Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
ilustraciones, diagramas, fotografías
- Autores:
-
Darwich Cedeño, Mohamed Toufic
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86613
- Palabra clave:
- 570 - Biología::579 - Historia natural microorganismos, hongos, algas
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
570 - Biología::572 - Bioquímica
Metabolitos microbianos
Microbial metabolites
Demanda bioquímica de oxígeno
Biochemical oxygen demand
Cianobacterias
Anticarcinógenos
Cyanobacteria
Anticarcinogenic Agents
Microbiología de aguas residuales
Sewage - microbiology
Biotecnología
Cianobacterias
Metabolitos primarios
Depuración de aguas
Anticancerígenos
MG063
Promotores de crecimiento
HCT116
Biotechnology
Cyanobacteria
Wastewater treatment
Anticancer
Growth promoters
Synechococcales
Oscillatoriales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4b495c2743ff6944af36e940d39047a2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86613 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
dc.title.translated.eng.fl_str_mv |
Biotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria) |
title |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
spellingShingle |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas 570 - Biología::579 - Historia natural microorganismos, hongos, algas 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria 570 - Biología::572 - Bioquímica Metabolitos microbianos Microbial metabolites Demanda bioquímica de oxígeno Biochemical oxygen demand Cianobacterias Anticarcinógenos Cyanobacteria Anticarcinogenic Agents Microbiología de aguas residuales Sewage - microbiology Biotecnología Cianobacterias Metabolitos primarios Depuración de aguas Anticancerígenos MG063 Promotores de crecimiento HCT116 Biotechnology Cyanobacteria Wastewater treatment Anticancer Growth promoters Synechococcales Oscillatoriales |
title_short |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
title_full |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
title_fullStr |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
title_full_unstemmed |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
title_sort |
Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas |
dc.creator.fl_str_mv |
Darwich Cedeño, Mohamed Toufic |
dc.contributor.advisor.none.fl_str_mv |
Montenegro Ruiz, Luis Carlos |
dc.contributor.author.none.fl_str_mv |
Darwich Cedeño, Mohamed Toufic |
dc.contributor.researchgroup.spa.fl_str_mv |
Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos |
dc.contributor.orcid.spa.fl_str_mv |
Darwich Cedeño, Mohamed Toufic [000900060989433X] |
dc.contributor.cvlac.spa.fl_str_mv |
Darwich Cedeño, Mohamed Toufic [0000024464] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::579 - Historia natural microorganismos, hongos, algas 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria 570 - Biología::572 - Bioquímica |
topic |
570 - Biología::579 - Historia natural microorganismos, hongos, algas 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria 570 - Biología::572 - Bioquímica Metabolitos microbianos Microbial metabolites Demanda bioquímica de oxígeno Biochemical oxygen demand Cianobacterias Anticarcinógenos Cyanobacteria Anticarcinogenic Agents Microbiología de aguas residuales Sewage - microbiology Biotecnología Cianobacterias Metabolitos primarios Depuración de aguas Anticancerígenos MG063 Promotores de crecimiento HCT116 Biotechnology Cyanobacteria Wastewater treatment Anticancer Growth promoters Synechococcales Oscillatoriales |
dc.subject.other.spa.fl_str_mv |
Metabolitos microbianos |
dc.subject.other.eng.fl_str_mv |
Microbial metabolites |
dc.subject.agrovoc.spa.fl_str_mv |
Demanda bioquímica de oxígeno |
dc.subject.agrovoc.eng.fl_str_mv |
Biochemical oxygen demand |
dc.subject.decs.spa.fl_str_mv |
Cianobacterias Anticarcinógenos |
dc.subject.decs.eng.fl_str_mv |
Cyanobacteria Anticarcinogenic Agents |
dc.subject.lemb.spa.fl_str_mv |
Microbiología de aguas residuales |
dc.subject.lemb.eng.fl_str_mv |
Sewage - microbiology |
dc.subject.proposal.spa.fl_str_mv |
Biotecnología Cianobacterias Metabolitos primarios Depuración de aguas Anticancerígenos MG063 Promotores de crecimiento |
dc.subject.proposal.zho.fl_str_mv |
HCT116 |
dc.subject.proposal.eng.fl_str_mv |
Biotechnology Cyanobacteria Wastewater treatment Anticancer Growth promoters |
dc.subject.wikidata.eng.fl_str_mv |
Synechococcales Oscillatoriales |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-24T20:54:48Z |
dc.date.available.none.fl_str_mv |
2024-07-24T20:54:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86613 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86613 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.x Adesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25. Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587 Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-market Allied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-application Arencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008. Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría. Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/ Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324 Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/ Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004 Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321 Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009 Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016 Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030 Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385 Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167 De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685 del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales. Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320 El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w Figueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109 Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615 Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1 Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436 González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852 Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137 Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924 Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575 Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526 Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811 İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007 Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2 Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703 Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604 Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505 Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020 Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073 Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074 Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584 Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7 Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-w Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36). Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9. Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391 Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16 Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505 Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugs Millán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2 Minciencias, 2016, Colombia BIO, Bogota, Colombia Ministerio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476 Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002 Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6. Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717 Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959 Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0 Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010 Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543 Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1 Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5 Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061a Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064. Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814 Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria. Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956 Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012 Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283 Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012 Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519G Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57. Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498 Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003 Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414 Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369 Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002 Anagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4. Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026 Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009 Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006 Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003 Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385 Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano. Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108 Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle. De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-y Duval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv. Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5 Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581 Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054 Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005 Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221 Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693 Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997 Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135. Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II. Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706 Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104 Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected. Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0 Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1). Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357 Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170 Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419 Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003 Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810 Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077 Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3 Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle. Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9 Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488 Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0 Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3 González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852 Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137 Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924 Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024 İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007 Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737 Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505 Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6 Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5 Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945 Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1. María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027 Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617 Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122 Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935 Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233 Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1 Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834 Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578 Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702 Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626 Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production. Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93. Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598 Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587 Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814 Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806 de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.x de Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90. El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w Giraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdf Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1 Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828 Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-x Imase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.x Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037 Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144 Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584 Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36). Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9. Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-y Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168 Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946 Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0 Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3 Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074 Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374 Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064. Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005 Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164 Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046 Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdf Takáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107. Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006 Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840 Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004 Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082 Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1). Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría. Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/ Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324 Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015 Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098 Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633 Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046 Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683 Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139 Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428 Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933. Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461 Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1 Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1 Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/ Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814 Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888 Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224 Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159 Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024 Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357 Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 125 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86613/2/1144054446.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/86613/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86613/4/1144054446.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
fa14c60366fca4bf244967c8d9b821d9 eb34b1cf90b7e1103fc9dfd26be24b4a 81b4deb01a91197c33caa08ced10435e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089762734080000 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montenegro Ruiz, Luis Carlos991f9b712cfdf53aecb21221300a7365Darwich Cedeño, Mohamed Toufic82c1a7653b4be18356c8eb12d1886191600Fisiología del Estrés y Biodiversidad en Plantas y MicroorganismosDarwich Cedeño, Mohamed Toufic [000900060989433X]Darwich Cedeño, Mohamed Toufic [0000024464]2024-07-24T20:54:48Z2024-07-24T20:54:48Z2023https://repositorio.unal.edu.co/handle/unal/86613Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLas cianobacterias son de los organismos más antiguos del planeta, por tanto, han soportado múltiples presiones ambientales y biológicas que han impulsado a la aparición de moléculas que han garantizado su supervivencia. Partiendo de lo anterior, se buscó realizar una caracterización biotecnológica de las cianobacterias de la Colección de Algas y Cianobacterias LAUN, de la Universidad Nacional de Colombia. Se identificaron las cepas mediante análisis moleculares encontrando 7 posibles géneros nuevos. Se analizó la producción de metabolitos primarios, teniendo que la cepa LAUN 81 (Synechoccocales Cyanobacteria) presenta la mayor concentración de proteína (19.04% de proteína soluble), la cepa LAUN 34 (Pleurocapsa sp.) presenta la mayor concentración de carbohidratos (11.73% de carbohidratos solubles) y la cepa LAUN 74 (Synechoccocales Cyanobacteria) presenta la mayor concentración de lípidos (40.5% de lípidos del peso total de biomasa). Por otra parte, la cepa LAUN 71 (Leptolyngbya sp.) presentó los mejores porcentajes de remoción de contaminantes en agua residual sintética, 77.5% de nitratos y 98% de fosfatos, alcanzó un 85.40% de disminución de la DQO y 94.5% de la DBO5. Finalmente, se realizó el fraccionamiento por HPLC de extractos metanólicos de los géneros representativos de las cepas LAUN y se probaron las fracciones contra células cancerígenas de cáncer colorectal (HCT116) y osteosarcoma (MG063), teniendo que la fracción “D” de LAUN33 (Baaleninema sp.) y la fracción “A” de LAUN 74 la mayor toxicidad con rendimientos de 33.18% y 34.32% de supervivencia celular respectivamente, contra la línea HCT116 y las fracciones E y F de la cepa LAUN33, la fracción H de LAUN 55 (Synechoccocales Cyanobacteria) y la fracción F de LAUN74 presentaron la mayor toxicidad con rendimientos de 39.28%, 38.94%, 38.28% y 38.42% de supervivencia celular respectivamente, contra la línea MG063 (Texto tomado de la fuente).Cyanobacteria are among the oldest organisms on the planet; therefore, they have endured multiple environmental and biological pressures that have led to the appearance of molecules that guarantee their survival. Based on this, we sought to carry out a biotechnological characterization of the cyanobacteria from the LAUN Algae and Cyanobacteria Collection of the National University of Colombia. The strains were identified through molecular analysis, which revealed 7 possible new genera. The production of primary metabolites was analyzed, and it was found that the strain LAUN 81 (Synechoccocales Cyanobacteria) presents the highest concentration of protein (19.04% of soluble protein), the strain LAUN 34 (Pleurocapsa sp.) presents the highest concentration of carbohydrates (11.73% of soluble carbohydrates), and the strain LAUN 74 (Synechoccocales Cyanobacteria) presents the highest concentration of lipids (40.5% lipids of the total weight of biomass). On the other hand, the strain LAUN 71 (Leptolyngbya sp.) demonstrated the best percentages of pollutant removal in synthetic wastewater, with 77.5% nitrate and 98% phosphate removal, reaching an 85.40% reduction in COD (Chemical Oxygen Demand) and 94.5% reduction of the BOD5 (Biochemical Oxygen Demand). Finally, HPLC fractionation of methanolic extracts of the representative genera of the LAUN strains was carried out. The fractions were then tested against colorectal cancer cells (HCT116) and osteosarcoma cells (MG063). Fraction "D" of LAUN33 (Baaleninema sp.) and fraction "A" of LAUN 74 showed the highest toxicity with cell survival yields of 33.18% and 34.32%, respectively, against the HCT116 line. On the other hand, fractions E and F of strain LAUN33, fraction H of LAUN 55 (Synechoccocales Cyanobacteria), and fraction F of LAUN 74 presented the highest toxicity with cell survival yields of 39.28%, 38.94%, 38.28%, and 38.42%, respectively, against the MG063 line.DoctoradoDoctor en Ciencias - BiologíaBiotecnologíaxvii, 125 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::579 - Historia natural microorganismos, hongos, algas620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria570 - Biología::572 - BioquímicaMetabolitos microbianosMicrobial metabolitesDemanda bioquímica de oxígenoBiochemical oxygen demandCianobacteriasAnticarcinógenosCyanobacteriaAnticarcinogenic AgentsMicrobiología de aguas residualesSewage - microbiologyBiotecnologíaCianobacteriasMetabolitos primariosDepuración de aguasAnticancerígenosMG063Promotores de crecimientoHCT116BiotechnologyCyanobacteriaWastewater treatmentAnticancerGrowth promotersSynechococcalesOscillatorialesPotencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianasBiotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAbed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.xAdesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25.Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-marketAllied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-applicationArencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008.Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales.Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wFigueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-wLarsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugsMillán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2Minciencias, 2016, Colombia BIO, Bogota, ColombiaMinisterio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidadMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comMondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6.Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia.Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061aRengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria.Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519GThajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57.Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002Anagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4.Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano.Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-yDuval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv.Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135.Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II.Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected.Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1.María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production.Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93.Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.xde Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wGiraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdfGithinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-xImase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.xJebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-yMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comMohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdfTakáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107.Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933.Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1144054446.2023.pdf1144054446.2023.pdfTesis de Doctorado en Ciencias-Biologíaapplication/pdf1542715https://repositorio.unal.edu.co/bitstream/unal/86613/2/1144054446.2023.pdffa14c60366fca4bf244967c8d9b821d9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86613/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1144054446.2023.pdf.jpg1144054446.2023.pdf.jpgGenerated Thumbnailimage/jpeg5445https://repositorio.unal.edu.co/bitstream/unal/86613/4/1144054446.2023.pdf.jpg81b4deb01a91197c33caa08ced10435eMD54unal/86613oai:repositorio.unal.edu.co:unal/866132024-07-24 23:25:51.969Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |