Mapa de formación del deposito de hierro utilizando las imágenes hiperspectrales y multispectrales. Un estudio de caso de Singhbhum - Keonjhar iron belt - India

Las imágenes hiperespectrales entre los sensores remotos, se han utilizado durante más de una década para ayudar en la detección e identificación de diversos objetivos de superficie como características topográficas y geológicas, pero los conjuntos de datos no son inmunes a los efectos de la atmósfe...

Full description

Autores:
HERRERA GARCIA, JHONNY JOSE
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/64475
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/64475
http://bdigital.unal.edu.co/65393/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Hyperspectral
Hyperion
Landsat
Multispectral
Keonjhar
Iron ore
Hiperespectral
Hyperión
Landsat
Multiespectral
Keonjhar
Mineral de hierro
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Las imágenes hiperespectrales entre los sensores remotos, se han utilizado durante más de una década para ayudar en la detección e identificación de diversos objetivos de superficie como características topográficas y geológicas, pero los conjuntos de datos no son inmunes a los efectos de la atmósfera intermedia. Varios constituyentes atmosféricos atenúan la reflectancia incidente y ascendente, y finalmente degradan la señal correspondiente a la característica detectada. Por lo tanto, si esta atenuación atmosférica pudiera identificarse y corregirse utilizando modelos de transferencia radiativa existentes, sería posible una mejor comprensión de las características de la Tierra.El presente estudio se concentra en la recuperación de la imagen de reflectancia a partir del nivel uno corregido radiométricamente, de los datos del área de estudio del distrito de Keonjhar (Orissa). En este estudio, se ha utilizado un modelo de corrección atmosférica, conocido como FLAASH, que se ha utilizado para recuperar la imagen de reflectancia a partir de los datos de radiancia. El pre-procesamiento del conjunto de datos debe realizarse antes de aplicar la corrección atmosférica en el conjunto de datos. Los subconjuntos espectrales de las bandas propensas al ruido se han realizado con éxito, lo que deja 196 bandas exclusivas de 242 bandas del conjunto de datos de Hyperion. Se recolectaron tres miembros finales del área de estudio de Orissa: La hematita; los relaves mineros; y el aluvión, que se seleccionaron como los miembros finales después de comprender la geología y el análisis de la imagen de reflectancia.En este sentido se aplicaron: La desmezcla espectral lineal y el Mapeador de ángulo espectral. En el área de estudio, Lineal Spectral Unmixing (LSU), dio buenos resultados en el mapeo de los miembros finales. El procesamiento de imágenes se llevó a cabo con datos digitales Landsat - 5TM (7 bandas) adquiridos el 5 de noviembre de 2005 (ruta 140, fila 45). El objetivo de este estudio fue mapear las zonas más favorables de la Formación del depósito de hierro dentro de la conocida franja mineralizada, además de identificar y mapear las extensiones de mineralización conocida y/o localizar las nuevas zonas potencialmente mineralizadas que son ricas en mineral de Hierro.