Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas

ilustraciones, diagramas, fotografías

Autores:
Darwich Cedeño, Mohamed Toufic
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86613
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86613
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::579 - Historia natural microorganismos, hongos, algas
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Microbial metabolites
Demanda bioquímica de oxígeno
Biochemical oxygen demand
Cianobacterias
Anticarcinógenos
Cyanobacteria
Anticarcinogenic Agents
Microbiología de aguas residuales
Sewage - microbiology
Biotecnología
Cianobacterias
Metabolitos primarios
Depuración de aguas
Anticancerígenos
MG063
Promotores de crecimiento
HCT116
Biotechnology
Cyanobacteria
Wastewater treatment
Anticancer
Growth promoters
Synechococcales
Oscillatoriales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4b495c2743ff6944af36e940d39047a2
oai_identifier_str oai:repositorio.unal.edu.co:unal/86613
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
dc.title.translated.eng.fl_str_mv Biotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria)
title Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
spellingShingle Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
570 - Biología::579 - Historia natural microorganismos, hongos, algas
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Microbial metabolites
Demanda bioquímica de oxígeno
Biochemical oxygen demand
Cianobacterias
Anticarcinógenos
Cyanobacteria
Anticarcinogenic Agents
Microbiología de aguas residuales
Sewage - microbiology
Biotecnología
Cianobacterias
Metabolitos primarios
Depuración de aguas
Anticancerígenos
MG063
Promotores de crecimiento
HCT116
Biotechnology
Cyanobacteria
Wastewater treatment
Anticancer
Growth promoters
Synechococcales
Oscillatoriales
title_short Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
title_full Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
title_fullStr Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
title_full_unstemmed Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
title_sort Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
dc.creator.fl_str_mv Darwich Cedeño, Mohamed Toufic
dc.contributor.advisor.none.fl_str_mv Montenegro Ruiz, Luis Carlos
dc.contributor.author.none.fl_str_mv Darwich Cedeño, Mohamed Toufic
dc.contributor.researchgroup.spa.fl_str_mv Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos
dc.contributor.orcid.spa.fl_str_mv Darwich Cedeño, Mohamed Toufic [000900060989433X]
dc.contributor.cvlac.spa.fl_str_mv Darwich Cedeño, Mohamed Toufic [0000024464]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::579 - Historia natural microorganismos, hongos, algas
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
570 - Biología::572 - Bioquímica
topic 570 - Biología::579 - Historia natural microorganismos, hongos, algas
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Microbial metabolites
Demanda bioquímica de oxígeno
Biochemical oxygen demand
Cianobacterias
Anticarcinógenos
Cyanobacteria
Anticarcinogenic Agents
Microbiología de aguas residuales
Sewage - microbiology
Biotecnología
Cianobacterias
Metabolitos primarios
Depuración de aguas
Anticancerígenos
MG063
Promotores de crecimiento
HCT116
Biotechnology
Cyanobacteria
Wastewater treatment
Anticancer
Growth promoters
Synechococcales
Oscillatoriales
dc.subject.other.spa.fl_str_mv Metabolitos microbianos
dc.subject.other.eng.fl_str_mv Microbial metabolites
dc.subject.agrovoc.spa.fl_str_mv Demanda bioquímica de oxígeno
dc.subject.agrovoc.eng.fl_str_mv Biochemical oxygen demand
dc.subject.decs.spa.fl_str_mv Cianobacterias
Anticarcinógenos
dc.subject.decs.eng.fl_str_mv Cyanobacteria
Anticarcinogenic Agents
dc.subject.lemb.spa.fl_str_mv Microbiología de aguas residuales
dc.subject.lemb.eng.fl_str_mv Sewage - microbiology
dc.subject.proposal.spa.fl_str_mv Biotecnología
Cianobacterias
Metabolitos primarios
Depuración de aguas
Anticancerígenos
MG063
Promotores de crecimiento
dc.subject.proposal.zho.fl_str_mv HCT116
dc.subject.proposal.eng.fl_str_mv Biotechnology
Cyanobacteria
Wastewater treatment
Anticancer
Growth promoters
dc.subject.wikidata.eng.fl_str_mv Synechococcales
Oscillatoriales
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-07-24T20:54:48Z
dc.date.available.none.fl_str_mv 2024-07-24T20:54:48Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86613
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86613
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.x
Adesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25.
Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587
Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-market
Allied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-application
Arencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008.
Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.
Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/
Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324
Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/
Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004
Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321
Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009
Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016
Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030
Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.
Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385
Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167
De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685
del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales.
Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320
El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w
Figueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109
Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615
Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.
Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1
Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436
González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852
Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004
Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137
Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924
Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575
Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526
Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811
İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007
Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2
Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703
Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604
Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505
Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020
Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073
Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074
Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584
Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7
Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-w
Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).
Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.
Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391
Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16
Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505
Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugs
Millán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2
Minciencias, 2016, Colombia BIO, Bogota, Colombia
Ministerio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad
Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com
Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476
Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002
Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6.
Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717
Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959
Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0
Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010
Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543
Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1
Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5
Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia.
Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.
Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061a
Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.
Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814
Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria.
Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956
Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012
Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590
Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283
Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012
Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519G
Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57.
Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498
Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003
Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414
Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369
Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002
Anagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4.
Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026
Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009
Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006
Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003
Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.
Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385
Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano.
Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108
Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.
De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-y
Duval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv.
Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.
Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5
Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054
Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005
Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221
Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693
Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997
Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135.
Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II.
Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.
Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706
Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104
Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected.
Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0
Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).
Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357
Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170
Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419
Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003
Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810
Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077
Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3
Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.
Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9
Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0
Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3
González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852
Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137
Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924
Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024
İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007
Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737
Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505
Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6
Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5
Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945
Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1.
María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027
Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617
Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122
Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935
Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233
Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1
Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834
Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578
Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702
Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626
Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production.
Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93.
Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598
Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587
Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814
Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806
de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.x
de Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.
El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w
Giraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdf
Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1
Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828
Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-x
Imase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.x
Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037
Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144
Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584
Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).
Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.
Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-y
Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com
Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168
Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946
Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0
Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3
Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074
Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374
Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.
Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005
Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164
Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590
Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdf
Takáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107.
Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006
Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840
Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004
Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082
Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).
Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.
Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/
Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324
Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.
Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015
Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098
Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633
Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046
Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683
Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139
Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428
Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933.
Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461
Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1
Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1
Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.
Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/
Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814
Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888
Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224
Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159
Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024
Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357
Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 125 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86613/2/1144054446.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86613/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86613/4/1144054446.2023.pdf.jpg
bitstream.checksum.fl_str_mv fa14c60366fca4bf244967c8d9b821d9
eb34b1cf90b7e1103fc9dfd26be24b4a
81b4deb01a91197c33caa08ced10435e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089762734080000
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montenegro Ruiz, Luis Carlos991f9b712cfdf53aecb21221300a7365Darwich Cedeño, Mohamed Toufic82c1a7653b4be18356c8eb12d1886191600Fisiología del Estrés y Biodiversidad en Plantas y MicroorganismosDarwich Cedeño, Mohamed Toufic [000900060989433X]Darwich Cedeño, Mohamed Toufic [0000024464]2024-07-24T20:54:48Z2024-07-24T20:54:48Z2023https://repositorio.unal.edu.co/handle/unal/86613Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLas cianobacterias son de los organismos más antiguos del planeta, por tanto, han soportado múltiples presiones ambientales y biológicas que han impulsado a la aparición de moléculas que han garantizado su supervivencia. Partiendo de lo anterior, se buscó realizar una caracterización biotecnológica de las cianobacterias de la Colección de Algas y Cianobacterias LAUN, de la Universidad Nacional de Colombia. Se identificaron las cepas mediante análisis moleculares encontrando 7 posibles géneros nuevos. Se analizó la producción de metabolitos primarios, teniendo que la cepa LAUN 81 (Synechoccocales Cyanobacteria) presenta la mayor concentración de proteína (19.04% de proteína soluble), la cepa LAUN 34 (Pleurocapsa sp.) presenta la mayor concentración de carbohidratos (11.73% de carbohidratos solubles) y la cepa LAUN 74 (Synechoccocales Cyanobacteria) presenta la mayor concentración de lípidos (40.5% de lípidos del peso total de biomasa). Por otra parte, la cepa LAUN 71 (Leptolyngbya sp.) presentó los mejores porcentajes de remoción de contaminantes en agua residual sintética, 77.5% de nitratos y 98% de fosfatos, alcanzó un 85.40% de disminución de la DQO y 94.5% de la DBO5. Finalmente, se realizó el fraccionamiento por HPLC de extractos metanólicos de los géneros representativos de las cepas LAUN y se probaron las fracciones contra células cancerígenas de cáncer colorectal (HCT116) y osteosarcoma (MG063), teniendo que la fracción “D” de LAUN33 (Baaleninema sp.) y la fracción “A” de LAUN 74 la mayor toxicidad con rendimientos de 33.18% y 34.32% de supervivencia celular respectivamente, contra la línea HCT116 y las fracciones E y F de la cepa LAUN33, la fracción H de LAUN 55 (Synechoccocales Cyanobacteria) y la fracción F de LAUN74 presentaron la mayor toxicidad con rendimientos de 39.28%, 38.94%, 38.28% y 38.42% de supervivencia celular respectivamente, contra la línea MG063 (Texto tomado de la fuente).Cyanobacteria are among the oldest organisms on the planet; therefore, they have endured multiple environmental and biological pressures that have led to the appearance of molecules that guarantee their survival. Based on this, we sought to carry out a biotechnological characterization of the cyanobacteria from the LAUN Algae and Cyanobacteria Collection of the National University of Colombia. The strains were identified through molecular analysis, which revealed 7 possible new genera. The production of primary metabolites was analyzed, and it was found that the strain LAUN 81 (Synechoccocales Cyanobacteria) presents the highest concentration of protein (19.04% of soluble protein), the strain LAUN 34 (Pleurocapsa sp.) presents the highest concentration of carbohydrates (11.73% of soluble carbohydrates), and the strain LAUN 74 (Synechoccocales Cyanobacteria) presents the highest concentration of lipids (40.5% lipids of the total weight of biomass). On the other hand, the strain LAUN 71 (Leptolyngbya sp.) demonstrated the best percentages of pollutant removal in synthetic wastewater, with 77.5% nitrate and 98% phosphate removal, reaching an 85.40% reduction in COD (Chemical Oxygen Demand) and 94.5% reduction of the BOD5 (Biochemical Oxygen Demand). Finally, HPLC fractionation of methanolic extracts of the representative genera of the LAUN strains was carried out. The fractions were then tested against colorectal cancer cells (HCT116) and osteosarcoma cells (MG063). Fraction "D" of LAUN33 (Baaleninema sp.) and fraction "A" of LAUN 74 showed the highest toxicity with cell survival yields of 33.18% and 34.32%, respectively, against the HCT116 line. On the other hand, fractions E and F of strain LAUN33, fraction H of LAUN 55 (Synechoccocales Cyanobacteria), and fraction F of LAUN 74 presented the highest toxicity with cell survival yields of 39.28%, 38.94%, 38.28%, and 38.42%, respectively, against the MG063 line.DoctoradoDoctor en Ciencias - BiologíaBiotecnologíaxvii, 125 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::579 - Historia natural microorganismos, hongos, algas620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria570 - Biología::572 - BioquímicaMetabolitos microbianosMicrobial metabolitesDemanda bioquímica de oxígenoBiochemical oxygen demandCianobacteriasAnticarcinógenosCyanobacteriaAnticarcinogenic AgentsMicrobiología de aguas residualesSewage - microbiologyBiotecnologíaCianobacteriasMetabolitos primariosDepuración de aguasAnticancerígenosMG063Promotores de crecimientoHCT116BiotechnologyCyanobacteriaWastewater treatmentAnticancerGrowth promotersSynechococcalesOscillatorialesPotencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianasBiotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAbed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.xAdesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25.Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-marketAllied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-applicationArencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008.Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales.Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wFigueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-wLarsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugsMillán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2Minciencias, 2016, Colombia BIO, Bogota, ColombiaMinisterio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidadMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comMondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6.Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia.Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061aRengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria.Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519GThajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57.Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002Anagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4.Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano.Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-yDuval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv.Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135.Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II.Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected.Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1.María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production.Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93.Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.xde Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wGiraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdfGithinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-xImase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.xJebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-yMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comMohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdfTakáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107.Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933.Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1144054446.2023.pdf1144054446.2023.pdfTesis de Doctorado en Ciencias-Biologíaapplication/pdf1542715https://repositorio.unal.edu.co/bitstream/unal/86613/2/1144054446.2023.pdffa14c60366fca4bf244967c8d9b821d9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86613/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1144054446.2023.pdf.jpg1144054446.2023.pdf.jpgGenerated Thumbnailimage/jpeg5445https://repositorio.unal.edu.co/bitstream/unal/86613/4/1144054446.2023.pdf.jpg81b4deb01a91197c33caa08ced10435eMD54unal/86613oai:repositorio.unal.edu.co:unal/866132024-07-24 23:25:51.969Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=