Rodríguez, L. (2005). RECONSTITUCIÓN DE PRODUCTOS HEMATOPOYÉTICOS CRIOPRESERVADOS: - PDF Descargar libre. https://docplayer.es/6645871Reconstitucion-de-productos-hematopoyeticos-criopreservados.htmlRodriguez, L., Azqueta, C., Azzalin, S., Garcia, J., & Querol, S. (2004). Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system*. Vox Sanguinis, 87(3), 165–172. https://doi.org/10.1111/J.14230410.2004.00550.XRubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10119–10122. https://doi.org/10.1073/pnas.92.22.10119Rudloff, E., & Hopper, K. (2021). Crystalloid and Colloid Compositions and Their Impact. Frontiers in Veterinary Science, 8, 266. https://doi.org/10.3389/FVETS.2021.639848/BIBTEXSano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833(12), 3460–3470. https://doi.org/10.1016/J.BBAMCR.2013.06.028Scaradavou, A., Avecilla, S. T., Tonon, J., Politikos, I., Horwitz, M. E., Kurtzberg, J., Milano, F., & Barker, J. N. (2020). Guidelines for Cord Blood Unit Thaw and Infusion. Biology of Blood and Marrow Transplantation, 26, 1780–1783. https://doi.org/10.1016/j.bbmt.2020.06.018Schepers, K., Campbell, T. B., & Passegué, E. (2015). Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 16(3), 254–267. https://doi.org/10.1016/J.STEM.2015.02.014Schiewe, M. C., & Anderson, R. E. (2017). Vitrification: the pioneering past to current trends and perspectives of cryopreserving human embryos, gametes and reproductive tissue. Journal of Biorepository Science for Applied Medicine, 5, 57–68. https://doi.org/10.2147/BSAM.S139376Schwandt, S., Liedtke, S., & Kogler, G. (2017). The influence of temperature treatment before cryopreservation on the viability and potency of cryopreserved and thawed CD34+ and CD45+ cord blood cells. Cytotherapy, 19(8), 962–977. https://doi.org/10.1016/J.JCYT.2017.05.005Seita, J., & Weissman, I. L. (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(6), 640–653. https://doi.org/10.1002/WSBM.86Shim, J. S., Cho, B., Kim, M., Park, G. S., Shin, J. C., Hwang, H. K., Kim, T. G., & Oh, I. H. (2006). Early apoptosis in CD34+ cells as a potential heterogeneity in quality of cryopreserved umbilical cord blood. British Journal of Haematology, 135(2), 210213. https://doi.org/10.1111/J.1365-2141.2006.06270.XSlack, J. M. W. (2018). What is a stem cell? Wiley Interdisciplinary Reviews. Developmental Biology, 7(5). https://doi.org/10.1002/wdev.323Stillwell, W. (2016). Membrane Transport. An Introduction to Biological Membranes, 423. https://doi.org/10.1016/B978-0-444-63772-7.00019-1Strong, A., Gračner, T., Chen, P., & Kapinos, K. (2018). On the Value of the Umbilical Cord Blood Supply. Value in Health, 21(9), 1077–1082. https://doi.org/10.1016/j.jval.2018.03.003Subczynski, W. K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., & Raguz, M. (2017). High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 75(3–4), 369–385. https://doi.org/10.1007/S12013-017-0792-7Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (2009). The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. Https://Home.Liebertpub.Com/Scd, 5(3), 213–226. https://doi.org/10.1089/SCD.1.1996.5.213Toné, S., Sugimoto, K., Tanda, K., Suda, T., Uehira, K., Kanouchi, H., Samejima, K., Minatogawa, Y., & Earnshaw, W. C. (2007). Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 313(16), 3635–3644. https://doi.org/10.1016/J.YEXCR.2007.06.018Tunçer, S., Gurbanov, R., Sheraj, I., Solel, E., Esenturk, O., & Banerjee, S. (2018). Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-33234-ZVanegas, D., Galindo, C. C., Páez-Gutiérrez, I. A., González-Acero, L. X., MedinaValderrama, P. T., Lozano, J. C., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Human Leukocyte Antigen and Red Blood Cells Impact Umbilical Cord Blood CD34+ Cell Viability after Thawing. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/IJMS20194875Vanegas, D., Triviño, Lady, Galindo, C., Franco, L., Salguero, G., Camacho, B., & Perdomo-Arciniegas, A. M. (2017). A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content. Transfusion, 57(9), 2225–2233. https://doi.org/10.1111/TRF.14190Vujovic, P., Chirillo, M., & Silverthorn, D. U. (2018). Learning (by) osmosis: An approach to teaching osmolarity and tonicity. Advances in Physiology Education, 42(4), 626635. https://doi.org/10.1152/ADVAN.00094.2018/ASSET/IMAGES/LARGE/ZU100418326 30003.JPEGWagner, J. E., Eapen, M., Carter, S., Wang, Y., Schultz, K. R., Wall, D. A., Bunin, N., Delaney, C., Haut, P., Margolis, D., Peres, E., Verneris, M. R., Walters, M., Horowitz, M. M., & Kurtzberg, J. (2014). One-Unit versus Two-Unit Cord-Blood Transplantation for Hematologic Cancers. New England Journal of Medicine, 371(18), 1685–1694. https://doi.org/10.1056/NEJMoa1405584Waller-Wise, R. (2011). Umbilical Cord Blood: Information for Childbirth Educators. The Journal of Perinatal Education, 20(1), 54–60. https://doi.org/10.1891/10581243.20.1.54Weng, L., & Beauchesne, P. R. (2020). Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology, 94, 9–17. https://doi.org/10.1016/J.CRYOBIOL.2020.03.012Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplantation, 30. https://doi.org/10.1177/0963689721999617Wong, J. (2008). Centrifugal recovery of embryonic stem cells for regenerative medicine bioprocessing. https://discovery.ucl.ac.uk/id/eprint/16358/1/16358.pdfWoods, E. J., Thirumala, S., Badhe-Buchanan, S. S., Clarke, D., & Mathew, A. J. (2016). Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. In Cytotherapy (Vol. 18, Issue 6, pp. 697711). Elsevier Inc. https://doi.org/10.1016/j.jcyt.2016.03.295Wu, L. K., Tokarew, J. M., Chaytor, J. L., Von Moos, E., Li, Y., Palii, C., Ben, R. N., & Allan, D. S. (2011). Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydrate Research, 346(1), 86–93. https://doi.org/10.1016/J.CARRES.2010.10.016Yang, H., Acker, J. P., Cabuhat, M., & McGann, L. E. (2003). Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation. Bone Marrow Transplantation, 32(10), 1021–1026. https://doi.org/10.1038/SJ.BMT.1704247Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., & Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276(17), 1393513940. https://doi.org/10.1074/JBC.M010677200Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future. Stem Cell Research and Therapy, 10(1), 1–22. https://doi.org/10.1186/S13287-019-1165-5/FIGURES/8Zinno, F., Landi, F., Aureli, V., Caniglia, M., Pinto, R. M., Rana, I., Balduino, G., Miele, M. J., Picardi, A., Arcese, W., & Isacchi, G. (2010). Pre-transplant manipulation processing of umbilical cord blood units: Efficacy of Rubinstein’s thawing technique used in 40 transplantation procedures. Transfusion and Apheresis Science, 43(2), 173–178. https://doi.org/10.1016/J.TRANSCI.2010.07.005INVESTIGACIÓN ORIENTADA A LA IMPLEMENTACIÓN DE BUENAS PRÁCTICAS PARA LA APLICACIÓN CLÍNICA DE TERAPIAS CELULARES. MODELO: TPH EN BOGOTÁFondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías, código BPIN2016000100035Fondo Financiero Distrital de Salud (Convenio 0182 de 2018)EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86328/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022383727.2024.pdf1022383727.2024.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2958422https://repositorio.unal.edu.co/bitstream/unal/86328/2/1022383727.2024.pdf9338a51b53b88e533baa8e720cdb1badMD52THUMBNAIL1022383727.2024.pdf.jpg1022383727.2024.pdf.jpgGenerated Thumbnailimage/jpeg5472https://repositorio.unal.edu.co/bitstream/unal/86328/3/1022383727.2024.pdf.jpg6f4ccae1494627c24985cf6b1e2ef18dMD53unal/86328oai:repositorio.unal.edu.co:unal/863282024-06-28 23:05:24.288Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=