Evaluating supervised learning approaches for spatial-domain multi-focus image fusion
Image fusion is the generation of an image that combines the most relevant information from a set of images of the same scene, acquired with different cameras or camera settings. Multi-Focus Image Fusion (MFIF) aims to generate an image with extended depth-of-field from a set of images taken at dif...
- Autores:
-
Atencio Ortiz, Pedro
Sánchez torres, German
Branch Bedoya, John Willian
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60367
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60367
http://bdigital.unal.edu.co/58699/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Multi-focus image fusion
image processing
supervised learning
machine learning
Fusión de imágenes mutifoco
procesamiento de imágenes
aprendizaje supervisado
aprendizaje de máquina
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4b6a01dfd8498efb1e3ad50bec8ec1de |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60367 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
title |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
spellingShingle |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion 62 Ingeniería y operaciones afines / Engineering Multi-focus image fusion image processing supervised learning machine learning Fusión de imágenes mutifoco procesamiento de imágenes aprendizaje supervisado aprendizaje de máquina |
title_short |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
title_full |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
title_fullStr |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
title_full_unstemmed |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
title_sort |
Evaluating supervised learning approaches for spatial-domain multi-focus image fusion |
dc.creator.fl_str_mv |
Atencio Ortiz, Pedro Sánchez torres, German Branch Bedoya, John Willian |
dc.contributor.author.spa.fl_str_mv |
Atencio Ortiz, Pedro Sánchez torres, German Branch Bedoya, John Willian |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Multi-focus image fusion image processing supervised learning machine learning Fusión de imágenes mutifoco procesamiento de imágenes aprendizaje supervisado aprendizaje de máquina |
dc.subject.proposal.spa.fl_str_mv |
Multi-focus image fusion image processing supervised learning machine learning Fusión de imágenes mutifoco procesamiento de imágenes aprendizaje supervisado aprendizaje de máquina |
description |
Image fusion is the generation of an image that combines the most relevant information from a set of images of the same scene, acquired with different cameras or camera settings. Multi-Focus Image Fusion (MFIF) aims to generate an image with extended depth-of-field from a set of images taken at different focal distances or focal planes, and it proposes a solution to the typical limited depth-of-field problem in an optical system configuration. A broad variety of works presented in the literature address this problem. The primary approaches found there are domain transformations and block-of-pixels analysis. In this work, we evaluate different systems of supervised machine learning applied to MFIF, including k-nearest neighbors, linear discriminant analysis, neural networks, and support vector machines. We started from two images at different focal distances and divided them into rectangular regions. The main objective of the machine-learning-based classification system is to choose the parts of both images that must be in the fused image in order to obtain a completely focused image. For focus quantification, we used the most popular metrics proposed in the literature, such as: Laplacian energy, sum-modified Laplacian, and gradient energy, among others. The evaluation of the proposed method considered classifier testing and fusion quality metrics commonly used in research, such as visual information fidelity and mutual information feature. Our results strongly suggest that the automatic classification concept satisfactorily addresses the MFIF problem. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:09:22Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:09:22Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60367 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58699/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60367 http://bdigital.unal.edu.co/58699/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/63389 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Atencio Ortiz, Pedro and Sánchez torres, German and Branch Bedoya, John Willian (2017) Evaluating supervised learning approaches for spatial-domain multi-focus image fusion. DYNA, 84 (202). pp. 137-146. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60367/1/63389-350173-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60367/2/63389-350173-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
92a832b475cb71d95533f70eb5c23003 80dcaf8ec96d40e14ef1faa01f047d3d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089497586958336 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atencio Ortiz, Pedrod8654ad0-e061-4fae-8bcc-6f706e29ed6f300Sánchez torres, German3efcada8-0b77-454d-ab51-5230fb80a334300Branch Bedoya, John Willian3c6549fa-e308-4c51-b84b-43f77c96efde3002019-07-02T18:09:22Z2019-07-02T18:09:22Z2017-07-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60367http://bdigital.unal.edu.co/58699/Image fusion is the generation of an image that combines the most relevant information from a set of images of the same scene, acquired with different cameras or camera settings. Multi-Focus Image Fusion (MFIF) aims to generate an image with extended depth-of-field from a set of images taken at different focal distances or focal planes, and it proposes a solution to the typical limited depth-of-field problem in an optical system configuration. A broad variety of works presented in the literature address this problem. The primary approaches found there are domain transformations and block-of-pixels analysis. In this work, we evaluate different systems of supervised machine learning applied to MFIF, including k-nearest neighbors, linear discriminant analysis, neural networks, and support vector machines. We started from two images at different focal distances and divided them into rectangular regions. The main objective of the machine-learning-based classification system is to choose the parts of both images that must be in the fused image in order to obtain a completely focused image. For focus quantification, we used the most popular metrics proposed in the literature, such as: Laplacian energy, sum-modified Laplacian, and gradient energy, among others. The evaluation of the proposed method considered classifier testing and fusion quality metrics commonly used in research, such as visual information fidelity and mutual information feature. Our results strongly suggest that the automatic classification concept satisfactorily addresses the MFIF problem.Resumen: La fusión de imágenes genera una imagen que combina las características más relevantes de un conjunto de imágenes de la misma escena adquiridas con diferentes cámaras o configuraciones. La Fusión de Imágenes Multifoco (MFIF) parte de un conjunto de imágenes con diferente distancia focal para generar una imagen con una profundidad de campo extendida. Lo que constituye una solución al problema de la profundidad de campo limitada en la configuración de un sistema óptico. La literatura muestra una amplia variedad de trabajos que abordan este problema. Las transformaciones de dominios y el análisis de bloques de píxeles son la base de los principales enfoques propuestos. En este trabajo se presenta una evaluación de diferentes sistemas de aprendizaje supervisado aplicados a MFIF, incluyendo k-vecinos más cercanos, análisis discriminante lineal, redes neuronales y máquinas de soporte vectorial. El método inicia con dos imágenes de la misma escena, pero con diferentes distancias focales que se dividen en regiones rectangulares. El objetivo principal del sistema de clasificación, que está basado en aprendizaje de máquina, es elegir las partes de ambas imágenes que deben estar en la imagen fusionada para obtener una imagen completamente enfocada. Para la cuantificación del enfoque se utilizaron las métricas más populares propuestas en la literatura como: la Energía Laplaciana, el Laplaciano Modificado por Suma y el Gradiente de Energía, entre otras. La evaluación del método propuesto incluye la fase de prueba de los clasificadores y las métricas de calidad de fusión utilizadas comúnmente en la investigación, tales como la fidelidad de la información visual y la característica de información mutua. Los resultados muestran que el concepto de clasificación automática puede abordar satisfactoriamente el problema MFIF.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/63389Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaAtencio Ortiz, Pedro and Sánchez torres, German and Branch Bedoya, John Willian (2017) Evaluating supervised learning approaches for spatial-domain multi-focus image fusion. DYNA, 84 (202). pp. 137-146. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringMulti-focus image fusionimage processingsupervised learningmachine learningFusión de imágenes mutifocoprocesamiento de imágenesaprendizaje supervisadoaprendizaje de máquinaEvaluating supervised learning approaches for spatial-domain multi-focus image fusionArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL63389-350173-1-PB.pdfapplication/pdf1259359https://repositorio.unal.edu.co/bitstream/unal/60367/1/63389-350173-1-PB.pdf92a832b475cb71d95533f70eb5c23003MD51THUMBNAIL63389-350173-1-PB.pdf.jpg63389-350173-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg10009https://repositorio.unal.edu.co/bitstream/unal/60367/2/63389-350173-1-PB.pdf.jpg80dcaf8ec96d40e14ef1faa01f047d3dMD52unal/60367oai:repositorio.unal.edu.co:unal/603672023-04-06 23:05:45.054Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |