Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia

Water resources are a determining factor in the economic and social development of communities, given the need that is generated around its use. Over the years, this use has generated pressure on water availability, which were solved by increasing supply, exploring and developing new water sources,...

Full description

Autores:
Arenas Bautista, María Cristina
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77944
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77944
Palabra clave:
628 - Ingeniería sanitaria
551 - Geología, hidrología, meteorología
631 - Técnicas específicas, aparatos, equipos, materiales
624 - Ingeniería civil
aspectos económicos
asignación de agua
estrategias de gestión
incertidumbre
análisis de sensibilidad
índices Sobol y AMA
técnica de puntos piloto
PEST
parametrización inversa
optimización hidroeconómica
gestión integral del recurso hídrico
modelación hidrológica
modelación hidrogeológica
hydrogeological Model
uncertainty
sensitivity analysis
Sobol and AMA indices
pilot-points technique
PEST
inverse parameterization
hydro-economic optimization
integrated water resources management
economic aspects
water allocation
management strategies
hydrological modeling
tropical regions
sobol and AMA indices
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4b55050b8f19ca739e66b65353a607e5
oai_identifier_str oai:repositorio.unal.edu.co:unal/77944
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
title Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
spellingShingle Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
628 - Ingeniería sanitaria
551 - Geología, hidrología, meteorología
631 - Técnicas específicas, aparatos, equipos, materiales
624 - Ingeniería civil
aspectos económicos
asignación de agua
estrategias de gestión
incertidumbre
análisis de sensibilidad
índices Sobol y AMA
técnica de puntos piloto
PEST
parametrización inversa
optimización hidroeconómica
gestión integral del recurso hídrico
modelación hidrológica
modelación hidrogeológica
hydrogeological Model
uncertainty
sensitivity analysis
Sobol and AMA indices
pilot-points technique
PEST
inverse parameterization
hydro-economic optimization
integrated water resources management
economic aspects
water allocation
management strategies
hydrological modeling
tropical regions
sobol and AMA indices
title_short Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
title_full Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
title_fullStr Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
title_full_unstemmed Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
title_sort Integration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, Colombia
dc.creator.fl_str_mv Arenas Bautista, María Cristina
dc.contributor.advisor.spa.fl_str_mv Donado Garzón, Leonardo David
dc.contributor.author.spa.fl_str_mv Arenas Bautista, María Cristina
dc.contributor.researchgroup.spa.fl_str_mv Hydrodynamics of the natural media Research Group - HYDS
dc.subject.ddc.spa.fl_str_mv 628 - Ingeniería sanitaria
551 - Geología, hidrología, meteorología
631 - Técnicas específicas, aparatos, equipos, materiales
624 - Ingeniería civil
topic 628 - Ingeniería sanitaria
551 - Geología, hidrología, meteorología
631 - Técnicas específicas, aparatos, equipos, materiales
624 - Ingeniería civil
aspectos económicos
asignación de agua
estrategias de gestión
incertidumbre
análisis de sensibilidad
índices Sobol y AMA
técnica de puntos piloto
PEST
parametrización inversa
optimización hidroeconómica
gestión integral del recurso hídrico
modelación hidrológica
modelación hidrogeológica
hydrogeological Model
uncertainty
sensitivity analysis
Sobol and AMA indices
pilot-points technique
PEST
inverse parameterization
hydro-economic optimization
integrated water resources management
economic aspects
water allocation
management strategies
hydrological modeling
tropical regions
sobol and AMA indices
dc.subject.proposal.spa.fl_str_mv aspectos económicos
asignación de agua
estrategias de gestión
incertidumbre
análisis de sensibilidad
índices Sobol y AMA
técnica de puntos piloto
PEST
parametrización inversa
optimización hidroeconómica
gestión integral del recurso hídrico
modelación hidrológica
modelación hidrogeológica
dc.subject.proposal.eng.fl_str_mv hydrogeological Model
uncertainty
sensitivity analysis
Sobol and AMA indices
pilot-points technique
PEST
inverse parameterization
hydro-economic optimization
integrated water resources management
economic aspects
water allocation
management strategies
hydrological modeling
tropical regions
sobol and AMA indices
description Water resources are a determining factor in the economic and social development of communities, given the need that is generated around its use. Over the years, this use has generated pressure on water availability, which were solved by increasing supply, exploring and developing new water sources, and expanding the existing extractions. In Colombia, water concession is the right to the limited use of water, and it is granted to develop economic activity. This concession must be related to water availability to ensure the preservation and efficient water use. However, to allocation water resources efficiently, tools that help to make decisions by analyzing the hydrological regime (surface and groundwater) in areas with lacking reliable data on water availability in an economic context are required. In this context, the main goal of this research was to provide a methodological approximation that allows integrating hydrological, hydrogeological, and economic aspects in water allocation between different users, prioritizing human needs and ecosystem processes, to establish management strategies at a regional scale. In this research performed an integration of diverse hydrological, hydrogeological, and economical aspects, using the Middle Magdalena Valley (MMV) geological basin as a real scale laboratory. Because this area is a primary supply center for the Colombian population, and economic activities related to mining, agriculture, aquaculture, livestock, industrial, services, and O&G exploration and exploitation are developed in conjunction; hydric and economic behavior of the system was analyzed. This analysis was carried out in regards to water availability (surface and groundwater), and its allocation to different stakeholders. For it, three phases were defined: (1.) to characterize the hydrological system, (2.) to characterize the hydrogeological system, and (3.) its integration into an economic optimization model. In the first phase, the hydrologic system behavior was analyzed through a numeric tool, to characterize the water supply, the recharge zones were identified, and the hydrologic alterations affecting the water supply were evaluated. The hydrological modeling allowed to perform an exhaustive interaction analysis between the hydrologic cycle dynamic and the weather condition and land use. Then, it was made an analysis of uncertainty and sensitivity to evaluate the influence of the principal parameters associated with the model. From this analysis, it was validated a methodology allowing to: (i) select proper values for the model parameters, and (ii) evaluate how the model parameters variations influence a simulated response. In the second phase, the geological, hydrological and hydraulic characterization was integrated into a hydrogeological model to estimate the water volume and groundwater flow system description. The result of this phase allowed to consolidate a methodology to assertively restrict a highly parameterized inverse model with lack of information, estimate hydraulic parameters of aquifers and analyze the spatial and temporal variation presented by these parameters at the regional scale. Finally, in the third phase, the hydrological aspects (surface and groundwater) were integrated with an economic optimization framework. This allows them to determine water allocation and water resources quality management. The main objective of this phase was to analyze the water use profit in a regional flow model, integrating multiple water supplies (surface and groundwater) and multiple demands. Here, the allocation model was analyzed from a regional scale in order to consolidate typologies of use by economic sector, and determine management strategies at a regional level. The general results of this research allowed to identify problems and evaluate management strategies, in a tropical basin at the regional level. Additionally, it was concluded that the quantification of water supply affects the allocation process between different stakeholders and this process, in turn, is a function of water quality. As part of the final stage of this research, the water system behavior was analyzed through future scenarios.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-05T18:12:57Z
dc.date.available.spa.fl_str_mv 2020-08-05T18:12:57Z
dc.date.issued.spa.fl_str_mv 2020-07-15
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Arenas-Bautista, María Cristina. 2020. “Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia.” Universidad Nacional de Colombia.
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77944
identifier_str_mv Arenas-Bautista, María Cristina. 2020. “Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia.” Universidad Nacional de Colombia.
url https://repositorio.unal.edu.co/handle/unal/77944
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agencia Nacional de Hidrocarburos - ANH (2012). Escenarios de Oferta y Demanda de Hidrocarburos en Colombia. Technical report, Agencia Nacional de Hidrocarburos
Ahmed Suliman, A., Gumindoga, W., Katimon, A., & Darus, I. (2014). Semi-distributed rainfall-runoff modeling utilizing ASTER DEM in Pinang catchment of Malaysia. Sains Malaysiana, 43(9).
Al-Jawad, J. Y., Alsaffar, H. M., Bertram, D., & Kalin, R. M. (2019). A comprehensive optimum integrated water resources management approach for multidisciplinary water resources management problems. Journal of Environmental Management, 239:211–224.
Alameddine, I., Fayyad, A., Abou Najm, M., & El-Fadel, M. (2018). Sustainability of basin level development under a changing climate. International Journal of Sustainable Development and Planning, 13(3):394–405
Alberti, L., Colombo, L., & Formentin, G. (2018). Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Science of The Total Environment, 621:326–339.
Alcolea, A., Carrera, J., & Medina, A. (2006a). Inversion of heterogeneous parabolic-type equations using the pilot points method. International Journal for Numerical Methods in Fluids, 51(9-10):963–980.
Alcolea, A., Carrera, J., & Medina, A. (2006b). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11):1678–1689
Alcolea, A., Carrera, J., & Medina, A. (2008). Regularized pilot points method for reproducing the effect of small scale variability: Application to simulations of contaminant transport. Journal of Hydrology, 355(1-4):76–90.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56:1–15.
Álvarez Mendiola, E. (2010). Diseño de una política eficiente de precios del agua integrando costes de oportunidad del recurso a escala de cuenca. Aplicación a la Directiva Marco europea del Agua. PhD thesis, Universidad Politecnica de Valencia.
Amini, M., Johnson, A., Abbaspour, K. C., & Mueller, K. (2009). Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. In International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, pages 4100–4106. Geochmica et Cosmochimica Acta.
Andersen, J., Refsgaard, J. C., & Jensen, K. H. (2001). Distributed hydrological modelling of the Senegal River Basin — model construction and validation. Journal of Hydrology, 247(3-4):200–214.
Anderton, S., Latron, J., & Gallart, F. (2002). Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16(2):333–353.
Arboleda-Obando, P. F. (2018). Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo-superficie e hidrológico MESH. M.Sc. thesis, Universidad Nacional de Colombia ? Sede Bogotá.
Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado, L. D. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). In American Geophysical Union, New Orleans.
Arenas-Bautista, M. C., Arboleda-Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado, L. D. (2018a). Sensitivity Analysis to uncertain Parameters of TopModel in Tropical Regions with application to the Middle Magdalena Valley (Colombia). In European Geosciences Union, Vienna.
Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Saavedra, E., & Donado, L. D. (2018b). Hydrological Modeling in Tropical Regions via TopModel. Study Case: Central Sector of the Middle Magdalena Valley - Colombia. In EGU, editor, EGU, Vienna. Preprints
Arenas-Bautista, M. C., Pescador-Arévalo, J. P., Donado, L. D., Guadagnini, A., & Riva, M. (2018c). Three-dimensional geological model applied for groundwater flow simulations in the Middle Magdalena Valley, Colombia. In AGU Fall Meeting
Asociacion Colombiana del Petroleo (2008). Historia del Petróleo En Colombia. Technical report, ACIPET.
Assaf, H. & Saadeh, M. (2008). Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environmental Modelling and Software, 23(10-11):1327–1337.
Ayantobo, O. O., Li, Y., Song, S., & Yao, N. (2017). Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. Journal of Hydrology, 550:549–567.
Badjana, H., Fink, M., Helmschrot, J., Diekkrüger, B., Kralisch, S., Afouda, A., & Wala, K. (2017). Hydrological system analysis and modelling of the Kara River basin (West Africa) using a lumped metric conceptual model. Hydrological Sciences Journal, 62(7).
Ballinas-González, H., Alcocer-Yamanaka, V., & Pedrozo-Acuña, A. (2016). Uncertainty analysis in data-scarce urban catchments. Water (Switzerland), 8(11).
Bao, J., Hou, Z., Ray, J., Huang, M., Swiler, L., & Ren, H. (2018). Soil moisture estimation using tomographic ground penetrating radar in a MCMC–Bayesian framework. Stochastic Environmental Research and Risk Assessment, 32(8):2213–2231.
Barthel, R. & Banzhaf, S. (2016). Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1):1–32.
Beltrán, A., Lancheros, A., Lopez, C., Chaque, C., Patino, A., Guerra, A., Cabreras, J., Quintero, C., & Molano, S. (2014). Plancha Geologica 149- Puerto Serviez.
Benoit, N., Marcotte, D., Boucher, A., D’Or, D., Bajc, A., & Rezaee, H. (2018). Directional hydrostratigraphic units simulation using MCP algorithm. Stochastic Environmental Research and Risk Assessment, 32(5):1435–1455.
Betancur, T., Mejia, O., & Palacio, C. (2009). Conceptual hydrogeology model to Bajo Cauca antioqueño: a tropical aquifer system. Revista Facultad de Ingeniería, 48:107–118.
Beven, K. & Freer, J. (2001a). A dynamic TOPMODEL. Hydrological Processes, 15(10):1993–2011.
Beven, K. & Freer, J. (2001b). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249(1-4):11–29.
Blanco-Gutiérrez, I., Varela-Ortega, C., & Purkey, D. R. (2013). Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach. Journal of environmental management, 128:144–60.
Booker, J. F., Howitt, R. E., Michelsen, A. M., & Young, R. A. (2012). Economics And The Modeling Of Water Resources And Policies. Natural Resource Modeling, 25(1):168–218.
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., & Hill, M. C. (2017). Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box. Water Resources Research, 53(9):7933–7950.
Boskidis, I., Gikas, G. D., Sylaios, G. K., & Tsihrintzis, V. A. (2012). Hydrologic and Water Quality Modeling of Lower Nestos River Basin. Water Resources Management, 26(10):3023–3051
Bossa, A., Diekkrüger, B., Giertz, S., Steup, G., Sintondji, L., Agbossou, E., & Hiepe, C. (2012). Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management, 115:20–37.
Brouwer, R. & Hofkes, M. (2008). Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecological Economics, 66(1):16–22.
Bulot, D., Gumiere, S., Périard, Y., Lafond, J. A., Gallichand, J., ARMALY-ST-GELAIS, M.-H., & Caron, J. (2016). Relationships between soil hydraulic properties, drainage efficiency and cranberry yields. Canadian Journal of Soil Science, pages 2016–0020.
Buytaert, W. (2011). topmodel: Implementation of the hydrological model TOPMODEL in R.
Buytaert, W. & Beven, K. (2011). Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 25(11):1784–1799.
Cai, X. (2008). Implementation of holistic water resources-economic optimization models for river basin management - Reflective experiences. Environmental Modelling and Software, 23(1):2–18.
Cánovas, C. R., Macías, F., Olías, M., López, R. P., & Nieto, J. M. (2017). Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain). Journal of Hydrology, 550:590–602.
Carniato, L., Schoups, G., Van De Giesen, N., Seuntjens, P., Bastiaens, L., & Sapion, H. (2015). Highly parameterized inversion of groundwater reactive transport for a complex field site. Journal of Contaminant Hydrology, 173:38–58.
Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1):206–222.
Carrera, J., Hidalgo, J., Slooten, L., & Vázquez-Suñé, E. (2010). Computational and conceptual issues in the calibration of seawater intrusion models | Problèmes conceptuels et de calibration des modèles d’intrusion marines. Hydrogeology Journal, 18(1):131–145.
Carrera, J., Mousavi, S., Usunoff, E., Sánchez-Vila, X., & Galarza, G. (1993). A discussion on validation of hydrogeological models. Reliability Engineering and System Safety, 42(2-3):201–216.
Carrera, J. & Neuman, S. (1986). Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms. Water Resources Research, 22(2):211–227.
Casadevall, S. R. (2016). Improving the management of water multi-functionality through stakeholder involvement in decision-making processes. Utilities Policy, 43:71–81.
Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model. Journal of Hydrology, 557:826 – 837.
Cherry, J. A., Parker, B. L., Bradbury, K. R., Eaton, T. T., Gotkowitz, M. G., Hart, D. J., & Borchardt, M. A. (2004). Role of Aquitards in the Protection of Aquifers from Contamination: A “State of the Science” Report. AWWA Research Foundation Report, pages 1–144.
Choi, J. M. (2018). Factors influencing public officials’ responses to requests for information disclosure. Government Information Quarterly, 35(1):30–42.
Christensen, S. & Doherty, J. (2008). Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Advances in Water Resources, 31(4).
Cobourn, K. M., Elbakidze, L., & Ghosh, S. (2017). Chapter 3.1.2 - Conjunctive Water Management in Hydraulically Connected Regions in the Western United States. In Ziolkowska, J. R. & Peterson, J. M., editors, Competition for Water Resources, pages 278–297. Elsevier.
Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R., Hayward, A., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A., & Taborda, A. (1995). Basin development and tectonic history of the Llanos basin, and Middle Magdalena Valley, Colombia. Petroleum basins of South America. AAPG. Memoir no. 62, 10(10):659–666.
Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., Manzano, M., Rodríguez-Hernández, L., Sahuquillo, A., & Del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. The Science of the total environment, 559:302–316.
da Silva, M. G., de Aguiar Netto, A. d. O., de Jesus Neves, R. J., do Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. Journal of Environmental Protection, 06(08):837–850.
Dai, H., Ye, M., Walker, A., & Chen, X. (2017). A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research, 53(4).
Dakhlaoui, H., Ruelland, D., Tramblay, Y., & Bargaoui, Z. (2017). Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia. Journal of Hydrology, 550:201–217.
DANE (2016). Metodología General Tercer Censo Nacional Agropecuario. Technical report, Departamento Adminsitrativo Nacional de Estadistica, Bogotá D.C.
DANE (2017). Hoja metodológica de indicadores Productividad hídrica. Technical report, Departamento Nacional de Estadísticas, Bogotá D.C.
DANE (2019). Boletín Técnico de Índice de Precios. Technical report, Departamento Administrativo Nacional de Estadistica, Bogotá D.C.
Davidsen, C., Liu, S., Mo, X., Holm, P. E., Trapp, S., Rosbjerg, D., & Bauer-Gottwein, P. (2015). Hydroeconomic optimization of reservoir management under downstream water quality constraints. Journal of Hydrology, 529:1679–1689.
Davis, M. D. (2007). Integrated water resource management and water sharing. Journal of Water Resources Planning And Management-Asce, 133(5):427–445.
De O. Torres, M., Howitt, R., & Rodrigues, L. N. (2016). Modeling the economic benefits and distributional impacts of supplemental irrigation. Water Resources and Economics, 14:1–12.
de Sousa Fragoso, R. M. & de Almeida Noéme, C. J. (2018). Economic effects of climate change on the Mediterranean’s irrigated agriculture. Sustainability Accounting, Management and Policy Journal, 9(2):118–138.
Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based Metrics for Global Sensitivity Analysis of Hydrological Systems. Hydrology and Earth System Sciences Discussions, pages 1–41.
Dessu, S. B., Melesse, A. M., Bhat, M. G., Price, R. M., Seid, A. H., Debebe, S. A., & McClain, M. E. (2019). Development and application of a priority rated optimization model (PROM) for multi-sector water resource management systems. Environmental Modelling & Software, 113:84–97.
Dewandel, B., Jeanpert, J., Ladouche, B., Join, J. L., & Maréchal, J. C. (2017). Inferring the heterogeneity, transmissivity and hydraulic conductivity of crystalline aquifers from a detailed water-table map. Journal of Hydrology, 550:118–129.
Dewandel, B., Maréchal, J., Bour, O., Ladouche, B., Ahmed, S., Chandra, S., & Pauwels, H. (2012). Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. Journal of Hydrology, 416-417:83–97.
Doherty, J. (2003). Ground water model calibration using pilot points and regularization. Ground Water, 41(2):170–177.
Doherty, J. (2004). PEST Model-Independent Parameter Estimation. Watermark Numerical Computing, Idaho, 5th edition.
Donado, L. D., Arenas-Bautista, M. C., Pescador-Arévalo, J. P., Guadagnini, A., & Riva, M. (2018). Hydrogeological Characterization in Tropical Regions with lack of information subject to competing uses of groundwater. In AGU Fall Meeting, Washington.
Du, M., Zavattero, E., Ma, Q., Gourbesville, P., & Delestre, O. (2018). Groundwater Modeling for a Decision Support System: The Lower Var Valley, Southeastern France. In Advances in Hydroinformatics, pages 273–283. Springer Nature
Dunne, T. (1983). Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology, 65(1):25–48.
Ehtiat, M., Mousavi, S., & Ghaheri, A. (2015). Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA, 64(6):670–687.
Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic value of climate change adaptation strategies for water management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5).
Fabre, J., Ruelland, D., Dezetter, A., & Grouillet, B. (2016). Sustainability of water uses in managed hydrosystems: Human- and climate-induced changes for the mid-21st century. Hydrology and Earth System Sciences, 20(8):3129–3147.
Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., & Guadagnini, A. (2011). Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media. Water Resources Research, 47(2):1–14.
Ferreira, D. M., Fernandes, C. V. S., Kaviski, E., & Fontane, D. (2019). Water quality modelling under unsteady state analysis: Strategies for planning and management. Journal of Environmental Management, 239:150–158.
Fu, Z. H., Zhao, H. J., Wang, H., Lu, W. T., Wang, J., & Guo, H. C. (2017). Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China. Journal of Hydrology, 554:623–634.
Gaganis, P. & Smith, L. (2006). Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: A per-datum approach to model calibration. Advances in Water Resources, 29(4):503–514.
García-González, M. L., Carvajal-Escobar, Y., & Jiménez-Escobar, H. (2007). Integrated water resource management as a strategy for adaptation to climate change. Ingeniería y Competitividad, 29(1):19–29.
Garrido-Rodríguez, J. C., López-Hernández, A. M., & Zafra-Gómez, J. L. (2019). The impact of explanatory factors on a bidimensional model of transparency in Spanish local government. Government Information Quarterly, 36(1):154–165.
Garrote, L. (2017). Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context. Water Resources Management, 31(10):2951–2963.
George, B., Malano, H., Davidson, B., Hellegers, P., Bharati, L., & Massuel, S. (2011). An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development. Agricultural Water Management, 98(5):733–746.
Gil Morales, E. G. & Tobón Marín, C. (2016). Hydrological modelling with TOPMODEL of Chingaza páramo, Colombia. Revista Facultad Nacional de Agronomía, 69(2).
Gómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., & Kelley, S. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Bulletin of the Geological Society of America, 117(5-6):547–569.
Gómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., Kelley, S., & Heizler, M. (2003). Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Bulletin of the Geological Society of America, 115(2):131–147.
Gonzalez, M., Sladarriaga, G., & Jaramillo, O. (2010). Estimación de la demanda del agua: Conceptaulización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional del Agua, pages 169–228.
González-Zeas, D., Erazo, B., Lloret, P., De Bièvre, B., Steinschneider, S., & Dangles, O. (2019). Linking global climate change to local water availability: Limitations and prospects for a tropical mountain watershed. Science of the Total Environment, 650:2577–2586.
Groves, D. G., Yates, D., & Tebaldi, C. (2008). Developing and applying uncertain global climate change projections for regional water management planning. Water Resources Research, 44(12):n/a–n/a.
Gunawardena, A., White, B., Hailu, A., Wijeratne, E., & Pandit, R. (2018). Policy choice and riverine water quality in developing countries: An integrated hydro-economic modelling approach. Journal of Environmental Management, 227:44–54.
Gupta, H. V. & Razavi, S. (2018). Revisiting the Basis of Sensitivity Analysis for Dynamical Earth System Models. Water Resources Research, 54(11):8692–8717.
H. Hargreaves, G. & A. Samani, Z. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2):96–99.
Hanemann, W. M. (2006). The economic conception of water. In Water Crisis: Myth or Reality, number 1, chapter 4, pages 60–91. University of California, Berkeley.
Hargreaves, G. & Samani, Z. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(IR3):225–230
Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4):627–643.
Hashimoto, T., Loucks, D. P., & Stedinger, J. R. (1982). Reliability , Resiliency , Robustness , and Vulnerability Criteria for Water Resource Systems. Water Resources Research, 18(1):14–20.
He, L., Huang, G., Lu, H., Wang, S., & Xu, Y. (2012). Quasi-Monte Carlo based global uncertainty and sensitivity analysis in modeling free product migration and recovery from petroleum-contaminated aquifers. Journal of hazardous materials, 219-220:133–40.
Hernandez, A., Neuman, S., Guadagnini, A., & Carrera, J. (2003). Conditioning mean study state flow on hydraulic head and conductivity through geostatistical inversion. Stochastic Environmental Research and Risk Assessment, 17(5):329–338.
Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. T. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water (Switzerland), 9(3).
Hollanda, M., Cecílio, R., Campanharo, W., Zanetti, S., de Andrade, L., & Garcia, G. (2015). Evaluation of TOPMODEL for prediction of the runoff of a watershed under different land uses | Avaliação do TOPMODEL na estimativa do escoamento superficial em microbacia hidrográfica em diferentes usos. Revista Brasileira de Engenharia Agricola e Ambiental, 19(5).
Hou, T., Zhu, Y., Lü, H., Sudicky, E., Yu, Z., & Ouyang, F. (2015). Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China. Stochastic Environmental Research and Risk Assessment, 29(5).
Ibarra-Zavaleta, S., Landgrave, R., Romero-López, R., Poulin, A., & Arango-Miranda, R. (2017). Distributed hydrological modeling: Determination of theoretical hydraulic potential & streamflow simulation of extreme hydrometeorological events. Water (Switzerland), 9(8).
Ideam (2014). Estudio Nacional del Agua 2014. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales
IDEAM (2019). Estudio Nacional del Agua 2018. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, Bogotá D.C.
Islam, M., Firoz, A., Foglia, L., Marandi, A., Khan, A., Schüth, C., & Ribbe, L. (2017). A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh | Modèle régional d’écoulement des eaux souterraines pour une gestion durable des ressources en eaux souterraines dans la mé. Hydrogeology Journal, 25(3):617–637.
Jafarpour, B. (2013). Sparsity-promoting solution of subsurface flow model calibration inverse problems. Advances in Hydrogeology, 9781461464:73–94.
Janetti, E., Riva, M., Straface, S., & Guadagnini, A. (2010). Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 381(1-2):42–51.
Jeziorska, J. & Niedzielski, T. (2015). Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka River basin (SW Poland). Acta Geophysica, 66(2):203–222.
Jia, Z., Cai, Y., Chen, Y., & Zeng, W. (2018). Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resources, Conservation and Recycling, 134:282–293.
Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., & Jensen, K. H. (2016). Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology, 535:301–317.
Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software, 75:68–76.
Kellner, J., Multsch, S., Kraft, P., Houska, T., Mueller, C., & Breuer, L. (2015). Uncertainty Analysis of a Coupled Hydrological-plant Growth Model for Grassland under Elevated CO2. Procedia Environmental Sciences, 29:79–80.
Khaninezhad, M., Jafarpour, B., & Li, L. (2012). Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty. Advances in Water Resources, 39:122–136.
Khaninezhad, M.-R., Golmohammadi, A., & Jafarpour, B. (2018). Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data. Water Resources Research, 54(4):2523–2543.
Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., & Bauwens, W. (2017). Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environmental Modelling and Software, 91.
Kirshen, P., Aytur, S., Hecht, J.,Walker, A., Burdick, D., Jones, S., Fennessey, N., Bourdeau, R., & Mather, L. (2018). Integrated urban water management applied to adaptation to climate change. Urban Climate, 24:247–263.
Klaas, D. K. S. Y., Imteaz, M. A., Sudiayem, I., Klaas, E. M. E., & Klaas, E. C. M. (2017). Novel approaches in sub-surface parameterisation to calibrate groundwater models. IOP Conference Series: Earth and Environmental Science, 82(1):012014
Kpegli, K. A. R., Alassane, A., van der Zee, S. E., Boukari, M., & Mama, D. (2018). Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18:50 – 67.
Li, H. & Zhang, Y. (2017). Regionalising rainfall-runoff modelling for predicting daily runoff: Comparing gridded spatial proximity and gridded integrated similarity approaches against their lumped counterparts. Journal of Hydrology, 550:279–293.
Lionboui, H., Benabdelouahab, T., Elame, F., Hasib, A., & Boulli, A. (2018). Estimating the economic impact of climate change on agricultural water management indicators. Pertanika Journal of Science and Technology, 26(2):749–762.
Liu, J., Zhu, A.-X., Qin, C.-Z.,Wu, H., & Jiang, J. (2016). A two-level parallelization method for distributed hydrological models. Environmental Modelling & Software, 80:175–184.
Llopis-Albert, C., Merigó, J., & Xu, Y. (2016). A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. Journal of Hydrology, 540:774–783.
López, S. T., de los Angeles Barrionuevo, M., & Rodríguez-Labajos, B. (2019). Water accounts in decision-making processes of urban water management: Benefits, limitations and implications in a real implementation. Sustainable Cities and Society, 50:101676.
Lopez-Nicolas, A., Pulido-Velazquez, M., Rougé, C., Harou, J. J., & Escriva-Bou, A. (2018). Design and assessment of an efficient and equitable dynamic urban water tariff. Application to the city of Valencia, Spain. Environmental Modelling & Software, 101:137–145.
Malagón-Navarro, J. P. (2017). Análisis hidrogeoquímico-multivariado del agua subterránea del sistema acuífero del Valle Medio del Magdalena Colombia. M.Sc thesis, Universidad Nacional de Colombia - Sede Bogotá.
Maliva, R. G. (2014). Economics of managed aquifer recharge. Water (Switzerland), 6(5):1257–1279.
Martin-Carrasco, F. & Garrote, L. (2006). Drought-Induced Water Scarcity in Water Resources Systems. In NATO Science Series, editor, Extreme Hydrological Events: New Concepts for Security, pages 301–311. Springer Netherlands, Dordrecht, 78 edition.
Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., & Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Resources, 83:323–339.
Medina, A., Galarza, G., Carrera, J., Jódar, J., & Alcolea, A. (2001). The inverse problem in hydrogeology: Applications | El problema inverso en hidrología subterránea. Aplicaciones. Boletin Geologico y Minero, 112(SPECIAL ED):93–106.
Merritt, W., Croke, B., & Jakeman, A. (2005). Sensitivity testing of a model for exploring water resources utilisation and management options. Environmental Modelling & Software, 20(8):1013–1030.
Metcalfe, P., Beven, K., & Freer, J. (2015). Dynamic TOPMODEL: A new implementation in R and its sensitivity to time and space steps. Environmental Modelling & Software, 72:155–172.
Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2017). A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29 km2 scale catchment in the United Kingdom. Hydrological Processes, 31(9):1734–1748.
Meyer, R., Engesgaard, P., Høyer, A.-S., Jørgensen, F., Vignoli, G., & Sonnenborg, T. O. (2018). Regional flow in a complex coastal aquifer system: Combining voxel geological modelling with regularized calibration. Journal of Hydrology, 562:544 – 563.
Mohtar, W. H. M. W., Maulud, K. N. A., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient based river assessment for water resources management. Environmental Pollution, 248:133–144.
Moreno, N., Silva, A., Mora, A., Tesón, E., Quintero, I., Rojas, L. E., Lopez, C., Blanco, V., Castellanos, J., Sanchez, J., Osorio, L., Namson, J., Stockli, D., & Casallas, W. (2013). Interaction between thin- and thick-skinned tectonics in the foothill areas of an inverted graben. The Middle Magdalena Foothill belt. Geological Society, London, Special Publications, 377(1):221–255.
Mukherjee, S., Mukherjee, S., Garg, R., Bhardwaj, A., & Raju, P. (2013). Evaluation of topographic index in relation to terrain roughness and DEM grid spacing. Journal of Earth System Science, 122(3).
Mukundan, R., Acharya, N., Gelda, R. K., Frei, A., & Owens, E. M. (2019). Modeling streamflow sensitivity to climate change in New York City water supply streams using a stochastic weather generator. Journal of Hydrology: Regional Studies, 21:147–158.
Navarro-Chaparro, K., Rivera, P., & Sánchez, R. (2015). Water management analysis of the city of Tijuana , Baja California : Critical factors and challenges Análisis del manejo de agua en la ciudad de Tijuana , Baja California : Factores críticos y retos. Estudios Fronterizos Nueva Época, 17(33):1–20.
Neverre, N. & Dumas, P. (2015). Projecting and valuing domestic water use at regional scale: A generic method applied to the Mediterranean at the 2060 horizon. Water Resources and Economics, 11:33–46.
Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., & Lettenmaier, D. P. (2004). Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin. Climatic Change, 62(1-3):233–256.
Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., & Paredes-Arquiola, J. (2015). Key issues for determining the exploitable water resources in a Mediterranean river basin. Science of The Total Environment, 503-504:319–328.
Peña-Haro, S., Pulido-Velazquez, M., & Llopis-Albert, C. (2011). Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environmental Modelling and Software, 26(8):999–1008.
Peña-Haro, S., Pulido-Velazquez, M., & Sahuquillo, A. (2009). A hydro-economic modeling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology, 373(1-2):193–203.
Pérez-Blanco, C. D. & Gutiérrez-Martín, C. (2017). Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback. Agricultural Water Management, 190:6–20.
Pérez-Sánchez, J. & Senent-Aparicio, J. (2015). Integrated water resources management on a local scale: a challenge for the user community—a case study in Southern Spain. Environmental Earth Sciences, 74(7):6097–6109.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79:214–232.
Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. Journal of Hydrology, 531:214–229.
Pulido-Velazquez, D., Collados-Lara, A.-J., & Alcalá, F. J. (2018). Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. Journal of Hydrology, 567:803–819.
Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F.-J. J., & Iglesias, A. (2011). A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. Journal of Hydrology, 405(1-2):110–122.
Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1):51–65.
Räsänen, A., Juhola, S., Monge Monge, A., Käkönen, M., Kanninen, M., & Nygren, A. (2017). Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas. Journal of Hydrology, 550:704–715.
Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1-4):69–97.
Riva, M., Guadagnini, A., De Gaspari, F., & Alcolea, A. (2010). Exact sensitivity matrix and influence of the number of pilot points in the geostatistical inversion of moment equations of groundwater flow. Water Resources Research, 46(11).
Riva, M., Guadagnini, A., Neuman, S., Janetti, E., & Malama, B. (2009). Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Advances in Water Resources, 32(10):1495–1507.
Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P. (2011). Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resources Research, 47(7).
Ruelland, D., Ardoin-Bardin, S., Billen, G., & Servat, E. (2008). Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin in West Africa. Journal of Hydrology, 361(1-2):96–117
Sahoo, S. & Jha, M. (2017). Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India | Modélisation numérique des écoulements d’eau souterraine pour évaluer les . Hydrogeology Journal, 25(8):2489–2511.
Sarmiento-Rojas, L. F. (2011). Middle Magdalena Basin-Vol. 11 Petroleum Geology of Colombia. Technical report, Agencia Nacional de Hidrocarburos, Bogotá D.C.
Schwabe, K., Knapp, K., & Luviano, I. (2017). Chapter 2.1.2 - The Water–Energy Nexus and Irrigated Agriculture in the United States: Trends and Analyses. In Ziolkowska, J. R. & Peterson, J. M., editors, Competition for Water Resources, pages 80–104. Elsevier.
Servicios Integrales Hidrogeológicos, S. (2015). Elaborar la Caracterización Hidrológica e Hidrogeológica de las Áreas de Interés de las Zonas Hidrográficas del Meta y Magdalena Medio en el Marco del Estudio Nacional del Agua en el Marco del Estudio Nacional del Agua. Technical report, IDEAM, Bogota
Singh, A., Walker, D., Minsker, B., & Valocchi, A. (2008). Interactive multi-objective inverse groundwater modelling - Incorporating subjective knowledge and conceptual uncertainty. In World Environmental and Water Resources Congress 2008: Ahupua’a - Proceedings of the World Environmental and Water Resources Congress 2008, volume 316.
Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3):271–280.
Sobol, I. M. (1993). Sensitivity analysis for nonlinear mathematical models. Math. Model. Computer.Exp, 1(4):407–414.
Sun, D., Zhao, C., Wei, H., & Peng, D. (2011). Simulation of the relationship between land use and groundwater level in Tailan River basin, Xinjiang, China. Quaternary International, 244(2):254–263.
Teng, J., Jakeman, A., Vaze, J., Croke, B., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90.
Tiedeman, C. & Green, C. (2013). Effect of correlated observation error on parameters, predictions, and uncertainty. Water Resources Research, 49(10):6339–6355.
Tortajada, C., González-Gómez, F., Biswas, A. K., & Buurman, J. (2019). Water demand management strategies for water-scarce cities: The case of Spain. Sustainable Cities and Society, 45:649–656.
Tóth, A., Havril, T., Simon, S., Galsa, A., Monteiro-Santos, F. A., Muller, I., & Mádl-Szonyi, J. (2016). Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. Journal of Hydrology, 539:330–344.
Tzabiras, J., Vasiliades, L., Sidiropoulos, P., Loukas, A., & Mylopoulos, N. (2016). Evaluation of Water Resources Management Strategies to Overturn Climate Change Impacts on Lake Karla Watershed. Water Resources Management, 30(15):5819–5844.
Usman, M., Reimann, T., Liedl, R., Abbas, A., Conrad, C., & Saleem, S. (2018). Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: Test and application of different approaches. ISPRS International Journal of Geo-Information, 7(1).
Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J. B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A., & Helwig, B. (2014). Water governance in Chile: Availability, management and climate change. Journal of Hydrology, 519(APRIL):2538–2567.
Velázquez, M. A. P., Álvarez, J. A., & Herraiz, A. S. (2003). Optimización económica de la gestión del uso conjunto de aguas superficiales y subterráneas en un sistema de recursos hídricos: contribución al análisis económico propuesto en la Directiva Marco Europea del Agua. PhD thesis, Universidad Politecnica de Valencia.
Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., & Schneider, K. (2012). Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464-465:388–400.
Wang, X., Jardani, A., & Jourde, H. (2017a). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrology, 551:29 – 46.
Wang, X.-S., Wan, L., Jiang, X.-W., Li, H., Zhou, Y., Wang, J., & Ji, X. (2017b). Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108:139 – 156.
White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109:191–201.
Woodrow, K., Lindsay, J. B., & Berg, A. A. (2016). Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of Hydrology, 540:1022–1029.
Xie, S., Hu, Y., Jiang, M., & Liu, Q. (2006). Study on the inverse method to permeability coefficient of groundwater system: A case study of uranium gangue site in Southern China. In 5th International Conference on Environmental Informatics, ISEIS 2006.
Xue, L., Yang, F., Yang, C., Wei, G., Li, W., & He, X. (2018). Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China. Scientific Reports, 8(1):1–12.
Yasari, E., Pishvaie, M. R., Khorasheh, F., Salahshoor, K., & Kharrat, R. (2013). Application of multi-criterion robust optimization in water-flooding of oil reservoir. Journal of Petroleum Science and Engineering, 109:1–11.
Yeh, W.-G. (2015). Review: Optimization methods for groundwater modeling and management | Revue: Méthodes d’optimisation pour la modélisation et la gestion des eaux souterraines | Revisão: Métodos de otimização para modelagem e gerenciamento de águas subterrâneas | Revisión. Hydrogeology Journal, 23(6):1051–1065
Yi, L., Zhang, W.-C., & Yan, C.-A. (2017). A modified topographic index that incorporates the hydraulic and physical properties of soil. Hydrology Research, 48(2):370–383.
Yoon, H. & McKenna, S. (2012). Highly parameterized inverse estimation of hydraulic conductivity and porosity in a three-dimensional, heterogeneous transport experiment. Water Resources Research, 48(10).
Zhang, J., Fan, S.-k., Yang, J.-c., Du, X.-m., Li, F.-s., & Hou, H. (2014). Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set. The Science of the total environment, 476-477:258–65.
Zhang, X., Sun, A. Y., & Duncan, I. J. (2016). Shale gas wastewater management under uncertainty. Journal of Environmental Management, 165:188–198.
Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 192
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77944/1/53139151.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77944/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77944/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77944/4/53139151.2020.pdf.jpg
bitstream.checksum.fl_str_mv ef92e3a0075f65f14c56bd0ad7f23e25
e2f63a891b6ceb28c3078128251851bf
217700a34da79ed616c2feb68d4c5e06
c5dc23be9c0b179af6c123041abe1609
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090253335527424
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Donado Garzón, Leonardo Davidd5588bd2-318b-44db-8078-ae79a6df50d9-1Arenas Bautista, María Cristinab68ef9c1-4961-4502-ab5f-71f12b5760b6Hydrodynamics of the natural media Research Group - HYDS2020-08-05T18:12:57Z2020-08-05T18:12:57Z2020-07-15Arenas-Bautista, María Cristina. 2020. “Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia.” Universidad Nacional de Colombia.https://repositorio.unal.edu.co/handle/unal/77944Water resources are a determining factor in the economic and social development of communities, given the need that is generated around its use. Over the years, this use has generated pressure on water availability, which were solved by increasing supply, exploring and developing new water sources, and expanding the existing extractions. In Colombia, water concession is the right to the limited use of water, and it is granted to develop economic activity. This concession must be related to water availability to ensure the preservation and efficient water use. However, to allocation water resources efficiently, tools that help to make decisions by analyzing the hydrological regime (surface and groundwater) in areas with lacking reliable data on water availability in an economic context are required. In this context, the main goal of this research was to provide a methodological approximation that allows integrating hydrological, hydrogeological, and economic aspects in water allocation between different users, prioritizing human needs and ecosystem processes, to establish management strategies at a regional scale. In this research performed an integration of diverse hydrological, hydrogeological, and economical aspects, using the Middle Magdalena Valley (MMV) geological basin as a real scale laboratory. Because this area is a primary supply center for the Colombian population, and economic activities related to mining, agriculture, aquaculture, livestock, industrial, services, and O&G exploration and exploitation are developed in conjunction; hydric and economic behavior of the system was analyzed. This analysis was carried out in regards to water availability (surface and groundwater), and its allocation to different stakeholders. For it, three phases were defined: (1.) to characterize the hydrological system, (2.) to characterize the hydrogeological system, and (3.) its integration into an economic optimization model. In the first phase, the hydrologic system behavior was analyzed through a numeric tool, to characterize the water supply, the recharge zones were identified, and the hydrologic alterations affecting the water supply were evaluated. The hydrological modeling allowed to perform an exhaustive interaction analysis between the hydrologic cycle dynamic and the weather condition and land use. Then, it was made an analysis of uncertainty and sensitivity to evaluate the influence of the principal parameters associated with the model. From this analysis, it was validated a methodology allowing to: (i) select proper values for the model parameters, and (ii) evaluate how the model parameters variations influence a simulated response. In the second phase, the geological, hydrological and hydraulic characterization was integrated into a hydrogeological model to estimate the water volume and groundwater flow system description. The result of this phase allowed to consolidate a methodology to assertively restrict a highly parameterized inverse model with lack of information, estimate hydraulic parameters of aquifers and analyze the spatial and temporal variation presented by these parameters at the regional scale. Finally, in the third phase, the hydrological aspects (surface and groundwater) were integrated with an economic optimization framework. This allows them to determine water allocation and water resources quality management. The main objective of this phase was to analyze the water use profit in a regional flow model, integrating multiple water supplies (surface and groundwater) and multiple demands. Here, the allocation model was analyzed from a regional scale in order to consolidate typologies of use by economic sector, and determine management strategies at a regional level. The general results of this research allowed to identify problems and evaluate management strategies, in a tropical basin at the regional level. Additionally, it was concluded that the quantification of water supply affects the allocation process between different stakeholders and this process, in turn, is a function of water quality. As part of the final stage of this research, the water system behavior was analyzed through future scenarios.El recurso hídrico es un factor determinante en el desarrollo económico y social de las comunidades dada la amplia necesidad que se genera en torno a su aprovechamiento. El uso del agua ha generado a través de los años, presiones sobre su disponibilidad, las cuales usualmente se resolvían aumentando el suministro, explorando y desarrollando nuevas fuentes y, expandiendo las extracciones de las ya existentes. En Colombia, la concesión de agua es el derecho al uso limitado del agua, otorgado para desarrollar una actividad económica. Esta concesión debe estar relacionada con la disponibilidad de agua para garantizar la preservación y el uso eficiente del agua. Para asignar el recurso hídrico de manera eficiente se requieren herramientas que ayuden a tomar decisiones mediante el análisis del régimen hidrológico integral (aguas superficiales y subterráneas), lo cual es un problema complejo en áreas que carecen de datos hidrológicos confiables; y que permiten una evaluación sobre la disponibilidad en un contexto económico. En este orden de ideas, el objetivo principal de esta investigación fue proporcionar una aproximación metodológica que permita integrar aspectos hidrológicos, hidrogeológicos y económicos en la asignación de agua entre diferentes usuarios, priorizando las necesidades humanas y los procesos ecosistemicos, para establecer estrategias de gestión a escala regional. En consecuencia, esta investigación realizó una integración de aspectos hidrológicos, hidrogeológicos y económicos, utilizando la cuenca geológica del Valle Medio del Magdalena (MMV) como laboratorio a escala real. Debido a que esta zona es centro de abastecimiento para la pequeñas poblaciones rurales y se desarrollan de manera conjunta actividades económicas relacionadas con minería, agricultura, acuicultura, producción pecuaria, industria, generación hidroeléctrica, servicios de seguridad y emergencia y exploración y producción de hidrocarburos, se analizó el comportamiento hídrico y económico del sistema respecto a la disponibilidad de agua superficial y subterránea, y su asignación a los diferentes usuarios. Para ello, se definieron tres etapas: (1.) caracterización del sistema hidrológico, (2.) caracterización del sistema hidrogelógico, y (3.) su integración en un modelo de optimización económica. En la primera etapa, se analizó mediante herramientas numéricas el comportamiento hidrológico del sistema para caracterizar la oferta hídrica. En adición, se identificaron las zonas de recarga y se investigaron las alteraciones hidrológicas que afectan la cantidad de agua en el sistema. La modelación hidrológica permitió realizar una evaluación exhaustiva de la interacción entre la dinámica del ciclo hidrológico y las condiciones climáticas. Luego, se realizaron los análisis de sensibilidad e incertidumbre para evaluar la influencia de los principales parámetros asociados con el modelo y a partir de ello, se validó una metodológia que permite: (i) seleccionar valores apropiados para los parámetros de los modelos y (ii) evaluar en qué medida la variación de estos parámetros afecta una respuesta simulada. En la segunda etapa, se integraron la caracterización geológica, la hidrológica y la hidráulica en un modelo hidrogeológico para estimar el volumen de agua y la descripción del sistema de flujo subterráno. El resultado de esta etapa permitió consolidar una metodología para restringir asertivamente un modelo inverso altamente parametrizado con pocos o sesgados datos de campo, estimar parámetros hidráulicos de acuíferos y analizar la variación espacial y temporal que presentan estos parámetros a escala regional. Finalmente, en la tercera etapa, se integraron los aspectos hidrológicos superficiales y subterráneos desarrollados anteriormente, en un marco de optimización económica para determinar la asignación conjunta de agua y la gestión de la calidad del recurso hídrico. Este aparte tuvo como objetivo principal análizar el beneficio de uso del agua en un modelo de flujo regional que integra múltiples ofertas de agua y de demandas por parte de los usuarios. Aquí, se analizó el modelo de asignación desde una escala regional con el fin de consolidar tipologías de uso por sector económico y determinar estrategias de gestión a escala regional que permitan reducir los conflictos por uso y calidad, y fortalecer la gestión y administración del recurso hídrico en la zona. Los resultados generales de esta investigación permitieron identificar y evaluar de manera conjunta los problemas y estrategias de gestión, en una cuenca tropical con escases de información. Adicionalmente, se concluyó sobre cómo la cuantificación de la oferta hídirica afecta el proceso de asignación entre diferentes usuarios y este proceso a su vez, esta en función de la calidad. Como parte de la etapa final de esta investigación, se analizó a través de escenarios futuros el comportamiento del sitema hídrico.MinCiencias, Universidad Nacional de ColombiaResearch Line in Water and Environment EngineeringDoctorado192application/pdfeng628 - Ingeniería sanitaria551 - Geología, hidrología, meteorología631 - Técnicas específicas, aparatos, equipos, materiales624 - Ingeniería civilaspectos económicosasignación de aguaestrategias de gestiónincertidumbreanálisis de sensibilidadíndices Sobol y AMAtécnica de puntos pilotoPESTparametrización inversaoptimización hidroeconómicagestión integral del recurso hídricomodelación hidrológicamodelación hidrogeológicahydrogeological Modeluncertaintysensitivity analysisSobol and AMA indicespilot-points techniquePESTinverse parameterizationhydro-economic optimizationintegrated water resources managementeconomic aspectswater allocationmanagement strategieshydrological modelingtropical regionssobol and AMA indicesIntegration of Hydrological and economical aspects for water management in tropical regions. case study: middle Magdalena Valley, ColombiaDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería CivilUniversidad Nacional de Colombia - Sede BogotáAgencia Nacional de Hidrocarburos - ANH (2012). Escenarios de Oferta y Demanda de Hidrocarburos en Colombia. Technical report, Agencia Nacional de HidrocarburosAhmed Suliman, A., Gumindoga, W., Katimon, A., & Darus, I. (2014). Semi-distributed rainfall-runoff modeling utilizing ASTER DEM in Pinang catchment of Malaysia. Sains Malaysiana, 43(9).Al-Jawad, J. Y., Alsaffar, H. M., Bertram, D., & Kalin, R. M. (2019). A comprehensive optimum integrated water resources management approach for multidisciplinary water resources management problems. Journal of Environmental Management, 239:211–224.Alameddine, I., Fayyad, A., Abou Najm, M., & El-Fadel, M. (2018). Sustainability of basin level development under a changing climate. International Journal of Sustainable Development and Planning, 13(3):394–405Alberti, L., Colombo, L., & Formentin, G. (2018). Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Science of The Total Environment, 621:326–339.Alcolea, A., Carrera, J., & Medina, A. (2006a). Inversion of heterogeneous parabolic-type equations using the pilot points method. International Journal for Numerical Methods in Fluids, 51(9-10):963–980.Alcolea, A., Carrera, J., & Medina, A. (2006b). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11):1678–1689Alcolea, A., Carrera, J., & Medina, A. (2008). Regularized pilot points method for reproducing the effect of small scale variability: Application to simulations of contaminant transport. Journal of Hydrology, 355(1-4):76–90.Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56:1–15.Álvarez Mendiola, E. (2010). Diseño de una política eficiente de precios del agua integrando costes de oportunidad del recurso a escala de cuenca. Aplicación a la Directiva Marco europea del Agua. PhD thesis, Universidad Politecnica de Valencia.Amini, M., Johnson, A., Abbaspour, K. C., & Mueller, K. (2009). Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. In International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, pages 4100–4106. Geochmica et Cosmochimica Acta.Andersen, J., Refsgaard, J. C., & Jensen, K. H. (2001). Distributed hydrological modelling of the Senegal River Basin — model construction and validation. Journal of Hydrology, 247(3-4):200–214.Anderton, S., Latron, J., & Gallart, F. (2002). Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16(2):333–353.Arboleda-Obando, P. F. (2018). Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo-superficie e hidrológico MESH. M.Sc. thesis, Universidad Nacional de Colombia ? Sede Bogotá.Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado, L. D. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). In American Geophysical Union, New Orleans.Arenas-Bautista, M. C., Arboleda-Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado, L. D. (2018a). Sensitivity Analysis to uncertain Parameters of TopModel in Tropical Regions with application to the Middle Magdalena Valley (Colombia). In European Geosciences Union, Vienna.Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Saavedra, E., & Donado, L. D. (2018b). Hydrological Modeling in Tropical Regions via TopModel. Study Case: Central Sector of the Middle Magdalena Valley - Colombia. In EGU, editor, EGU, Vienna. PreprintsArenas-Bautista, M. C., Pescador-Arévalo, J. P., Donado, L. D., Guadagnini, A., & Riva, M. (2018c). Three-dimensional geological model applied for groundwater flow simulations in the Middle Magdalena Valley, Colombia. In AGU Fall MeetingAsociacion Colombiana del Petroleo (2008). Historia del Petróleo En Colombia. Technical report, ACIPET.Assaf, H. & Saadeh, M. (2008). Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environmental Modelling and Software, 23(10-11):1327–1337.Ayantobo, O. O., Li, Y., Song, S., & Yao, N. (2017). Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. Journal of Hydrology, 550:549–567.Badjana, H., Fink, M., Helmschrot, J., Diekkrüger, B., Kralisch, S., Afouda, A., & Wala, K. (2017). Hydrological system analysis and modelling of the Kara River basin (West Africa) using a lumped metric conceptual model. Hydrological Sciences Journal, 62(7).Ballinas-González, H., Alcocer-Yamanaka, V., & Pedrozo-Acuña, A. (2016). Uncertainty analysis in data-scarce urban catchments. Water (Switzerland), 8(11).Bao, J., Hou, Z., Ray, J., Huang, M., Swiler, L., & Ren, H. (2018). Soil moisture estimation using tomographic ground penetrating radar in a MCMC–Bayesian framework. Stochastic Environmental Research and Risk Assessment, 32(8):2213–2231.Barthel, R. & Banzhaf, S. (2016). Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1):1–32.Beltrán, A., Lancheros, A., Lopez, C., Chaque, C., Patino, A., Guerra, A., Cabreras, J., Quintero, C., & Molano, S. (2014). Plancha Geologica 149- Puerto Serviez.Benoit, N., Marcotte, D., Boucher, A., D’Or, D., Bajc, A., & Rezaee, H. (2018). Directional hydrostratigraphic units simulation using MCP algorithm. Stochastic Environmental Research and Risk Assessment, 32(5):1435–1455.Betancur, T., Mejia, O., & Palacio, C. (2009). Conceptual hydrogeology model to Bajo Cauca antioqueño: a tropical aquifer system. Revista Facultad de Ingeniería, 48:107–118.Beven, K. & Freer, J. (2001a). A dynamic TOPMODEL. Hydrological Processes, 15(10):1993–2011.Beven, K. & Freer, J. (2001b). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249(1-4):11–29.Blanco-Gutiérrez, I., Varela-Ortega, C., & Purkey, D. R. (2013). Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach. Journal of environmental management, 128:144–60.Booker, J. F., Howitt, R. E., Michelsen, A. M., & Young, R. A. (2012). Economics And The Modeling Of Water Resources And Policies. Natural Resource Modeling, 25(1):168–218.Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., & Hill, M. C. (2017). Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box. Water Resources Research, 53(9):7933–7950.Boskidis, I., Gikas, G. D., Sylaios, G. K., & Tsihrintzis, V. A. (2012). Hydrologic and Water Quality Modeling of Lower Nestos River Basin. Water Resources Management, 26(10):3023–3051Bossa, A., Diekkrüger, B., Giertz, S., Steup, G., Sintondji, L., Agbossou, E., & Hiepe, C. (2012). Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management, 115:20–37.Brouwer, R. & Hofkes, M. (2008). Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecological Economics, 66(1):16–22.Bulot, D., Gumiere, S., Périard, Y., Lafond, J. A., Gallichand, J., ARMALY-ST-GELAIS, M.-H., & Caron, J. (2016). Relationships between soil hydraulic properties, drainage efficiency and cranberry yields. Canadian Journal of Soil Science, pages 2016–0020.Buytaert, W. (2011). topmodel: Implementation of the hydrological model TOPMODEL in R.Buytaert, W. & Beven, K. (2011). Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 25(11):1784–1799.Cai, X. (2008). Implementation of holistic water resources-economic optimization models for river basin management - Reflective experiences. Environmental Modelling and Software, 23(1):2–18.Cánovas, C. R., Macías, F., Olías, M., López, R. P., & Nieto, J. M. (2017). Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain). Journal of Hydrology, 550:590–602.Carniato, L., Schoups, G., Van De Giesen, N., Seuntjens, P., Bastiaens, L., & Sapion, H. (2015). Highly parameterized inversion of groundwater reactive transport for a complex field site. Journal of Contaminant Hydrology, 173:38–58.Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1):206–222.Carrera, J., Hidalgo, J., Slooten, L., & Vázquez-Suñé, E. (2010). Computational and conceptual issues in the calibration of seawater intrusion models | Problèmes conceptuels et de calibration des modèles d’intrusion marines. Hydrogeology Journal, 18(1):131–145.Carrera, J., Mousavi, S., Usunoff, E., Sánchez-Vila, X., & Galarza, G. (1993). A discussion on validation of hydrogeological models. Reliability Engineering and System Safety, 42(2-3):201–216.Carrera, J. & Neuman, S. (1986). Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms. Water Resources Research, 22(2):211–227.Casadevall, S. R. (2016). Improving the management of water multi-functionality through stakeholder involvement in decision-making processes. Utilities Policy, 43:71–81.Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model. Journal of Hydrology, 557:826 – 837.Cherry, J. A., Parker, B. L., Bradbury, K. R., Eaton, T. T., Gotkowitz, M. G., Hart, D. J., & Borchardt, M. A. (2004). Role of Aquitards in the Protection of Aquifers from Contamination: A “State of the Science” Report. AWWA Research Foundation Report, pages 1–144.Choi, J. M. (2018). Factors influencing public officials’ responses to requests for information disclosure. Government Information Quarterly, 35(1):30–42.Christensen, S. & Doherty, J. (2008). Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Advances in Water Resources, 31(4).Cobourn, K. M., Elbakidze, L., & Ghosh, S. (2017). Chapter 3.1.2 - Conjunctive Water Management in Hydraulically Connected Regions in the Western United States. In Ziolkowska, J. R. & Peterson, J. M., editors, Competition for Water Resources, pages 278–297. Elsevier.Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R., Hayward, A., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A., & Taborda, A. (1995). Basin development and tectonic history of the Llanos basin, and Middle Magdalena Valley, Colombia. Petroleum basins of South America. AAPG. Memoir no. 62, 10(10):659–666.Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., Manzano, M., Rodríguez-Hernández, L., Sahuquillo, A., & Del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. The Science of the total environment, 559:302–316.da Silva, M. G., de Aguiar Netto, A. d. O., de Jesus Neves, R. J., do Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. Journal of Environmental Protection, 06(08):837–850.Dai, H., Ye, M., Walker, A., & Chen, X. (2017). A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research, 53(4).Dakhlaoui, H., Ruelland, D., Tramblay, Y., & Bargaoui, Z. (2017). Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia. Journal of Hydrology, 550:201–217.DANE (2016). Metodología General Tercer Censo Nacional Agropecuario. Technical report, Departamento Adminsitrativo Nacional de Estadistica, Bogotá D.C.DANE (2017). Hoja metodológica de indicadores Productividad hídrica. Technical report, Departamento Nacional de Estadísticas, Bogotá D.C.DANE (2019). Boletín Técnico de Índice de Precios. Technical report, Departamento Administrativo Nacional de Estadistica, Bogotá D.C.Davidsen, C., Liu, S., Mo, X., Holm, P. E., Trapp, S., Rosbjerg, D., & Bauer-Gottwein, P. (2015). Hydroeconomic optimization of reservoir management under downstream water quality constraints. Journal of Hydrology, 529:1679–1689.Davis, M. D. (2007). Integrated water resource management and water sharing. Journal of Water Resources Planning And Management-Asce, 133(5):427–445.De O. Torres, M., Howitt, R., & Rodrigues, L. N. (2016). Modeling the economic benefits and distributional impacts of supplemental irrigation. Water Resources and Economics, 14:1–12.de Sousa Fragoso, R. M. & de Almeida Noéme, C. J. (2018). Economic effects of climate change on the Mediterranean’s irrigated agriculture. Sustainability Accounting, Management and Policy Journal, 9(2):118–138.Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based Metrics for Global Sensitivity Analysis of Hydrological Systems. Hydrology and Earth System Sciences Discussions, pages 1–41.Dessu, S. B., Melesse, A. M., Bhat, M. G., Price, R. M., Seid, A. H., Debebe, S. A., & McClain, M. E. (2019). Development and application of a priority rated optimization model (PROM) for multi-sector water resource management systems. Environmental Modelling & Software, 113:84–97.Dewandel, B., Jeanpert, J., Ladouche, B., Join, J. L., & Maréchal, J. C. (2017). Inferring the heterogeneity, transmissivity and hydraulic conductivity of crystalline aquifers from a detailed water-table map. Journal of Hydrology, 550:118–129.Dewandel, B., Maréchal, J., Bour, O., Ladouche, B., Ahmed, S., Chandra, S., & Pauwels, H. (2012). Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. Journal of Hydrology, 416-417:83–97.Doherty, J. (2003). Ground water model calibration using pilot points and regularization. Ground Water, 41(2):170–177.Doherty, J. (2004). PEST Model-Independent Parameter Estimation. Watermark Numerical Computing, Idaho, 5th edition.Donado, L. D., Arenas-Bautista, M. C., Pescador-Arévalo, J. P., Guadagnini, A., & Riva, M. (2018). Hydrogeological Characterization in Tropical Regions with lack of information subject to competing uses of groundwater. In AGU Fall Meeting, Washington.Du, M., Zavattero, E., Ma, Q., Gourbesville, P., & Delestre, O. (2018). Groundwater Modeling for a Decision Support System: The Lower Var Valley, Southeastern France. In Advances in Hydroinformatics, pages 273–283. Springer NatureDunne, T. (1983). Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology, 65(1):25–48.Ehtiat, M., Mousavi, S., & Ghaheri, A. (2015). Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA, 64(6):670–687.Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic value of climate change adaptation strategies for water management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5).Fabre, J., Ruelland, D., Dezetter, A., & Grouillet, B. (2016). Sustainability of water uses in managed hydrosystems: Human- and climate-induced changes for the mid-21st century. Hydrology and Earth System Sciences, 20(8):3129–3147.Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., & Guadagnini, A. (2011). Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media. Water Resources Research, 47(2):1–14.Ferreira, D. M., Fernandes, C. V. S., Kaviski, E., & Fontane, D. (2019). Water quality modelling under unsteady state analysis: Strategies for planning and management. Journal of Environmental Management, 239:150–158.Fu, Z. H., Zhao, H. J., Wang, H., Lu, W. T., Wang, J., & Guo, H. C. (2017). Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China. Journal of Hydrology, 554:623–634.Gaganis, P. & Smith, L. (2006). Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: A per-datum approach to model calibration. Advances in Water Resources, 29(4):503–514.García-González, M. L., Carvajal-Escobar, Y., & Jiménez-Escobar, H. (2007). Integrated water resource management as a strategy for adaptation to climate change. Ingeniería y Competitividad, 29(1):19–29.Garrido-Rodríguez, J. C., López-Hernández, A. M., & Zafra-Gómez, J. L. (2019). The impact of explanatory factors on a bidimensional model of transparency in Spanish local government. Government Information Quarterly, 36(1):154–165.Garrote, L. (2017). Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context. Water Resources Management, 31(10):2951–2963.George, B., Malano, H., Davidson, B., Hellegers, P., Bharati, L., & Massuel, S. (2011). An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development. Agricultural Water Management, 98(5):733–746.Gil Morales, E. G. & Tobón Marín, C. (2016). Hydrological modelling with TOPMODEL of Chingaza páramo, Colombia. Revista Facultad Nacional de Agronomía, 69(2).Gómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., & Kelley, S. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Bulletin of the Geological Society of America, 117(5-6):547–569.Gómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., Kelley, S., & Heizler, M. (2003). Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Bulletin of the Geological Society of America, 115(2):131–147.Gonzalez, M., Sladarriaga, G., & Jaramillo, O. (2010). Estimación de la demanda del agua: Conceptaulización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional del Agua, pages 169–228.González-Zeas, D., Erazo, B., Lloret, P., De Bièvre, B., Steinschneider, S., & Dangles, O. (2019). Linking global climate change to local water availability: Limitations and prospects for a tropical mountain watershed. Science of the Total Environment, 650:2577–2586.Groves, D. G., Yates, D., & Tebaldi, C. (2008). Developing and applying uncertain global climate change projections for regional water management planning. Water Resources Research, 44(12):n/a–n/a.Gunawardena, A., White, B., Hailu, A., Wijeratne, E., & Pandit, R. (2018). Policy choice and riverine water quality in developing countries: An integrated hydro-economic modelling approach. Journal of Environmental Management, 227:44–54.Gupta, H. V. & Razavi, S. (2018). Revisiting the Basis of Sensitivity Analysis for Dynamical Earth System Models. Water Resources Research, 54(11):8692–8717.H. Hargreaves, G. & A. Samani, Z. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2):96–99.Hanemann, W. M. (2006). The economic conception of water. In Water Crisis: Myth or Reality, number 1, chapter 4, pages 60–91. University of California, Berkeley.Hargreaves, G. & Samani, Z. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(IR3):225–230Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4):627–643.Hashimoto, T., Loucks, D. P., & Stedinger, J. R. (1982). Reliability , Resiliency , Robustness , and Vulnerability Criteria for Water Resource Systems. Water Resources Research, 18(1):14–20.He, L., Huang, G., Lu, H., Wang, S., & Xu, Y. (2012). Quasi-Monte Carlo based global uncertainty and sensitivity analysis in modeling free product migration and recovery from petroleum-contaminated aquifers. Journal of hazardous materials, 219-220:133–40.Hernandez, A., Neuman, S., Guadagnini, A., & Carrera, J. (2003). Conditioning mean study state flow on hydraulic head and conductivity through geostatistical inversion. Stochastic Environmental Research and Risk Assessment, 17(5):329–338.Hernández-Bedolla, J., Solera, A., Paredes-Arquiola, J., Pedro-Monzonís, M., Andreu, J., & Sánchez-Quispe, S. T. (2017). The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management. Water (Switzerland), 9(3).Hollanda, M., Cecílio, R., Campanharo, W., Zanetti, S., de Andrade, L., & Garcia, G. (2015). Evaluation of TOPMODEL for prediction of the runoff of a watershed under different land uses | Avaliação do TOPMODEL na estimativa do escoamento superficial em microbacia hidrográfica em diferentes usos. Revista Brasileira de Engenharia Agricola e Ambiental, 19(5).Hou, T., Zhu, Y., Lü, H., Sudicky, E., Yu, Z., & Ouyang, F. (2015). Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China. Stochastic Environmental Research and Risk Assessment, 29(5).Ibarra-Zavaleta, S., Landgrave, R., Romero-López, R., Poulin, A., & Arango-Miranda, R. (2017). Distributed hydrological modeling: Determination of theoretical hydraulic potential & streamflow simulation of extreme hydrometeorological events. Water (Switzerland), 9(8).Ideam (2014). Estudio Nacional del Agua 2014. Technical report, Instituto de Hidrología, Meteorología y Estudios AmbientalesIDEAM (2019). Estudio Nacional del Agua 2018. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, Bogotá D.C.Islam, M., Firoz, A., Foglia, L., Marandi, A., Khan, A., Schüth, C., & Ribbe, L. (2017). A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh | Modèle régional d’écoulement des eaux souterraines pour une gestion durable des ressources en eaux souterraines dans la mé. Hydrogeology Journal, 25(3):617–637.Jafarpour, B. (2013). Sparsity-promoting solution of subsurface flow model calibration inverse problems. Advances in Hydrogeology, 9781461464:73–94.Janetti, E., Riva, M., Straface, S., & Guadagnini, A. (2010). Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 381(1-2):42–51.Jeziorska, J. & Niedzielski, T. (2015). Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka River basin (SW Poland). Acta Geophysica, 66(2):203–222.Jia, Z., Cai, Y., Chen, Y., & Zeng, W. (2018). Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resources, Conservation and Recycling, 134:282–293.Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., & Jensen, K. H. (2016). Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology, 535:301–317.Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software, 75:68–76.Kellner, J., Multsch, S., Kraft, P., Houska, T., Mueller, C., & Breuer, L. (2015). Uncertainty Analysis of a Coupled Hydrological-plant Growth Model for Grassland under Elevated CO2. Procedia Environmental Sciences, 29:79–80.Khaninezhad, M., Jafarpour, B., & Li, L. (2012). Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty. Advances in Water Resources, 39:122–136.Khaninezhad, M.-R., Golmohammadi, A., & Jafarpour, B. (2018). Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data. Water Resources Research, 54(4):2523–2543.Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., & Bauwens, W. (2017). Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environmental Modelling and Software, 91.Kirshen, P., Aytur, S., Hecht, J.,Walker, A., Burdick, D., Jones, S., Fennessey, N., Bourdeau, R., & Mather, L. (2018). Integrated urban water management applied to adaptation to climate change. Urban Climate, 24:247–263.Klaas, D. K. S. Y., Imteaz, M. A., Sudiayem, I., Klaas, E. M. E., & Klaas, E. C. M. (2017). Novel approaches in sub-surface parameterisation to calibrate groundwater models. IOP Conference Series: Earth and Environmental Science, 82(1):012014Kpegli, K. A. R., Alassane, A., van der Zee, S. E., Boukari, M., & Mama, D. (2018). Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18:50 – 67.Li, H. & Zhang, Y. (2017). Regionalising rainfall-runoff modelling for predicting daily runoff: Comparing gridded spatial proximity and gridded integrated similarity approaches against their lumped counterparts. Journal of Hydrology, 550:279–293.Lionboui, H., Benabdelouahab, T., Elame, F., Hasib, A., & Boulli, A. (2018). Estimating the economic impact of climate change on agricultural water management indicators. Pertanika Journal of Science and Technology, 26(2):749–762.Liu, J., Zhu, A.-X., Qin, C.-Z.,Wu, H., & Jiang, J. (2016). A two-level parallelization method for distributed hydrological models. Environmental Modelling & Software, 80:175–184.Llopis-Albert, C., Merigó, J., & Xu, Y. (2016). A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. Journal of Hydrology, 540:774–783.López, S. T., de los Angeles Barrionuevo, M., & Rodríguez-Labajos, B. (2019). Water accounts in decision-making processes of urban water management: Benefits, limitations and implications in a real implementation. Sustainable Cities and Society, 50:101676.Lopez-Nicolas, A., Pulido-Velazquez, M., Rougé, C., Harou, J. J., & Escriva-Bou, A. (2018). Design and assessment of an efficient and equitable dynamic urban water tariff. Application to the city of Valencia, Spain. Environmental Modelling & Software, 101:137–145.Malagón-Navarro, J. P. (2017). Análisis hidrogeoquímico-multivariado del agua subterránea del sistema acuífero del Valle Medio del Magdalena Colombia. M.Sc thesis, Universidad Nacional de Colombia - Sede Bogotá.Maliva, R. G. (2014). Economics of managed aquifer recharge. Water (Switzerland), 6(5):1257–1279.Martin-Carrasco, F. & Garrote, L. (2006). Drought-Induced Water Scarcity in Water Resources Systems. In NATO Science Series, editor, Extreme Hydrological Events: New Concepts for Security, pages 301–311. Springer Netherlands, Dordrecht, 78 edition.Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., & Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Resources, 83:323–339.Medina, A., Galarza, G., Carrera, J., Jódar, J., & Alcolea, A. (2001). The inverse problem in hydrogeology: Applications | El problema inverso en hidrología subterránea. Aplicaciones. Boletin Geologico y Minero, 112(SPECIAL ED):93–106.Merritt, W., Croke, B., & Jakeman, A. (2005). Sensitivity testing of a model for exploring water resources utilisation and management options. Environmental Modelling & Software, 20(8):1013–1030.Metcalfe, P., Beven, K., & Freer, J. (2015). Dynamic TOPMODEL: A new implementation in R and its sensitivity to time and space steps. Environmental Modelling & Software, 72:155–172.Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2017). A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29 km2 scale catchment in the United Kingdom. Hydrological Processes, 31(9):1734–1748.Meyer, R., Engesgaard, P., Høyer, A.-S., Jørgensen, F., Vignoli, G., & Sonnenborg, T. O. (2018). Regional flow in a complex coastal aquifer system: Combining voxel geological modelling with regularized calibration. Journal of Hydrology, 562:544 – 563.Mohtar, W. H. M. W., Maulud, K. N. A., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient based river assessment for water resources management. Environmental Pollution, 248:133–144.Moreno, N., Silva, A., Mora, A., Tesón, E., Quintero, I., Rojas, L. E., Lopez, C., Blanco, V., Castellanos, J., Sanchez, J., Osorio, L., Namson, J., Stockli, D., & Casallas, W. (2013). Interaction between thin- and thick-skinned tectonics in the foothill areas of an inverted graben. The Middle Magdalena Foothill belt. Geological Society, London, Special Publications, 377(1):221–255.Mukherjee, S., Mukherjee, S., Garg, R., Bhardwaj, A., & Raju, P. (2013). Evaluation of topographic index in relation to terrain roughness and DEM grid spacing. Journal of Earth System Science, 122(3).Mukundan, R., Acharya, N., Gelda, R. K., Frei, A., & Owens, E. M. (2019). Modeling streamflow sensitivity to climate change in New York City water supply streams using a stochastic weather generator. Journal of Hydrology: Regional Studies, 21:147–158.Navarro-Chaparro, K., Rivera, P., & Sánchez, R. (2015). Water management analysis of the city of Tijuana , Baja California : Critical factors and challenges Análisis del manejo de agua en la ciudad de Tijuana , Baja California : Factores críticos y retos. Estudios Fronterizos Nueva Época, 17(33):1–20.Neverre, N. & Dumas, P. (2015). Projecting and valuing domestic water use at regional scale: A generic method applied to the Mediterranean at the 2060 horizon. Water Resources and Economics, 11:33–46.Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., & Lettenmaier, D. P. (2004). Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin. Climatic Change, 62(1-3):233–256.Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., & Paredes-Arquiola, J. (2015). Key issues for determining the exploitable water resources in a Mediterranean river basin. Science of The Total Environment, 503-504:319–328.Peña-Haro, S., Pulido-Velazquez, M., & Llopis-Albert, C. (2011). Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environmental Modelling and Software, 26(8):999–1008.Peña-Haro, S., Pulido-Velazquez, M., & Sahuquillo, A. (2009). A hydro-economic modeling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology, 373(1-2):193–203.Pérez-Blanco, C. D. & Gutiérrez-Martín, C. (2017). Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback. Agricultural Water Management, 190:6–20.Pérez-Sánchez, J. & Senent-Aparicio, J. (2015). Integrated water resources management on a local scale: a challenge for the user community—a case study in Southern Spain. Environmental Earth Sciences, 74(7):6097–6109.Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79:214–232.Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. Journal of Hydrology, 531:214–229.Pulido-Velazquez, D., Collados-Lara, A.-J., & Alcalá, F. J. (2018). Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. Journal of Hydrology, 567:803–819.Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F.-J. J., & Iglesias, A. (2011). A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. Journal of Hydrology, 405(1-2):110–122.Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1):51–65.Räsänen, A., Juhola, S., Monge Monge, A., Käkönen, M., Kanninen, M., & Nygren, A. (2017). Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas. Journal of Hydrology, 550:704–715.Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1-4):69–97.Riva, M., Guadagnini, A., De Gaspari, F., & Alcolea, A. (2010). Exact sensitivity matrix and influence of the number of pilot points in the geostatistical inversion of moment equations of groundwater flow. Water Resources Research, 46(11).Riva, M., Guadagnini, A., Neuman, S., Janetti, E., & Malama, B. (2009). Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Advances in Water Resources, 32(10):1495–1507.Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P. (2011). Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resources Research, 47(7).Ruelland, D., Ardoin-Bardin, S., Billen, G., & Servat, E. (2008). Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin in West Africa. Journal of Hydrology, 361(1-2):96–117Sahoo, S. & Jha, M. (2017). Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India | Modélisation numérique des écoulements d’eau souterraine pour évaluer les . Hydrogeology Journal, 25(8):2489–2511.Sarmiento-Rojas, L. F. (2011). Middle Magdalena Basin-Vol. 11 Petroleum Geology of Colombia. Technical report, Agencia Nacional de Hidrocarburos, Bogotá D.C.Schwabe, K., Knapp, K., & Luviano, I. (2017). Chapter 2.1.2 - The Water–Energy Nexus and Irrigated Agriculture in the United States: Trends and Analyses. In Ziolkowska, J. R. & Peterson, J. M., editors, Competition for Water Resources, pages 80–104. Elsevier.Servicios Integrales Hidrogeológicos, S. (2015). Elaborar la Caracterización Hidrológica e Hidrogeológica de las Áreas de Interés de las Zonas Hidrográficas del Meta y Magdalena Medio en el Marco del Estudio Nacional del Agua en el Marco del Estudio Nacional del Agua. Technical report, IDEAM, BogotaSingh, A., Walker, D., Minsker, B., & Valocchi, A. (2008). Interactive multi-objective inverse groundwater modelling - Incorporating subjective knowledge and conceptual uncertainty. In World Environmental and Water Resources Congress 2008: Ahupua’a - Proceedings of the World Environmental and Water Resources Congress 2008, volume 316.Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3):271–280.Sobol, I. M. (1993). Sensitivity analysis for nonlinear mathematical models. Math. Model. Computer.Exp, 1(4):407–414.Sun, D., Zhao, C., Wei, H., & Peng, D. (2011). Simulation of the relationship between land use and groundwater level in Tailan River basin, Xinjiang, China. Quaternary International, 244(2):254–263.Teng, J., Jakeman, A., Vaze, J., Croke, B., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90.Tiedeman, C. & Green, C. (2013). Effect of correlated observation error on parameters, predictions, and uncertainty. Water Resources Research, 49(10):6339–6355.Tortajada, C., González-Gómez, F., Biswas, A. K., & Buurman, J. (2019). Water demand management strategies for water-scarce cities: The case of Spain. Sustainable Cities and Society, 45:649–656.Tóth, A., Havril, T., Simon, S., Galsa, A., Monteiro-Santos, F. A., Muller, I., & Mádl-Szonyi, J. (2016). Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. Journal of Hydrology, 539:330–344.Tzabiras, J., Vasiliades, L., Sidiropoulos, P., Loukas, A., & Mylopoulos, N. (2016). Evaluation of Water Resources Management Strategies to Overturn Climate Change Impacts on Lake Karla Watershed. Water Resources Management, 30(15):5819–5844.Usman, M., Reimann, T., Liedl, R., Abbas, A., Conrad, C., & Saleem, S. (2018). Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: Test and application of different approaches. ISPRS International Journal of Geo-Information, 7(1).Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J. B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A., & Helwig, B. (2014). Water governance in Chile: Availability, management and climate change. Journal of Hydrology, 519(APRIL):2538–2567.Velázquez, M. A. P., Álvarez, J. A., & Herraiz, A. S. (2003). Optimización económica de la gestión del uso conjunto de aguas superficiales y subterráneas en un sistema de recursos hídricos: contribución al análisis económico propuesto en la Directiva Marco Europea del Agua. PhD thesis, Universidad Politecnica de Valencia.Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., & Schneider, K. (2012). Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464-465:388–400.Wang, X., Jardani, A., & Jourde, H. (2017a). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrology, 551:29 – 46.Wang, X.-S., Wan, L., Jiang, X.-W., Li, H., Zhou, Y., Wang, J., & Ji, X. (2017b). Identifying three-dimensional nested groundwater flow systems in a Tóthian basin. Advances in Water Resources, 108:139 – 156.White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109:191–201.Woodrow, K., Lindsay, J. B., & Berg, A. A. (2016). Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of Hydrology, 540:1022–1029.Xie, S., Hu, Y., Jiang, M., & Liu, Q. (2006). Study on the inverse method to permeability coefficient of groundwater system: A case study of uranium gangue site in Southern China. In 5th International Conference on Environmental Informatics, ISEIS 2006.Xue, L., Yang, F., Yang, C., Wei, G., Li, W., & He, X. (2018). Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China. Scientific Reports, 8(1):1–12.Yasari, E., Pishvaie, M. R., Khorasheh, F., Salahshoor, K., & Kharrat, R. (2013). Application of multi-criterion robust optimization in water-flooding of oil reservoir. Journal of Petroleum Science and Engineering, 109:1–11.Yeh, W.-G. (2015). Review: Optimization methods for groundwater modeling and management | Revue: Méthodes d’optimisation pour la modélisation et la gestion des eaux souterraines | Revisão: Métodos de otimização para modelagem e gerenciamento de águas subterrâneas | Revisión. Hydrogeology Journal, 23(6):1051–1065Yi, L., Zhang, W.-C., & Yan, C.-A. (2017). A modified topographic index that incorporates the hydraulic and physical properties of soil. Hydrology Research, 48(2):370–383.Yoon, H. & McKenna, S. (2012). Highly parameterized inverse estimation of hydraulic conductivity and porosity in a three-dimensional, heterogeneous transport experiment. Water Resources Research, 48(10).Zhang, J., Fan, S.-k., Yang, J.-c., Du, X.-m., Li, F.-s., & Hou, H. (2014). Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set. The Science of the total environment, 476-477:258–65.Zhang, X., Sun, A. Y., & Duncan, I. J. (2016). Shale gas wastewater management under uncertainty. Journal of Environmental Management, 165:188–198.Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63.ORIGINAL53139151.2020.pdf53139151.2020.pdfapplication/pdf24482664https://repositorio.unal.edu.co/bitstream/unal/77944/1/53139151.2020.pdfef92e3a0075f65f14c56bd0ad7f23e25MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/77944/2/license.txte2f63a891b6ceb28c3078128251851bfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77944/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL53139151.2020.pdf.jpg53139151.2020.pdf.jpgGenerated Thumbnailimage/jpeg4402https://repositorio.unal.edu.co/bitstream/unal/77944/4/53139151.2020.pdf.jpgc5dc23be9c0b179af6c123041abe1609MD54unal/77944oai:repositorio.unal.edu.co:unal/779442023-07-21 23:03:22.156Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==