Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia
Disertación de tesis de maestría en Ciencias -Meteorología en formato PDF.
- Autores:
-
Hernández Guzmán, Francisco Javier
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79696
- Palabra clave:
- 550 - Ciencias de la tierra
Agrometeorología
Control de calidad
Variabilidad espacio-temporal
Desempeño de recuperación
Algoritmos de recuperación
Agrometeorology
Quality control
Spatio-temporal variability
Recovery performance
Recovery algorithms
Agroclimatología
Agroclimatology
Humedad del suelo
Soil moisture
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_4c274d57967249abec20d1aebceffc9b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79696 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
dc.title.translated.eng.fl_str_mv |
Evaluation of agroclimatic methods for timely estimation of the conditions of surface soil moisture in agricultural areas of Colombia |
title |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
spellingShingle |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia 550 - Ciencias de la tierra Agrometeorología Control de calidad Variabilidad espacio-temporal Desempeño de recuperación Algoritmos de recuperación Agrometeorology Quality control Spatio-temporal variability Recovery performance Recovery algorithms Agroclimatología Agroclimatology Humedad del suelo Soil moisture |
title_short |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
title_full |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
title_fullStr |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
title_full_unstemmed |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
title_sort |
Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia |
dc.creator.fl_str_mv |
Hernández Guzmán, Francisco Javier |
dc.contributor.advisor.none.fl_str_mv |
Diaz Almanza, Eliecer David |
dc.contributor.author.none.fl_str_mv |
Hernández Guzmán, Francisco Javier |
dc.contributor.referee.none.fl_str_mv |
Vega Rodriguez, Emel Enrique Cadena, Martha Cecilia |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra |
topic |
550 - Ciencias de la tierra Agrometeorología Control de calidad Variabilidad espacio-temporal Desempeño de recuperación Algoritmos de recuperación Agrometeorology Quality control Spatio-temporal variability Recovery performance Recovery algorithms Agroclimatología Agroclimatology Humedad del suelo Soil moisture |
dc.subject.proposal.spa.fl_str_mv |
Agrometeorología Control de calidad Variabilidad espacio-temporal Desempeño de recuperación Algoritmos de recuperación |
dc.subject.proposal.eng.fl_str_mv |
Agrometeorology Quality control Spatio-temporal variability Recovery performance Recovery algorithms |
dc.subject.unesco.none.fl_str_mv |
Agroclimatología Agroclimatology Humedad del suelo Soil moisture |
description |
Disertación de tesis de maestría en Ciencias -Meteorología en formato PDF. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-23T22:08:32Z |
dc.date.available.none.fl_str_mv |
2021-06-23T22:08:32Z |
dc.date.issued.none.fl_str_mv |
2021-06-18 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79696 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79696 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Franklyn, R., Arango C, D. J., and D, G. (2012). Climatología trimestral de colombia - nota técnica ideam. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). MADR (2012). Plan mitigación de los efectos del fenómeno el niño en el sector agropecuario, acuícola y pesquero. Technical report, Ministerio de Agricultura y Desarrollo Rural de Colombia, Bogotá Colombia. Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L. (2001). Plants in wáter controlled ecosystems: Active role in hydrologic processes and responce to wáter stress i. scope and general outline. Advances in Water Resources, 24:695–705. UPRA (2017a). Identificación general de la frontera agrícola en colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA). UPRA (2017b). Zonificación general de tierras con fines de irrigación para colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA). Zhuo, L., Han, D., Dai, Q., Islam, T., and Srivastava, P. (2015). Appraisal of nldas-2 multi-model simulated soil moistures for hydrological modelling. Water Resources Management, 29. Campbell, G. (1988). Soil water potential measurement: An overview. Irrigation Science, 9:265–273. Crow, W. T. (2019). Chapter three - utility of soil moisture data products for natural disaster applications. In Maggioni, V. and Massari, C., editors, Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment, pages 65–85. Elsevier. Cui, H., Jiang, L., Du, J., Zhao, S., Wang, G., Lu, Z., and Wang, J. (2017). Evaluation and analysis of amsr-2, smos, and smap soil moisture products in the genhe area of china. Journal of Geophysical Research: Atmospheres, 122. Engman, T. (1991). Application of microwave remote sensing of soil moisture for water re-sources and agriculture. Remote Sensing of Environment, 35:213–226. Florentino, A. (2014). Métodos para medir el contenido de humedad en el suelo. Technical report, Venesuelos. Fu, B.-J., Wang, J., Chen, L.-D., and Qiu, Y. (2003). The effects of land use on soil moisture variation in the danangou catchment of the loess plateau, china. CATENA, 54:197–213. IDEAM, SINCHI, I. P. Y. M. (2015). Capa nacional de cobertura de la tierra (periodo 2010-2012): Metodología corine land cover adaptada para colombia escala 1:100.000 v 1.0. colombia, bogotá (colombia). IMKO (2006). Trime-ez /-ezc /-it /-itc user manual, imko micromodultechnik gmbh. Mittelbach, H., Lehner, I., and Seneviratne, S. (2012). Comparison of four soil moisture sensor types under field conditions in switzerland. Journal of Hydrology, 430:39–49. Neilson, R. (1991). Climatic constraints and issues of scale controlling regional biomes. pages 31–51. Reichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture Geophysical Research Letters, 31. Ullah, W., Wang, G., Gao, Z., Hagan, D., and Lou, D. (2017). Comparisons of remote sensing and reanalysis soil moisture products over the tibetan plateau, china. Cold Regions Science and Technology, 146. WMO (2008). Guide to hydrological practices No 168. Obtenido http://www.whycos.org/hwrp/guide/index.php. Yetbarek, E. and Ojha, R. (2020). Spatio-temporal variability of soil moisture in a cropped agricultural plot within the ganga basin, india. Agricultural Water Management, 234:106108. Abraham. Savitzky, M. J. E. G. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36:1627–1639. Assouline, S. and Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA, 66:211–220. Beljaars, A., Viterbo, P., Miller, M., and Betts, A. (1996). The anomalous rainfall over the united states during july 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Monthly Weather Review, 124:362–383. Browning, J. and Schneider, C. (2017). R-package ’snht’. Brutsaert, W. (2014). Daily evaporation from drying soil: Universal parameterization with similarity. Water Resources Research, 50. Cao, W., Sheng, Y., Wu, J.-c., and Li, J. (2017). Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of bayan har mountains in qinghai-tibet plateau. Journal of Mountain Science, 14. Chen, X., Zhang, Z., Chen, X., and Shi, P. (2009). The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest china. Environmental Earth Sciences, 59:811–820. Dari, J., Morbidelli, R., Saltalippi, C., Massari, C., and Brocca, L. (2019). Spatial-temporal variability of soil moisture: Addressing the monitoring at the catchment scale. Journal of Hydrology, 570. Deng, L., Wang, K., Li, J., Zhao, G., and Shangguan, Z. (2016). Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, china. Ecological Engineering, 94:525–531. Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Dostálová, A., Sanchis-Dufau, A., Za-mojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12. Endla Reintam, Kersti Vennik, K. K. L. K. (2017). Predicting soil freezing depth for traffica-bility. Gaur, N. and Mohanty, B. (2013). Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water Resources Research, 49:1244–1258. Haimberger, L. (2007). Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate - J CLIMATE, 20:1377–1403. He, Z., Zhao, W., Liu, H., and Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern china’s qilian mountains. Journal of Hydrology, 420:183–190. Heer, E. (2017). Evaluation and enhancement of automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien. Houser, C. (2010). Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography, 35:65–86. Huang, J., Wu, P., and Zhao, X. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. CATENA, 104:93– 102. Hubbard, K. (2001). Automated weather stations for application in agriculture and water resources management: current use and future perspectives. Hubbard, K., Goddard, S., Sorensen, W., Wells, N., and Osugi, T. (2005). Performance of quality assurance procedures for an acis. Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 22:105–112. IGAC (2014). Estudio general de suelos y zonificación de tierras. colombia, bogotá (colombia). Jaramillo, A. and Chaves, B. (2000). Distribución de la precipitación en colombia analizada mediante conglomeración estadística. 51:102–113. Joshi, C. and Mohanty, B. (2010). Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during smex02. Water Resources Research. WATER RESOUR RES, 46. Journée, M. and Bertrand, C. (2011). Quality control of solar radiation data within the rmib solar measurements network. Solar Energy - SOLAR ENERG, 85:72–86. Letian, Z., Liu, Y., and Jiao, F. (2012). Time series analysis of spatial variability of soil moisture in loess hilly region. Procedia Earth and Planetary Science, 5:346–353. Liu, M., Wang, Q., Guo, L., Yi, J., Lin, H., Zhu, Q., Fan, B., and Zhang, H. (2020). Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of three gorges reservoir area, china. Journal of Geographical Sciences, 30:949–968. MEEK, D. and Hatfield, J. (1994). Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology - AGR FOREST METEOROL, 69:85–109. Mo, K., Long, L., Xia, Y., Yang, S.-K., Schemm, J., and Ek, M. (2011). Drought indices based on the climate forecast system reanalysis and ensemble nldas. Journal of Hydrometeorology, 12. Mu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015a). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008. Mu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015b). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008. Oscar, S., Brunet, M., Aguilar, E., Sigró, J., and López, D. (2004). Thesis, grupo de investigación del cambio climático, unitat de geografía. universitat rovira i virgili, tarragona. Pan, Y.-X., Wang, X.-P., Jia, R.-L., Chen, Y.-W., and He, M.-Z. (2008). Spatial variability of surface soil moisture content in a re-vegetated desert area in shapotou, northern china. Journal of Arid Environments, 72:1675–1683. W.A., D., Gruber, A., de Jeu, R., W., W., T., S., Loew, A., Albergel, C., Brocca, L., D., C., Parinussa, R., and R., K. (2015). Evaluation of the esa cci soil moisture product using ground-based observations. Remote Sensing of Environment, 162:380–395. Xaver, A. (2015). Automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien. Yang, K. and Wang, C. (2019). Seasonal persistence of soil moisture anomalies related to freeze-thaw over the tibetan plateau and prediction signal of summer precipitation in eastern china. Climate Dynamics. You, J., Hubbard, K., Mahmood, R., Sridhar, V., and Todey, D. (2010). Quality control of soil water data in applied climate information system. case study in nebraska. Journal of Hydrologic Engineering, 15:200–209. Yu-Hua, J. and Shao, M.-A. (2013). Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of china. Agricultural Water Management, 117:33–42. Zhang, C., Liu, S., Zhang, X., and Tan, K. (2009). Research on the spatial variability of soil moisture. pages 285–292. Zhang, X., Zhang, X., and Li, G. (2014). The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: A case study of olympic forest park in beijing. Frontiers of Environmental Science y Engineering, 9. Zhu, H., Hu, S., Yang, J., Karamage, F., Li, H., and Fu, S. (2019). Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the gurbantunggut desert in xinjiang, china. Journal of Arid Land, 11:685–700. Albergel, C., Rosnay, P., Gruhier, C., Muñoz Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observation. Remote Sensing of Environment, 118:215–226. Attema, E., Davidson, M., Floury, N., Levrini, G., Rosich, B., Rommen, B., and Snoeij, P. (2008). Sentinel-1 esa’s new european radar observatory. pages 1 – 4. Attema, E. and Ulaby, F. (1978). Vegetation modeled as a water cloud. Radio Science - RADIO SCI, 13:357–364. Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46:W02516. Choker, M., Baghdadi, N., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N., Hans, L., and Mattia, F. (2017). Evaluation of the oh, dubois and iem backscatter models using a large dataset of sar data and experimental soil measurements. Water, 9:38. Crow, W. (2007). A novel method for quantifying value in spaceborne soil moisture retrievals. Journal of Hydrometeorology, 8. Crow, W., Berg, A., Cosh, M., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., Ryu, D., Walker, J., Berg, A., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., and Walker, J. (2012). Up-scaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys, 50. De Jeu, R. and Owe, M. (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. International Journal of Remote Sensing, 24:4559– 4578. De Lannoy G.J.M., de Rosnay P., R. R. (2019). Soil Moisture Data Assimilation. In: Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds) Handbook of Hydro-meteorological Ensemble Forecasting. Springer. Dharssi, I., Bovis, K., Macpherson, B., and Jones, C. (2011). Operational assimilation of ascat surface soil wetness at the met office. Earth Syst. Sci. Discuss, 8:4313–4354. Dobson, M., Ulaby, F., Hallikainen, M., and El-Rayes, M. (1985). Microwave dielectric beha-vior of wet soil-part ii: Dielectric mixing models. Geoscience and Remote Sensing, IEEE Transactions on, GE-23:35 – 46. Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P., Hirschi, M., Ikonen, J., Jeu, R., Kidd, R., Lahoz, W., Liu, Y., Miralles, D., and Lecomte, P. (2017). Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203. Dubois, P., vanZyl, J., and Engman, T. (1995). Corrections to measuring soil moisture with imaging radars. Geoscience and Remote Sensing, IEEE Transactions on, 33:1340. Ebtehaj, A. M. (2018). A physically constrained inversion for super-resolved passive microwave retrieval of soil moisture and vegetation water content in l-band. Entekhabi, D., Reichle, R., Koster, R., and Crow, W. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11. Gouweleeuw, B., van Dijk, A., Guerschman, J., Dyce, P., Jeu, R., and Owe, M. (2012). Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction. Hydrol. Earth Syst. Sci. Discuss, 9:1013–1039. Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W. (2015). Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and Geoinformation, 45. Hess, R., Lange, M., and Wergen, W. (2008). Evaluation of the variational soil moisture assimilation scheme at deutscher wetterdienst. Quarterly Journal of the Royal Meteorological Society, 134:1499 – 1512. Jonard, F., Bogena, H., Caterina, D., Garre, S., Klotzsche, A., Monerris, A., Schwank, M., and von Hebel, C. (2018). Ground-Based Soil Moisture Determination, pages 1–42. Jr, W. (1978). Radiative transfer in a plane stratified dielectric. Geoscience Electronics, IEEE Transactions on, 16:138 – 143. Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in Water Resources, 109:106–120. Kerr, Y., Philippe, W., Wigneron, J.-P., Martinuzzi, J.-M., Font, J., and Berger, M. (2001). Soil moisture retrieval from space: The soil moisture and ocean salinity (smos) mission. Geoscience and Remote Sensing, IEEE Transactions on, 39:1729 – 1735. Kim, S., Zhang, R., Pham, H., and Sharma, A. (2019). A review of satellite-derived soil moisture and its usage for flood estimation. Kumar, S., Reichle, R., Harrison, K., Peters-Lidard, C., Yatheendradas, S., and Santanello, J. (2012). A comparison of methods for a priori bias correction in soil moisture data assimi-lation. Water Resources Research, 48:3515–. Li, l., Njoku, E., Im, E., Chang, P., and Germain, K. (2004). A preliminary survey of radio-frequency interference over the u.s. in aqua amsr-e data. Geoscience and Remote Sensing, IEEE Transactions on, 42:380 – 390. Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, F., Taillefer, F., and Taseva, L. (2009). A comparison of two off-line soil analysis schemes for assimilation of screen level observations. Journal of Geophysical Research, 114. May, W., Rummukainen, M., Chéruy, F., Hagemann, S., and Meier, A. (2016). Contributions of soil moisture interactions to future precipitation changes in the glace-cmip5 experiment. Climate Dynamics. Mo, T., Choudhury, B., Schmugge, T., Wang, J., and Jackson, T. (1983). A model for micro-wave emission from vegetation-covered fields. Journal of Geophysical Research Atmospheres, 87. Mo, T., Schmugge, T., and Jackson, T. (1984). Calculations of radar backscattering coefficient of vegetation-covered soils. Remote Sensing of Environment, 15. Monerris, A., Walker, J., Panciera, R., Jackson, T., Gray, D., Yardley, H., and Ryu, D. (2011). The third soil moisture active passive experiment. Muñoz Sabater, J., Jarlan, L., Calvet, J.-C., Bouyssel, F., and Rosnay, P. (2007). From near-surface to root-zone soil moisture using different assimilation techniques. Journal of Hydrometeorology - J HYDROMETEOROL, 8. Oh, Y., Sarabandi, K., and Ulaby, F. (1992). An empirical-model and an inversion technique for radar scattering from bare soil surfaces. Geoscience and Remote Sensing, IEEE Transactions on, 30:370 – 381. Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., and Reppucci, A. (2013). Soil moisture mapping using sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134:234. Pan, M., Wood, E., Wójcik, R., and McCabe, M. (2008). Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 112:1282–1294. Parinussa, R., Meesters, A., Liu, Y., Dorigo, W., Wagner, W., and de Jeu, R. (2011). Error es-timates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. Geoscience and Remote Sensing Letters, IEEE, 8:779 – 783. Prévot, L., Dechambre, M., Taconet, O., VIDALMADJAR, D., Normand, M., and Galle, S. (1993). Estimating the characteristics of vegetation canopies with airborne radar measure-ments. International Journal of Remote Sensing, 14:2803–2818. Reichle, R., De Lannoy, G., Forman, B., Draper, C., and Liu, Q. (2013). Connecting satellite observations with water cycle variables through land data assimilation: Examples using the nasa geos-5 ldas. Surveys in Geophysics, 35. Reichle, R., De Lannoy, G., Liu, Q., Ardizzone, J., Colliander, A., Conaty, A., Crow, W., Jackson, T., Jones, L., Kimball, J., Koster, R., Mahanama, S., Smith, E., Berg, A., Bircher, S., Bosch, D., Caldwell, T., Cosh, M., González-Zamora, n., and Zeng, Y. (2017). Assessment of the smap level-4 surface and root-zone soil moisture product using in situ measurements. Journal of Hydrometeorology, 18. Reichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31. Reichle, R., McLaughlin, D., and Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble kalman filter. Mon. Weather. Rev., 130:103–114. Schmugge, T., O’Neill, P., and Wang, J. (1986). Passive microwave soil moisture research. Geoscience and Remote Sensing, IEEE Transactions on, 24:12 – 22. Stanski, Wilson, L., and Burrows, W. (1990). Survey of common verification methods in meteorology. Stoffelen, A. (1998). Error modeling and calibration; towards the true surface wind speed. J. Geophys. Res., 103:7,755–7,766. Ulaby, F., Dubois, P., and van Zyl, J. (1996). Radar mapping of surface soil moisture. Journal of Hydrology, 184:57–84. Ulaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing. Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-saldaña, J., Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., and Rubel, F. (2013). The ascat soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22:5–33. Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B. (2003). Evaluation of the agreement between the first global remotely sensed soil moistu-re data with model and precipitation data. <http://www.agu.org/pubs/crossref/2003 2003jd003663.shtml(accessed>3 december 2012). Journal of Geophysical Research (At-mospheres), 108:4611–. Wei-Chen, Z., Zhen, H., Shuang-Yu, H., Yi-Qing, W., Xue-Wei, Z., and Yi-Sheng, W. (2019). Characteristics of l-band radio frequency interference detected via the soil moisture active passive radiometer in china and its offshore areas. Results in Physics, 12. Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y., and De Lannoy, G. (2019). Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ismn ground-based measurements. Remote Sensing of Environment, 224:289–303. Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y., Rosnay, P., de Jeu, R., Govind, A., Al Bitar, A., Albergel, C., Muñoz Sabater, J., Richaume, P., and Mialon, A. (2014). Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (smos and amsr-e) with respect to land data assimilation system estimates. Remote Sensing of Envi-ronment, 149:181–195. Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E. (2008). From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12. Azimi, S., Dariane, A., SaraModanesi, BernhardBauer-Marschallinger, Bindish, R., wagner, w., and Massari, C. (2019). Understanding the benefit of sentinel 1 and smap - era satellite soil moisture retrievals for flood forecasting in small basins: effect of revisit time and the spatial resolution. Journal of Hydrology, 581. Babaeian, E., Sadeghi, M., Jones, S., Montzka, C., Vereecken, H., and Tuller, M. (2019). Ground, proximal and satellite remote sensing of soil moisture. Reviews of Geophysics, 57. Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner, W. (2018). Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing, PP:1–20. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sensing of Environment, 115:3390–3408. Burgin, M., Colliander, A., Njoku, E., Chan, S., Cabot, F., Kerr, Y., Bindlish, R., Jackson, T., Entekhabi, D., and Yueh, S. (2017). A comparative study of the smap passive soil moisture product with existing satellite-based soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, PP:1–13. Candela, E., Mendiguren González, G., Martín, M., Acevedo, M., Bosch-Belmar, M., Fuen-tes, V., and Bordehore, C. (2014). Validación local de la temperatura superficial del mar del sensor modis en aguas someras del mediterráneo occidental. Revista de la Asociación Española de Teledetección. Chen, F., Crow, W., Colliander, A., Cosh, M., Jackson, T., Bindlish, R., Reichle, R., Chan, S., Bosch, D., Starks, P., Goodrich, D., and Seyfried, M. (2016). Application of triple collocation in ground-based validation of soil moisture active/passive (smap) level 2 data products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99:1–14. Chen, F., Crow, W., and Holmes, T. (2012). Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool. Journal of Applied Remote Sensing, 6:3604. Chen, Y. and Yuan, H. (2020). Evaluation of nine sub-daily soil moisture model products over china using high-resolution in situ observations. Journal of Hydrology, 588:125054. Choudhury, B., Schmugge, T., Chang, A., and Newton, R. (1979). Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research, 84:5699–5706. Daly, E. and Porporato, A. (2005). A review of soil moisture dynamics: From rainfall infiltra-tion to ecosystem response. Environmental Engineering Science, 22:9–24. Dick, J., Tetzlaff, D., and Bradford, J. (2018). Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types. Journal of Hydrology, 559. DNP (2011). Plan nacional de desarrollo 2010 2014. Technical report, Departamento Nacional de Planeación de Colombia, Bogotá Colombia. Draper, C., Walker, J., Steinle, P., de Jeu, R., and Holmes, T. (2009). An evaluation of amsr-e derived soil moisture over australia. Remote Sensing of Environment, 113:703–710. Ebtehaj, A. M. and Bras, R. (2019). A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in l-band. Remote Sensing of Environment, 233:111346. Enenkel, M. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20:4191–4208. Entekhabi, D., Jackson, T., Njoku, E., O’Neill, P., and Entin, J. (2008). Soil moisture ac-tive/passive (smap) mission concept. Proceedings of SPIE - The International Society for Optical Engineering. Fang, B., Lakshmi, V., Jackson, T., Bindlish, R., and Colliander, A. (2019). Passive/active microwave soil moisture change disaggregation using smapvex12 data. Journal of Hydrology, 574. FAO (2017). The future of food and agriculture. trends and challenges. Technical report, Food and Agriculture Organization. Gao, L., Sadeghi, M., and Ebtehaj, A. M. (2020). Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for smap satellite. Remote Sensing of Environment, 239. Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., Mccoll, K., Montzka, C., Muñoz-Sabater, J., Peng, J., and Wagner, W. (2020). Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244:111806. Gruber, A., Dorigo, W., Zwieback, S., Xaver, A., and Wagner, W. (2013). Characterizing coarse-scale representativeness of in situ soil moisture measurements from the international soil moisture network. Vadose Zone Journal, 12:0. Hatfield, J., Antle, J., Garrett, K., Izaurralde, R., Mader, T., Marshall, E., Nearing, M., Robertson, G., and Ziska, L. (2018). Indicators of climate change in agricultural systems. Climatic Change. Heathman, G., Cosh, M., Han, E., Jackson, T., McKee, L., and Mcafee, S. (2012). Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks. Geoderma, 170:195–205. Holzman, M., Rivas, R., and Piccolo, M. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28:181–192. Husson, F., Josse, J., and Lê, S. (2008). Factominer: An r package for multivariate analysis. Journal of Statistical Software, 25. Jackson, T., Bindlish, R., Cosh, M., Zhao, T., Starks, P., Bosch, D., Seyfried, M., Moran, M., Goodrich, D., Kerr, Y., and Leroux, D. (2012). Validation of soil moisture and ocean salinity (smos) soil moisture over watershed networks in the u.s. Geoscience and Remote Sensing, IEEE Transactions on, 50:1530–1543. Jackson, T., Cosh, M., Bindlish, R., Starks, P., Bosch, D., Seyfried, M., Goodrich, D., Moran, M., and Du, J. (2011). Validation of advanced microwave scanning radiometer soil moisture products. Geoscience and Remote Sensing, IEEE Transactions on, 48:4256 – 4272. Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 2. product validation and inter-satellite comparisons. Advances in Water Resources, 109:236–252. Kerr, Y., Philippe, W., Richaume, P., Cabot, F., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., and Steven, D. (2009). The prototype smos soil moisture algorithm. Kerr, Y., Philippe, W., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S., Leroux, D., and Mialon, A. (2012). The smos soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing - IEEE TRANS GEOSCI REMOT SEN, 50:1384–1403. Kim, H., Wigneron, J.-P., Kumar, S., Dong, J., Wagner, W., Cosh, M., Bosch, D., Collins, C., Starks, P., Seyfried, M., and Lakshmi, V. (2020). Global scale error assessments of soil moisture estimates from microwave- based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sensing of Environment, 251. Kolassa, J., Gentine, P., Prigent, C., and Aires, F. (2016). Soil moisture retrieval from amsr-e and ascat microwave observation synergy. part 1: Satellite data analysis. Remote Sensing of Environment, 173:1–14. Kumar, S., Wang, S., Mocko, D., Peters-Lidard, C., and Xia, Y. (2017). Similarity assessment of land surface model outputs in the north american land data assimilation system (nldas). Water Resources Research, 53. Lakshmi, V. (2004). The role of satellite remote sensing in the prediction of ungauged basins. Hydrological Processes, 18:1029 – 1034. Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529:84–87. Lindell, D. and Long, D. (2016). High-resolution soil moisture retrieval with ascat. IEEE Geoscience and Remote Sensing Letters, 13:1–5. Liu, Y., Pan, Z., Zhuang, Q., Miralles, D., Teuling, A., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang, L., Pan, X., Bai, W., and Niyogi, D. (2015). Agriculture intensifies soil moisture decline in northern china. Scientific Reports, 5:5. Ma, H., Zeng, J., Chen, N., Xiang, Z., Cosh, M., and Wang, W. (2019). Satellite surface soil moisture from smap, smos, amsr2 and esa cci: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231C:111215. Markechová, D., Stehlikova, B., and Tirpáková, A. (2011). Statistical Methods and their Ap-plications. Minet, J., Bogaert, P., Vanclooster, M., and Lambot, S. (2012). Validation of ground pe-netrating radar full-waveform inversion for field scale soil moisture mapping. Journal of Hydrology, 424-425:112–123. Njoku, E. and Chan, S. (2006). Vegetation and surface roughness effects on amsr-e land observations. Remote Sensing of Environment, 100:190–199. Parinussa, R., Holmes, T., Wanders, N., Dorigo, W., and de Jeu, R. (2015). A preliminary study toward consistent soil moisture from amsr2. Journal of Hydrometeorology, 16:932–947. Parinussa, R., Wang, S.-Y., Holmes, T., Liu, X.-B., Dolman, H. A., de Jeu, R., Jiang, J.-T., Zhang, M., and Shi, Y. (2014). Global surface soil moisture from the microwave radiation imager onboard the fengyun-3b satellite. International Journal of Remote Sensing, 35. Parrens, M., Wigneron, J.-P., Richaume, P., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Al-Yaari, A., O-Neill, P., and Kerr, Y. (2017). Considering combined or separated roughness and vegetation effects in soil moisture retrievals. International Journal of Applied Earth Observation and Geoinformation, 55:73–86. Pena Pereira, D., Lima, J., Xavier, A., Passos, R., and Fiedler, N. (2014). Taylor diagram application for the evaluation of spatial interpolators in attributes of soil under cultivation with eucalyptus. Revista Arvore, 38:889–905. Rapinel, S., Clement, B., Dufour, S., and Hubert-Moy, L. (2017). Fine-scale monitoring of long-term wetland loss using lidar data and historical aerial photographs: the example of the couesnon floodplain, france. Wetlands, pages 1–13. Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, J., Arsenault, K., Brian, C., Radakovich, J., MG, B., Entin, J., Walker, J., Lohmann, D., and DL, T. (2004). The global land data assimilation system. bams, 85:381–394. Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockström, J. (2009). Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 4:044002. Sakai, T., Iizumi, T., Okada, M., Nishimori, M., Grünwald, T., Prueger, J., Cescatti, A., Korres, W., Schmidt, M., Carrara, A., Loubet, B., and Ceschia, E. (2015). Varying applica-bility of four different satellite-derived soil moisture products to global gridded crop model evaluation. International Journal of Applied Earth Observation and Geoinformation, 48. Song, C. and Jia, L. (2016). A method for downscaling fengyun-3b soil moisture based on apparent thermal inertia. Remote Sensing, 8:703. Sure, A. and Dikshit, O. (2019). Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the indo-gangetic basin. Journal of Environmental Management, 234:75–89. Ulaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing. V.T. Chow, D.R. Maidment, L. M. (2011). Applied Hydrology. McGraw-Hill. Wigneron, J.-P., Chanzy, A., Kerr, Y., Lawrence, H., Shi, J., Escorihuela, M. J., Mironov, V., Mialon, A., Demontoux, F., Rosnay, P., and Saleh, K. (2011). Evaluating an improved parameterization of the soil emission in l-meb. Geoscience and Remote Sensing, IEEE Transactions on, 49:1177 – 1189. Wigneron, J.-P., Jackson, T., O’Neill, P., De Lannoy, G., Rosnay, P., Walker, J., Ferrazzoli, P., Mironov, V., Bircher, S., Grant, J., Kurum, M., Schwank, M., Muñoz Sabater, J., Das, N., Royer, A., Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R., Lawrence, H., and Kerr, Y. (2017). Modelling the passive microwave signature from land surfaces: A review of recent results and application to the l-band smos y smap soil moisture retrieval algorithms. Remote Sensing of Environment, 192:238–262. Wigneron, J.-P., Mialon, A., De Lannoy, G., Fernandez-Moran, R., Al-Yaari, A., Ebrahimi, M., Rodriguez-Fernandez, N., Kerr, Y., Quets, J., Pellarin, T., Fan, L., Fensholt, R., and Brandt, M. (2018). SMOS-IC: Current status and overview of soil moisture and VOD applications. Yadav, V., Prasad, R., Bala, R., and Vishwakarma, A. (2020). An improved inversion al-gorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using c- band sentinel-1a sar data. Computers and Electronics in Agriculture, 173:105447. Yanar, Y., Lipps, P., and Deep, I. (1997). Effect of soil saturation duration and soil water content on root rot of maize caused by pythium arrhenomanes. Plant Disease - PLANT DIS, 81:475–480. Yang, G., Guo, P., Li, X., Wan, H., Meng, C., and Wang, B. (2020). Assessment with remotely sensed soil moisture products and ground-based observations over three dense network. Earth Science Informatics. Yang, M., Wang, G., Lazin, R., Shen, X., and Anagnostou, E. (2021). Impact of planting time soil moisture on cereal crop yield in the upper blue nile basin: A novel insight towards agricultural water management. Agricultural Water Management, 243:106430. Zeng, J., Li, Z., Quan, C., and Bi, H. (2015). Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer observations. Geoscience and Remote Sensing Letters, IEEE, 12:97–101. Zribi, M., Anguela, T., Duchemin, B., Lili, Z., Wagner, W., Hasenauer, S., and Chehbouni, A. (2010). Relationship between soil moisture and vegetation in the kairouan plain región of tunisia using low spatial resolution satellite data. Water Resources Research, 46:6508. |
dc.rights.spa.fl_str_mv |
Derechos Reservados al Autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional Derechos Reservados al Autor, 2021 http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
254 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Meteorología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79696/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79696/2/Tesis_FranciscoHernandez_HumedadSueloColombia.pdf https://repositorio.unal.edu.co/bitstream/unal/79696/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79696/4/Tesis_FranciscoHernandez_HumedadSueloColombia.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 439195995a836e37b49982ff50d49d13 f7d494f61e544413a13e6ba1da2089cd e2782179670fd951f5e39b4c36fed21a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089228633505792 |
spelling |
Atribución-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diaz Almanza, Eliecer David08415d75f869971ffb190a20cf5dbcccHernández Guzmán, Francisco Javiereccefaf8def9a379d58c558fc721e934Vega Rodriguez, Emel EnriqueCadena, Martha Cecilia2021-06-23T22:08:32Z2021-06-23T22:08:32Z2021-06-18https://repositorio.unal.edu.co/handle/unal/79696Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Disertación de tesis de maestría en Ciencias -Meteorología en formato PDF.ilustraciones, mapasEl agua es uno de los componentes más importantes de nuestro planeta, está presente en la naturaleza en tres estados, así como en la atmósfera, superficie de la tierra y océanos. La humedad del suelo es una de las variables agroclimáticas esenciales debido a su importancia en los flujos de agua y energía entre la tierra y la atmósfera. En las últimas décadas su estimación a escala regional ha cobrado relevancia para resolver problemas hidrológicos, meteorológicos y agronómicos; en este sentido las redes de sensores in situ sobre el territorio colombiano no son suficientes para caracterizar adecuadamente la condición de humedad de las zonas agrícolas. En este contexto, el objetivo de la tesis fue evaluar métodos de estimación oportuna de las condiciones de humedad superficial para el territorio colombiano, determinando por regiones cuál o cuáles serían las fuentes más promisorias para la implementación de aplicaciones en diversas disciplinas, que contribuyan en la toma de decisiones tanto para agricultores, líderes nacionales, regionales y locales, así como para técnicos del sector, investigadores y pronosticadores, entre otros. Para ello, se aplicó la metodología de control de calidad desarrollada para la Red Internacional de Humedad de Suelo (ISMN, por sus siglas en inglés) ajustada a las condiciones ecuatoriales de Colombia. Con las mediciones de humedad de suelo consideradas buenas se realizó el análisis espacio-temporal de la variable con el fin de determinar cuál es la relación entre la humedad de suelo, con las variables atmosféricas, características físicas, topográficas y de cobertura vegetal. Con el fin de evaluar las estimaciones de humedad superficial, se realizó la revisión bibliográfica de fuentes de estimación remota por microondas y/o modelos de superficie, sus características, ventajas y desventajas, metodologías de validación, que pudieran ser aplicadas de manera efectiva para las condiciones particulares del territorio colombiano. Basándose en la revisión de fuentes de estimación, se realizó la selección de fuentes de estimación de humedad concentrándose en las bandas de recuperación que tuvieran mayor potencial (L y C), adicionando también productos de estimación en la banda X, productos de combinación de radares activos-pasivos y productos de reanálisis con el fin de realizar una revisión lo más completa posible de la diversidad de fuentes de estimación. Posteriormente se realizó la validación de ocho (8) fuentes de estimación (5 de satélite de misión única, 1 de combinación de misiones satelitales radares activos-pasivos y 2 fuentes de reanálisis) desglosados en 23 productos de estimación de humedad superficial. Entre los principales resultados, se encontró que las estimaciones de combinaciones de diversidad de bandas, pasos de órbitas y misiones presentan los mejores rendimientos, regiones con condiciones de baja cobertura vegetal, pendientes suaves y clasificaciones climáticas cálidas presentan las mejores métricas de validación. Sin embargo, para regiones con topografía montañosa, vegetación densa y climas fríos los modelos de superficie son una fuente de estimación promisoria, que con las parametrizaciones adecuadas se pueden mejorar significativamente las estimaciones de la humedad superficial. (Texto tomado de la fuente)Water is one of the most important components of our planet, it is present in nature in three states, as well as in the atmosphere, the earth's surface and the oceans. Soil moisture is one of the essential agroclimatic variables due to its importance in the flow of water and energy between the earth and the atmosphere. In recent decades, its estimation on a regional scale has gained relevance in solving hydrological, meteorological and agronomic problems; In this sense, in situ sensor networks on Colombian territory are not sufficient to adequately characterize the humidity condition of agricultural areas. In this context, the objective of the thesis was to evaluate methods for the timely estimation of surface humidity conditions for the Colombian territory, determining by regions which or which would be the most promising sources for the implementation of applications in various disciplines, which contribute to the decision-making for farmers, national, regional and local leaders, as well as for sector technicians, researchers and forecasters, among others. For this, the quality control methodology developed for the International Soil Moisture Network (ISMN) was applied, adjusted to the equatorial conditions of Colombia. With the soil moisture measurements considered good, the spatio-temporal analysis of the variable was carried out to determine what is the relationship between the soil moisture, with the atmospheric variables, physical, topographic and plant cover characteristics. To evaluate the surface moisture estimates, a bibliographic review of remote estimation sources by microwaves and / or surface models, their characteristics, advantages and disadvantages, validation methodologies, that could be applied effectively for the particular conditions of the Colombian territory. Based on the review of estimation sources, the selection of humidity estimation sources was made, concentrating on the recovery bands that had the greatest potential (L and C), also adding estimation products in the X band, radar combination products active-passive radar and products of a reanalysis to carry out a review as complete as possible of the diversity of sources of estimation. Subsequently, the validation of eight (8) estimation sources was carried out (5 from single mission satellites, 1 from a combination of active-passive radar satellite missions and 2 reanalysis sources) broken down into 23 surface moisture estimation products. Among the main results, it was found that the estimates of combinations of band diversity, orbital passages and missions present the best performance, regions with conditions of low vegetation cover, gentle slopes and warm climatic classifications present the best validation metrics. However, for regions with mountainous topography, dense vegetation and cold climates, surface models are a promising source of estimation, which with the appropriate parameterization can significantly improve the estimates of surface moisture. (Texto tomado de la fuente)FEDEARROZ - FEDERACION NACIONAL DE ARROCEROS, con la administración del Fondo Nacional del Arroz, parafiscal recaudado por la venta de arroz paddy verde en Colombia que corresponde al 0.5% del valor comercial del paddy al momento de la comercialización. Financia la investigación para el cultivo de arroz en Colombia y la adopción de capacidades de los investigadores adscritos al Fondo Nacional del Arroz, en la ampliación de las capacidades de los investigadores mediante la realización de estudios de maestría.MaestríaMagíster en Ciencias - MeteorologíaMeteorología Agrícola y Meteorología Aplicada254 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MeteorologíaDepartamento de GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraAgrometeorologíaControl de calidadVariabilidad espacio-temporalDesempeño de recuperaciónAlgoritmos de recuperaciónAgrometeorologyQuality controlSpatio-temporal variabilityRecovery performanceRecovery algorithmsAgroclimatologíaAgroclimatologyHumedad del sueloSoil moistureEvaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de ColombiaEvaluation of agroclimatic methods for timely estimation of the conditions of surface soil moisture in agricultural areas of ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaFranklyn, R., Arango C, D. J., and D, G. (2012). Climatología trimestral de colombia - nota técnica ideam. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM).MADR (2012). Plan mitigación de los efectos del fenómeno el niño en el sector agropecuario, acuícola y pesquero. Technical report, Ministerio de Agricultura y Desarrollo Rural de Colombia, Bogotá Colombia.Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L. (2001). Plants in wáter controlled ecosystems: Active role in hydrologic processes and responce to wáter stress i. scope and general outline. Advances in Water Resources, 24:695–705.UPRA (2017a). Identificación general de la frontera agrícola en colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA).UPRA (2017b). Zonificación general de tierras con fines de irrigación para colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA).Zhuo, L., Han, D., Dai, Q., Islam, T., and Srivastava, P. (2015). Appraisal of nldas-2 multi-model simulated soil moistures for hydrological modelling. Water Resources Management, 29.Campbell, G. (1988). Soil water potential measurement: An overview. Irrigation Science, 9:265–273.Crow, W. T. (2019). Chapter three - utility of soil moisture data products for natural disaster applications. In Maggioni, V. and Massari, C., editors, Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment, pages 65–85. Elsevier.Cui, H., Jiang, L., Du, J., Zhao, S., Wang, G., Lu, Z., and Wang, J. (2017). Evaluation and analysis of amsr-2, smos, and smap soil moisture products in the genhe area of china. Journal of Geophysical Research: Atmospheres, 122.Engman, T. (1991). Application of microwave remote sensing of soil moisture for water re-sources and agriculture. Remote Sensing of Environment, 35:213–226.Florentino, A. (2014). Métodos para medir el contenido de humedad en el suelo. Technical report, Venesuelos.Fu, B.-J., Wang, J., Chen, L.-D., and Qiu, Y. (2003). The effects of land use on soil moisture variation in the danangou catchment of the loess plateau, china. CATENA, 54:197–213.IDEAM, SINCHI, I. P. Y. M. (2015). Capa nacional de cobertura de la tierra (periodo 2010-2012): Metodología corine land cover adaptada para colombia escala 1:100.000 v 1.0. colombia, bogotá (colombia).IMKO (2006). Trime-ez /-ezc /-it /-itc user manual, imko micromodultechnik gmbh.Mittelbach, H., Lehner, I., and Seneviratne, S. (2012). Comparison of four soil moisture sensor types under field conditions in switzerland. Journal of Hydrology, 430:39–49.Neilson, R. (1991). Climatic constraints and issues of scale controlling regional biomes. pages 31–51.Reichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture Geophysical Research Letters, 31.Ullah, W., Wang, G., Gao, Z., Hagan, D., and Lou, D. (2017). Comparisons of remote sensing and reanalysis soil moisture products over the tibetan plateau, china. Cold Regions Science and Technology, 146.WMO (2008). Guide to hydrological practices No 168. Obtenido http://www.whycos.org/hwrp/guide/index.php.Yetbarek, E. and Ojha, R. (2020). Spatio-temporal variability of soil moisture in a cropped agricultural plot within the ganga basin, india. Agricultural Water Management, 234:106108.Abraham. Savitzky, M. J. E. G. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36:1627–1639.Assouline, S. and Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA, 66:211–220.Beljaars, A., Viterbo, P., Miller, M., and Betts, A. (1996). The anomalous rainfall over the united states during july 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Monthly Weather Review, 124:362–383.Browning, J. and Schneider, C. (2017). R-package ’snht’.Brutsaert, W. (2014). Daily evaporation from drying soil: Universal parameterization with similarity. Water Resources Research, 50.Cao, W., Sheng, Y., Wu, J.-c., and Li, J. (2017). Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of bayan har mountains in qinghai-tibet plateau. Journal of Mountain Science, 14.Chen, X., Zhang, Z., Chen, X., and Shi, P. (2009). The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest china. Environmental Earth Sciences, 59:811–820.Dari, J., Morbidelli, R., Saltalippi, C., Massari, C., and Brocca, L. (2019). Spatial-temporal variability of soil moisture: Addressing the monitoring at the catchment scale. Journal of Hydrology, 570.Deng, L., Wang, K., Li, J., Zhao, G., and Shangguan, Z. (2016). Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, china. Ecological Engineering, 94:525–531.Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Dostálová, A., Sanchis-Dufau, A., Za-mojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12.Endla Reintam, Kersti Vennik, K. K. L. K. (2017). Predicting soil freezing depth for traffica-bility.Gaur, N. and Mohanty, B. (2013). Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water Resources Research, 49:1244–1258.Haimberger, L. (2007). Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate - J CLIMATE, 20:1377–1403.He, Z., Zhao, W., Liu, H., and Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern china’s qilian mountains. Journal of Hydrology, 420:183–190.Heer, E. (2017). Evaluation and enhancement of automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien.Houser, C. (2010). Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography, 35:65–86.Huang, J., Wu, P., and Zhao, X. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. CATENA, 104:93– 102.Hubbard, K. (2001). Automated weather stations for application in agriculture and water resources management: current use and future perspectives.Hubbard, K., Goddard, S., Sorensen, W., Wells, N., and Osugi, T. (2005). Performance of quality assurance procedures for an acis. Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 22:105–112.IGAC (2014). Estudio general de suelos y zonificación de tierras. colombia, bogotá (colombia).Jaramillo, A. and Chaves, B. (2000). Distribución de la precipitación en colombia analizada mediante conglomeración estadística. 51:102–113.Joshi, C. and Mohanty, B. (2010). Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during smex02. Water Resources Research. WATER RESOUR RES, 46.Journée, M. and Bertrand, C. (2011). Quality control of solar radiation data within the rmib solar measurements network. Solar Energy - SOLAR ENERG, 85:72–86.Letian, Z., Liu, Y., and Jiao, F. (2012). Time series analysis of spatial variability of soil moisture in loess hilly region. Procedia Earth and Planetary Science, 5:346–353.Liu, M., Wang, Q., Guo, L., Yi, J., Lin, H., Zhu, Q., Fan, B., and Zhang, H. (2020). Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of three gorges reservoir area, china. Journal of Geographical Sciences, 30:949–968.MEEK, D. and Hatfield, J. (1994). Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology - AGR FOREST METEOROL, 69:85–109.Mo, K., Long, L., Xia, Y., Yang, S.-K., Schemm, J., and Ek, M. (2011). Drought indices based on the climate forecast system reanalysis and ensemble nldas. Journal of Hydrometeorology, 12.Mu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015a). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008.Mu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015b). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008.Oscar, S., Brunet, M., Aguilar, E., Sigró, J., and López, D. (2004). Thesis, grupo de investigación del cambio climático, unitat de geografía. universitat rovira i virgili, tarragona.Pan, Y.-X., Wang, X.-P., Jia, R.-L., Chen, Y.-W., and He, M.-Z. (2008). Spatial variability of surface soil moisture content in a re-vegetated desert area in shapotou, northern china. Journal of Arid Environments, 72:1675–1683.W.A., D., Gruber, A., de Jeu, R., W., W., T., S., Loew, A., Albergel, C., Brocca, L., D., C., Parinussa, R., and R., K. (2015). Evaluation of the esa cci soil moisture product using ground-based observations. Remote Sensing of Environment, 162:380–395.Xaver, A. (2015). Automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien.Yang, K. and Wang, C. (2019). Seasonal persistence of soil moisture anomalies related to freeze-thaw over the tibetan plateau and prediction signal of summer precipitation in eastern china. Climate Dynamics.You, J., Hubbard, K., Mahmood, R., Sridhar, V., and Todey, D. (2010). Quality control of soil water data in applied climate information system. case study in nebraska. Journal of Hydrologic Engineering, 15:200–209.Yu-Hua, J. and Shao, M.-A. (2013). Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of china. Agricultural Water Management, 117:33–42.Zhang, C., Liu, S., Zhang, X., and Tan, K. (2009). Research on the spatial variability of soil moisture. pages 285–292.Zhang, X., Zhang, X., and Li, G. (2014). The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: A case study of olympic forest park in beijing. Frontiers of Environmental Science y Engineering, 9.Zhu, H., Hu, S., Yang, J., Karamage, F., Li, H., and Fu, S. (2019). Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the gurbantunggut desert in xinjiang, china. Journal of Arid Land, 11:685–700.Albergel, C., Rosnay, P., Gruhier, C., Muñoz Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observation. Remote Sensing of Environment, 118:215–226.Attema, E., Davidson, M., Floury, N., Levrini, G., Rosich, B., Rommen, B., and Snoeij, P. (2008). Sentinel-1 esa’s new european radar observatory. pages 1 – 4.Attema, E. and Ulaby, F. (1978). Vegetation modeled as a water cloud. Radio Science - RADIO SCI, 13:357–364.Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46:W02516.Choker, M., Baghdadi, N., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N., Hans, L., and Mattia, F. (2017). Evaluation of the oh, dubois and iem backscatter models using a large dataset of sar data and experimental soil measurements. Water, 9:38.Crow, W. (2007). A novel method for quantifying value in spaceborne soil moisture retrievals. Journal of Hydrometeorology, 8.Crow, W., Berg, A., Cosh, M., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., Ryu, D., Walker, J., Berg, A., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., and Walker, J. (2012). Up-scaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys, 50.De Jeu, R. and Owe, M. (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. International Journal of Remote Sensing, 24:4559– 4578.De Lannoy G.J.M., de Rosnay P., R. R. (2019). Soil Moisture Data Assimilation. In: Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds) Handbook of Hydro-meteorological Ensemble Forecasting. Springer.Dharssi, I., Bovis, K., Macpherson, B., and Jones, C. (2011). Operational assimilation of ascat surface soil wetness at the met office. Earth Syst. Sci. Discuss, 8:4313–4354.Dobson, M., Ulaby, F., Hallikainen, M., and El-Rayes, M. (1985). Microwave dielectric beha-vior of wet soil-part ii: Dielectric mixing models. Geoscience and Remote Sensing, IEEE Transactions on, GE-23:35 – 46.Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P., Hirschi, M., Ikonen, J., Jeu, R., Kidd, R., Lahoz, W., Liu, Y., Miralles, D., and Lecomte, P. (2017). Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203.Dubois, P., vanZyl, J., and Engman, T. (1995). Corrections to measuring soil moisture with imaging radars. Geoscience and Remote Sensing, IEEE Transactions on, 33:1340.Ebtehaj, A. M. (2018). A physically constrained inversion for super-resolved passive microwave retrieval of soil moisture and vegetation water content in l-band.Entekhabi, D., Reichle, R., Koster, R., and Crow, W. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11.Gouweleeuw, B., van Dijk, A., Guerschman, J., Dyce, P., Jeu, R., and Owe, M. (2012). Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction. Hydrol. Earth Syst. Sci. Discuss, 9:1013–1039.Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W. (2015). Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and Geoinformation, 45.Hess, R., Lange, M., and Wergen, W. (2008). Evaluation of the variational soil moisture assimilation scheme at deutscher wetterdienst. Quarterly Journal of the Royal Meteorological Society, 134:1499 – 1512.Jonard, F., Bogena, H., Caterina, D., Garre, S., Klotzsche, A., Monerris, A., Schwank, M., and von Hebel, C. (2018). Ground-Based Soil Moisture Determination, pages 1–42.Jr, W. (1978). Radiative transfer in a plane stratified dielectric. Geoscience Electronics, IEEE Transactions on, 16:138 – 143.Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in Water Resources, 109:106–120.Kerr, Y., Philippe, W., Wigneron, J.-P., Martinuzzi, J.-M., Font, J., and Berger, M. (2001). Soil moisture retrieval from space: The soil moisture and ocean salinity (smos) mission. Geoscience and Remote Sensing, IEEE Transactions on, 39:1729 – 1735.Kim, S., Zhang, R., Pham, H., and Sharma, A. (2019). A review of satellite-derived soil moisture and its usage for flood estimation.Kumar, S., Reichle, R., Harrison, K., Peters-Lidard, C., Yatheendradas, S., and Santanello, J. (2012). A comparison of methods for a priori bias correction in soil moisture data assimi-lation. Water Resources Research, 48:3515–.Li, l., Njoku, E., Im, E., Chang, P., and Germain, K. (2004). A preliminary survey of radio-frequency interference over the u.s. in aqua amsr-e data. Geoscience and Remote Sensing, IEEE Transactions on, 42:380 – 390.Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, F., Taillefer, F., and Taseva, L. (2009). A comparison of two off-line soil analysis schemes for assimilation of screen level observations. Journal of Geophysical Research, 114.May, W., Rummukainen, M., Chéruy, F., Hagemann, S., and Meier, A. (2016). Contributions of soil moisture interactions to future precipitation changes in the glace-cmip5 experiment. Climate Dynamics.Mo, T., Choudhury, B., Schmugge, T., Wang, J., and Jackson, T. (1983). A model for micro-wave emission from vegetation-covered fields. Journal of Geophysical Research Atmospheres, 87.Mo, T., Schmugge, T., and Jackson, T. (1984). Calculations of radar backscattering coefficient of vegetation-covered soils. Remote Sensing of Environment, 15.Monerris, A., Walker, J., Panciera, R., Jackson, T., Gray, D., Yardley, H., and Ryu, D. (2011). The third soil moisture active passive experiment.Muñoz Sabater, J., Jarlan, L., Calvet, J.-C., Bouyssel, F., and Rosnay, P. (2007). From near-surface to root-zone soil moisture using different assimilation techniques. Journal of Hydrometeorology - J HYDROMETEOROL, 8.Oh, Y., Sarabandi, K., and Ulaby, F. (1992). An empirical-model and an inversion technique for radar scattering from bare soil surfaces. Geoscience and Remote Sensing, IEEE Transactions on, 30:370 – 381.Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., and Reppucci, A. (2013). Soil moisture mapping using sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134:234.Pan, M., Wood, E., Wójcik, R., and McCabe, M. (2008). Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 112:1282–1294.Parinussa, R., Meesters, A., Liu, Y., Dorigo, W., Wagner, W., and de Jeu, R. (2011). Error es-timates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. Geoscience and Remote Sensing Letters, IEEE, 8:779 – 783.Prévot, L., Dechambre, M., Taconet, O., VIDALMADJAR, D., Normand, M., and Galle, S. (1993). Estimating the characteristics of vegetation canopies with airborne radar measure-ments. International Journal of Remote Sensing, 14:2803–2818.Reichle, R., De Lannoy, G., Forman, B., Draper, C., and Liu, Q. (2013). Connecting satellite observations with water cycle variables through land data assimilation: Examples using the nasa geos-5 ldas. Surveys in Geophysics, 35.Reichle, R., De Lannoy, G., Liu, Q., Ardizzone, J., Colliander, A., Conaty, A., Crow, W., Jackson, T., Jones, L., Kimball, J., Koster, R., Mahanama, S., Smith, E., Berg, A., Bircher, S., Bosch, D., Caldwell, T., Cosh, M., González-Zamora, n., and Zeng, Y. (2017). Assessment of the smap level-4 surface and root-zone soil moisture product using in situ measurements. Journal of Hydrometeorology, 18.Reichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31.Reichle, R., McLaughlin, D., and Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble kalman filter. Mon. Weather. Rev., 130:103–114.Schmugge, T., O’Neill, P., and Wang, J. (1986). Passive microwave soil moisture research. Geoscience and Remote Sensing, IEEE Transactions on, 24:12 – 22.Stanski, Wilson, L., and Burrows, W. (1990). Survey of common verification methods in meteorology.Stoffelen, A. (1998). Error modeling and calibration; towards the true surface wind speed. J. Geophys. Res., 103:7,755–7,766.Ulaby, F., Dubois, P., and van Zyl, J. (1996). Radar mapping of surface soil moisture. Journal of Hydrology, 184:57–84.Ulaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing.Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-saldaña, J., Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., and Rubel, F. (2013).The ascat soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22:5–33.Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B. (2003). Evaluation of the agreement between the first global remotely sensed soil moistu-re data with model and precipitation data. <http://www.agu.org/pubs/crossref/2003 2003jd003663.shtml(accessed>3 december 2012). Journal of Geophysical Research (At-mospheres), 108:4611–.Wei-Chen, Z., Zhen, H., Shuang-Yu, H., Yi-Qing, W., Xue-Wei, Z., and Yi-Sheng, W. (2019). Characteristics of l-band radio frequency interference detected via the soil moisture active passive radiometer in china and its offshore areas. Results in Physics, 12.Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y., and De Lannoy, G. (2019). Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ismn ground-based measurements. Remote Sensing of Environment, 224:289–303.Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y., Rosnay, P., de Jeu, R., Govind, A., Al Bitar, A., Albergel, C., Muñoz Sabater, J., Richaume, P., and Mialon, A. (2014). Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (smos and amsr-e) with respect to land data assimilation system estimates. Remote Sensing of Envi-ronment, 149:181–195.Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E. (2008). From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12.Azimi, S., Dariane, A., SaraModanesi, BernhardBauer-Marschallinger, Bindish, R., wagner, w., and Massari, C. (2019). Understanding the benefit of sentinel 1 and smap - era satellite soil moisture retrievals for flood forecasting in small basins: effect of revisit time and the spatial resolution. Journal of Hydrology, 581.Babaeian, E., Sadeghi, M., Jones, S., Montzka, C., Vereecken, H., and Tuller, M. (2019). Ground, proximal and satellite remote sensing of soil moisture. Reviews of Geophysics, 57.Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner, W. (2018). Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing, PP:1–20.Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sensing of Environment, 115:3390–3408.Burgin, M., Colliander, A., Njoku, E., Chan, S., Cabot, F., Kerr, Y., Bindlish, R., Jackson, T., Entekhabi, D., and Yueh, S. (2017). A comparative study of the smap passive soil moisture product with existing satellite-based soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, PP:1–13.Candela, E., Mendiguren González, G., Martín, M., Acevedo, M., Bosch-Belmar, M., Fuen-tes, V., and Bordehore, C. (2014). Validación local de la temperatura superficial del mar del sensor modis en aguas someras del mediterráneo occidental. Revista de la Asociación Española de Teledetección.Chen, F., Crow, W., Colliander, A., Cosh, M., Jackson, T., Bindlish, R., Reichle, R., Chan, S., Bosch, D., Starks, P., Goodrich, D., and Seyfried, M. (2016). Application of triple collocation in ground-based validation of soil moisture active/passive (smap) level 2 data products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99:1–14.Chen, F., Crow, W., and Holmes, T. (2012). Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool. Journal of Applied Remote Sensing, 6:3604.Chen, Y. and Yuan, H. (2020). Evaluation of nine sub-daily soil moisture model products over china using high-resolution in situ observations. Journal of Hydrology, 588:125054.Choudhury, B., Schmugge, T., Chang, A., and Newton, R. (1979). Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research, 84:5699–5706.Daly, E. and Porporato, A. (2005). A review of soil moisture dynamics: From rainfall infiltra-tion to ecosystem response. Environmental Engineering Science, 22:9–24.Dick, J., Tetzlaff, D., and Bradford, J. (2018). Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types. Journal of Hydrology, 559.DNP (2011). Plan nacional de desarrollo 2010 2014. Technical report, Departamento Nacional de Planeación de Colombia, Bogotá Colombia.Draper, C., Walker, J., Steinle, P., de Jeu, R., and Holmes, T. (2009). An evaluation of amsr-e derived soil moisture over australia. Remote Sensing of Environment, 113:703–710.Ebtehaj, A. M. and Bras, R. (2019). A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in l-band. Remote Sensing of Environment, 233:111346.Enenkel, M. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20:4191–4208.Entekhabi, D., Jackson, T., Njoku, E., O’Neill, P., and Entin, J. (2008). Soil moisture ac-tive/passive (smap) mission concept. Proceedings of SPIE - The International Society for Optical Engineering.Fang, B., Lakshmi, V., Jackson, T., Bindlish, R., and Colliander, A. (2019). Passive/active microwave soil moisture change disaggregation using smapvex12 data. Journal of Hydrology, 574.FAO (2017). The future of food and agriculture. trends and challenges. Technical report, Food and Agriculture Organization.Gao, L., Sadeghi, M., and Ebtehaj, A. M. (2020). Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for smap satellite. Remote Sensing of Environment, 239.Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., Mccoll, K., Montzka, C., Muñoz-Sabater, J., Peng, J., and Wagner, W. (2020). Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244:111806.Gruber, A., Dorigo, W., Zwieback, S., Xaver, A., and Wagner, W. (2013). Characterizing coarse-scale representativeness of in situ soil moisture measurements from the international soil moisture network. Vadose Zone Journal, 12:0.Hatfield, J., Antle, J., Garrett, K., Izaurralde, R., Mader, T., Marshall, E., Nearing, M., Robertson, G., and Ziska, L. (2018). Indicators of climate change in agricultural systems. Climatic Change.Heathman, G., Cosh, M., Han, E., Jackson, T., McKee, L., and Mcafee, S. (2012). Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks. Geoderma, 170:195–205.Holzman, M., Rivas, R., and Piccolo, M. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28:181–192.Husson, F., Josse, J., and Lê, S. (2008). Factominer: An r package for multivariate analysis. Journal of Statistical Software, 25.Jackson, T., Bindlish, R., Cosh, M., Zhao, T., Starks, P., Bosch, D., Seyfried, M., Moran, M., Goodrich, D., Kerr, Y., and Leroux, D. (2012). Validation of soil moisture and ocean salinity (smos) soil moisture over watershed networks in the u.s. Geoscience and Remote Sensing, IEEE Transactions on, 50:1530–1543.Jackson, T., Cosh, M., Bindlish, R., Starks, P., Bosch, D., Seyfried, M., Goodrich, D., Moran, M., and Du, J. (2011). Validation of advanced microwave scanning radiometer soil moisture products. Geoscience and Remote Sensing, IEEE Transactions on, 48:4256 – 4272.Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 2. product validation and inter-satellite comparisons. Advances in Water Resources, 109:236–252.Kerr, Y., Philippe, W., Richaume, P., Cabot, F., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., and Steven, D. (2009). The prototype smos soil moisture algorithm.Kerr, Y., Philippe, W., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S., Leroux, D., and Mialon, A. (2012). The smos soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing - IEEE TRANS GEOSCI REMOT SEN, 50:1384–1403.Kim, H., Wigneron, J.-P., Kumar, S., Dong, J., Wagner, W., Cosh, M., Bosch, D., Collins, C., Starks, P., Seyfried, M., and Lakshmi, V. (2020). Global scale error assessments of soil moisture estimates from microwave- based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sensing of Environment, 251.Kolassa, J., Gentine, P., Prigent, C., and Aires, F. (2016). Soil moisture retrieval from amsr-e and ascat microwave observation synergy. part 1: Satellite data analysis. Remote Sensing of Environment, 173:1–14.Kumar, S., Wang, S., Mocko, D., Peters-Lidard, C., and Xia, Y. (2017). Similarity assessment of land surface model outputs in the north american land data assimilation system (nldas). Water Resources Research, 53.Lakshmi, V. (2004). The role of satellite remote sensing in the prediction of ungauged basins. Hydrological Processes, 18:1029 – 1034.Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529:84–87.Lindell, D. and Long, D. (2016). High-resolution soil moisture retrieval with ascat. IEEE Geoscience and Remote Sensing Letters, 13:1–5.Liu, Y., Pan, Z., Zhuang, Q., Miralles, D., Teuling, A., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang, L., Pan, X., Bai, W., and Niyogi, D. (2015). Agriculture intensifies soil moisture decline in northern china. Scientific Reports, 5:5.Ma, H., Zeng, J., Chen, N., Xiang, Z., Cosh, M., and Wang, W. (2019). Satellite surface soil moisture from smap, smos, amsr2 and esa cci: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231C:111215.Markechová, D., Stehlikova, B., and Tirpáková, A. (2011). Statistical Methods and their Ap-plications.Minet, J., Bogaert, P., Vanclooster, M., and Lambot, S. (2012). Validation of ground pe-netrating radar full-waveform inversion for field scale soil moisture mapping. Journal of Hydrology, 424-425:112–123.Njoku, E. and Chan, S. (2006). Vegetation and surface roughness effects on amsr-e land observations. Remote Sensing of Environment, 100:190–199.Parinussa, R., Holmes, T., Wanders, N., Dorigo, W., and de Jeu, R. (2015). A preliminary study toward consistent soil moisture from amsr2. Journal of Hydrometeorology, 16:932–947.Parinussa, R., Wang, S.-Y., Holmes, T., Liu, X.-B., Dolman, H. A., de Jeu, R., Jiang, J.-T., Zhang, M., and Shi, Y. (2014). Global surface soil moisture from the microwave radiation imager onboard the fengyun-3b satellite. International Journal of Remote Sensing, 35.Parrens, M., Wigneron, J.-P., Richaume, P., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Al-Yaari, A., O-Neill, P., and Kerr, Y. (2017). Considering combined or separated roughness and vegetation effects in soil moisture retrievals. International Journal of Applied Earth Observation and Geoinformation, 55:73–86.Pena Pereira, D., Lima, J., Xavier, A., Passos, R., and Fiedler, N. (2014). Taylor diagram application for the evaluation of spatial interpolators in attributes of soil under cultivation with eucalyptus. Revista Arvore, 38:889–905.Rapinel, S., Clement, B., Dufour, S., and Hubert-Moy, L. (2017). Fine-scale monitoring of long-term wetland loss using lidar data and historical aerial photographs: the example of the couesnon floodplain, france. Wetlands, pages 1–13.Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, J., Arsenault, K., Brian, C., Radakovich, J., MG, B., Entin, J., Walker, J., Lohmann, D., and DL, T. (2004). The global land data assimilation system. bams, 85:381–394.Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockström, J. (2009). Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 4:044002.Sakai, T., Iizumi, T., Okada, M., Nishimori, M., Grünwald, T., Prueger, J., Cescatti, A., Korres, W., Schmidt, M., Carrara, A., Loubet, B., and Ceschia, E. (2015). Varying applica-bility of four different satellite-derived soil moisture products to global gridded crop model evaluation. International Journal of Applied Earth Observation and Geoinformation, 48.Song, C. and Jia, L. (2016). A method for downscaling fengyun-3b soil moisture based on apparent thermal inertia. Remote Sensing, 8:703.Sure, A. and Dikshit, O. (2019). Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the indo-gangetic basin. Journal of Environmental Management, 234:75–89.Ulaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing. V.T. Chow, D.R. Maidment, L. M. (2011). Applied Hydrology. McGraw-Hill.Wigneron, J.-P., Chanzy, A., Kerr, Y., Lawrence, H., Shi, J., Escorihuela, M. J., Mironov, V., Mialon, A., Demontoux, F., Rosnay, P., and Saleh, K. (2011). Evaluating an improved parameterization of the soil emission in l-meb. Geoscience and Remote Sensing, IEEE Transactions on, 49:1177 – 1189.Wigneron, J.-P., Jackson, T., O’Neill, P., De Lannoy, G., Rosnay, P., Walker, J., Ferrazzoli, P., Mironov, V., Bircher, S., Grant, J., Kurum, M., Schwank, M., Muñoz Sabater, J., Das, N., Royer, A., Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R., Lawrence, H., and Kerr, Y. (2017). Modelling the passive microwave signature from land surfaces: A review of recent results and application to the l-band smos y smap soil moisture retrieval algorithms. Remote Sensing of Environment, 192:238–262.Wigneron, J.-P., Mialon, A., De Lannoy, G., Fernandez-Moran, R., Al-Yaari, A., Ebrahimi, M., Rodriguez-Fernandez, N., Kerr, Y., Quets, J., Pellarin, T., Fan, L., Fensholt, R., and Brandt, M. (2018). SMOS-IC: Current status and overview of soil moisture and VOD applications.Yadav, V., Prasad, R., Bala, R., and Vishwakarma, A. (2020). An improved inversion al-gorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using c- band sentinel-1a sar data. Computers and Electronics in Agriculture, 173:105447.Yanar, Y., Lipps, P., and Deep, I. (1997). Effect of soil saturation duration and soil water content on root rot of maize caused by pythium arrhenomanes. Plant Disease - PLANT DIS, 81:475–480.Yang, G., Guo, P., Li, X., Wan, H., Meng, C., and Wang, B. (2020). Assessment with remotely sensed soil moisture products and ground-based observations over three dense network. Earth Science Informatics.Yang, M., Wang, G., Lazin, R., Shen, X., and Anagnostou, E. (2021). Impact of planting time soil moisture on cereal crop yield in the upper blue nile basin: A novel insight towards agricultural water management. Agricultural Water Management, 243:106430.Zeng, J., Li, Z., Quan, C., and Bi, H. (2015). Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer observations. Geoscience and Remote Sensing Letters, IEEE, 12:97–101.Zribi, M., Anguela, T., Duchemin, B., Lili, Z., Wagner, W., Hasenauer, S., and Chehbouni, A. (2010). Relationship between soil moisture and vegetation in the kairouan plain región of tunisia using low spatial resolution satellite data. Water Resources Research, 46:6508.GeneralDesarrollo de Herramientas agroclimáticas para la estimación oportuna de la humedad de suelo en zonas agrícolas colombianasFedearroz - Fondo Nacional del ArrozLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79696/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALTesis_FranciscoHernandez_HumedadSueloColombia.pdfTesis_FranciscoHernandez_HumedadSueloColombia.pdfTesis de Maestría en Ciencias - Meteorologíaapplication/pdf31051069https://repositorio.unal.edu.co/bitstream/unal/79696/2/Tesis_FranciscoHernandez_HumedadSueloColombia.pdf439195995a836e37b49982ff50d49d13MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79696/3/license_rdff7d494f61e544413a13e6ba1da2089cdMD53THUMBNAILTesis_FranciscoHernandez_HumedadSueloColombia.pdf.jpgTesis_FranciscoHernandez_HumedadSueloColombia.pdf.jpgGenerated Thumbnailimage/jpeg4603https://repositorio.unal.edu.co/bitstream/unal/79696/4/Tesis_FranciscoHernandez_HumedadSueloColombia.pdf.jpge2782179670fd951f5e39b4c36fed21aMD54unal/79696oai:repositorio.unal.edu.co:unal/796962023-07-22 23:04:12.085Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |