Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico

Ilustraciones, fotografías, gráficos, tablas

Autores:
Araujo Guerrero, Edson Felipe
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86629
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86629
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Arena - Producción
Arena - Producción - Modelos matemáticos
Planificación de la producción - Modelos matemáticos
Arenas petrolíferas - Producción - Modelos matemáticos
Modelamiento Numerico
Arenamiento
Criterio de Arenamiento
TWC
Pruebas de arenamiento
Sanding
Additive Manufacturing
Sand Production
Numerical Modeling
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_4b307d6affd64d92e699b1e20b47c184
oai_identifier_str oai:repositorio.unal.edu.co:unal/86629
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
dc.title.translated.eng.fl_str_mv Coupled model for the quantification of sand production using a new criterion based on a plastic damage intensity factor
title Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
spellingShingle Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Arena - Producción
Arena - Producción - Modelos matemáticos
Planificación de la producción - Modelos matemáticos
Arenas petrolíferas - Producción - Modelos matemáticos
Modelamiento Numerico
Arenamiento
Criterio de Arenamiento
TWC
Pruebas de arenamiento
Sanding
Additive Manufacturing
Sand Production
Numerical Modeling
title_short Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
title_full Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
title_fullStr Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
title_full_unstemmed Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
title_sort Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico
dc.creator.fl_str_mv Araujo Guerrero, Edson Felipe
dc.contributor.advisor.none.fl_str_mv Osorio Gallego, José Gildardo
Alzate Espinosa, Guillermo Arturo
dc.contributor.author.none.fl_str_mv Araujo Guerrero, Edson Felipe
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Geomecánica Aplicada
dc.contributor.orcid.spa.fl_str_mv Araujo Guerrero, Edson Felipe [0000-0002-8382-4878]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Arena - Producción
Arena - Producción - Modelos matemáticos
Planificación de la producción - Modelos matemáticos
Arenas petrolíferas - Producción - Modelos matemáticos
Modelamiento Numerico
Arenamiento
Criterio de Arenamiento
TWC
Pruebas de arenamiento
Sanding
Additive Manufacturing
Sand Production
Numerical Modeling
dc.subject.lemb.none.fl_str_mv Arena - Producción
Arena - Producción - Modelos matemáticos
Planificación de la producción - Modelos matemáticos
Arenas petrolíferas - Producción - Modelos matemáticos
dc.subject.proposal.spa.fl_str_mv Modelamiento Numerico
Arenamiento
Criterio de Arenamiento
dc.subject.proposal.eng.fl_str_mv TWC
Pruebas de arenamiento
Sanding
Additive Manufacturing
Sand Production
Numerical Modeling
description Ilustraciones, fotografías, gráficos, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-07-26T13:12:57Z
dc.date.available.none.fl_str_mv 2024-07-26T13:12:57Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86629
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86629
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv M. Dusseault y F. Santarelli, “A conceptual model for massive solids production in poorly-consolidated sandstones,” en ISRM International Symposium, Pau, France, pp. 789–797, International Society for Rock Mechanics, 1989.
F. Gharagheizi, A. Mohammadi, M. Arabloo y A. Shokrollahi, “Prediction of sand production onset in petroleum reservoirs using a reliable classifcation approach,” Petroleum, vol. 3, no. 2, pp. 280–285, 2017.
J. Bellarby, Well completion design, vol. 56. El
K. Han, G. Shepstone, I. Harmawan, ... J. Diessl, “A comprehensive study of sanding rate from a gas feld: From reservoir to completion, production, and surface facilities,” SPE Journal, vol. 16, no. 2, pp. 463–481, 2011.
E. Papamichos, J. Tronvoll, A. Skjærstein y T. Unander, “Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion,” Journal of Petroleum Science and Engineering, vol. 72, no. 1-2, pp. 78–92, 2010.
J. Tronvoll, N. Kessler, N. Morita, E. Fjær y F. Santarelli, “The effect of anisotropic stress state on the stability of perforation cavities,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 30, no. 7, pp. 1085–1089, 1993.
H. Chen, L. Teufel y R. Lee, “Coupled fluid flow and geomechanics in reservoir study - i. theory and governing equations,” en SPE Annual Technical Conference and Exhibition, 22-25 Octubre, Dallas, Texas, pp. 507–519, Society of Petroleum Engineers, 1995.
H. Chen y L. Teufel, “Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs - model description and comparison,” en SPE International Petroleum Conference and Exhibition in Mexico, no. 1, 1-3 Febrero, Villahermosa, Mexico, pp. 1–10, Society of Petroleum Engineers, 2000.
F. Da¨ım, R. Eymard, D. Hilhorst, M. Mainguy y R. Masson, “A preconditioned conjugate gradient based algorithm for coupling geomechanical-reservoir simulations,” Oil & Gas Science and Technology – Rev. IFP, vol. 57, no. 5, pp. 515–523, 2002.
L. Pereira, F. Falc˜ao, L. Guimar˜aes y B. Jacob, “Sensitivity study of geomechanical effects on reservoir simulation,” International Journal of Modeling and Simulation for the Petroleum Industry, vol. 3, no. 1, pp. 57–63, 2009.
Q. Tao y A. Ghassemi, “Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength,” Geothermics, vol. 39, no. 3, pp. 250–259, 2010.
I. Vardoulakis, M. Stavropoulou y P. Papanastasiou, “Hydro-mechanical aspects of the sand production problem,” Transport in Porous Media, vol. 22, pp. 225–244, Febrero 1996.
I. Vardoulakis, P. Papanastasiou y M. Stavropoulou, “Sand erosion in axial flow conditions,” Transport in Porous Media, vol. 45, no. 2, pp. 267–280, 2001.
C. Detournay, “Numerical modeling of the slit mode of cavity evolution associated with sand production,” SPE Journal, vol. 14, no. 4, pp. 797–804, 2009.
A. Nouri, E. Kuru y H. Vaziri, “Elastoplastic modelling of sand production using fracture energy regularization method,” Journal of Canadian Petroleum Technology, vol. 48, no. 4, pp. 64–71, 2009.
H. Wang, P. Cardiff y M. Sharma, “A 3-D poro-elasto-plastic model for sand production around open-hole and cased & perforated wellbores,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, vol. 2, 26-29 Junio, Houston, Texas, pp. 879–888, American Rock Mechanics Association, 2016.
A. Kim, M. Sharma y H. Fitzpatrick, “A predictive model for sand production in poorly consolidated sands,” en International Petroleum Technology Conference, IPTC, 7-9 Febrero, Bangkok, Thailand, pp. 2668–2678, IPTC, 2012.
Z. Zhou, A. Yu y S. Choi, “Numerical simulation of the liquid-induced erosion in a weakly bonded sand assembly,” Powder Technology, vol. 211, pp. 237–249, Agosto 2011.
Y. Wang, “Fundamental behaviors and borehole deformation on wellbore stability and sand production in conventional and hydrates-bearing gas reservoirs,” en SPE Middle East Oil and Gas Show and Conference, 18-21 Marzo, Manama, Bahrain, Society of Petroleum Engineers, 2019.
C. Veeken, D. Davies, C. Kenter y A. Kooijman, “Sand production prediction review: developing an integrated approach,” en SPE Annual Technical Conference and Exhibition, 6-9 Octubre, Dallas, Texas, Society of Petroleum Engineers, 1991.
A. Gupta, N. Borhan, D.B. Kamat, ... B.B. Madon, “Holistic sand management methodology: A multi-disciplinary team approach to cater sub-surface & surface aspects of sand production and optimization,” en Offshore Technology Conference Asia, 22-25 Marzo, Kuala Lumpur, Malaysia, OTCA, 2016.
F. Moreno, P. Guizada, A. Aziz y R. Khanferi, “Application of critical drawdown pressure prediction in completion design to minimize sanding in a clastic gas reservoir in Saudi Arabia,” en SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 24-27 Abril, Dammam, Saudi Arabia, Society of Petroleum Engineers, 2017.
H. Vaziri y L. Lemoine, “Strong support for signifcant productivity boost through sand production,” en 4th North American Rock Mechanics Symposium, 31 Julio - 3 Agosto, Seattle, Washington, USA, pp. 295–302, Pacifc Rocks 2000, 2000.
I. Palmer, J. McLennan y H. Vaziri, “Cavity-like completions in weak sands,” en International Symposium on Formation Damage Control, 23-24 Febrero, Lafayette, Louisiana, Society of Petroleum Engineers, 2000.
M. Nassir, D. Walters, D. Yale, R. Chivvis y J. Turak, “3D modeling of sand production in waterflooding by coupled flow/geomechanical numerical solutions,” en 49th US Rock Mechanics / Geomechanics Symposium 2015, 28 Junio - 1 Julio, San Francisco, California, USA, American Rock Mechanics Association, 2015.
F. Baghdadi, A. Gupta, A. Hamid y B. Madon, “An innovative approach in sand onset prediction at different water cuts and estimating sand production for future feld life,” en International Petroleum Technology Conference, 26 - 28 Marzo, Beijing, China, IPTC, 2019.
P. Cerasi, A. Berntsen, L. Walle y E. Papamichos, “Sand production delay in gas flow experiments,” en 49th U.S. Rock Mechanics/Geomechanics Symposium, 28 Junio-1 Julio, San Francisco, California, pp. 1–6, American Rock Mechanics Association, 2015.
C. David, J. Dautriat, J. Sarout, ... D. Bertauld, “Water weakening triggers mechanical instability in laboratory fluid substitution experiments on a weakly-consolidated sandstone,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.
L. Qiao, Z. Wang y A. Huang, “Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects,” Rock Mechanics and Rock Engineering, vol. 50, no. 2, pp. 255–267, 2017.
R. Zhang, X. Shi, R. Zhu, ... J. Feng, “Critical drawdown pressure of sanding onset for offshore depleted and water cut gas reservoirs: Modeling and application,” Journal of Natural Gas Science and Engineering, vol. 34, pp. 159–169, 2016.
R. Nepop, N. Smirnov, R. Molodtsov, ... G. Nemirovich, “Thick-walled cylinder core tests with flushing by various fluids: Results and practical applications,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.
J. Sulem, I. Vardoulakis, E. Papamichos, A. Oulahna y J. Tronvoll, “Elasto-plastic modelling of Red Wildmoor sandstone,” Mechanics of Cohesive Frictional Materials, vol. 4, pp. 215–245, 1999.
E. Papamichos, I. Vardoulakis, J. Tronvoll y A. Skjærstein, “Volumetric sand production model and experiment,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 25, pp. 789–808, Julio 2001.
J. Tronvoll, A. Skjærstein y E. Papamichos, “Sand production: Mechanical failure or hydrodynamic erosion?,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 291.e1–291.e17, Abril 1997.
A. Younessi, V. Rasouli y B. Wu, “Sand production simulation under true-triaxial stress conditions,” International Journal of Rock Mechanics and Mining Sciences, vol. 61, pp. 130–140, 2013.
A. Younessi, F. Gui, S. Asadi y A. Khaksar, “Calibration of sand production prediction models at early feld life in the absence of feld sanding data,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 23-25 Octubre, Brisbane, Australia, Society of Petroleum Engineers, 2018.
F. Gui, A. Khaksar, W. Van Der Zee y P. Cadogan, “Improving the sanding evaluation accuracy by integrating core tests, feld observations and numerical simulation,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016
C. Santana y F. Likrama, “Workflow on incorporating thick-walled cylinder test results in fnite element models of near wellbore for sanding prediction studies,” en 50th US Rock Mechanics / Geomechanics Symposium, vol. 3, 26-29 Junio, Houston, Texas, USA, p. 9, ARMA, 2016.
A. Younessi y A. Khaksar, “A novel approach to evaluate the risk of sanding for optimum well completion design: A deep-water case study from Southeast Asia,” en SPE Asia Pacifc Oil & Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016.
F. Ferreira, E. Santos, D. Rossi y A. Borba, “Sanding onset prediction on a ultradeepwater well using a probabilistic approach: From lab to feld,” en OTC Brasil 2015: The Atlantic: From East to West - An Ocean of Innovation, pp. 1156–1166, 2015.
S. Hashemi, N. Melkoumian y A. Taheri, “A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 7, no. 5, pp. 519–531, 2015.
S. Tehrani, A. Sinaki, M. Sarmadivaleh y V. Golmohammadi, “The effect of inner borehole and outer boundary dimensions in thick-walled cylinder test,” en SPE Eastern Regional Meeting, 13-15 Septiembre, Canton, Ohio, USA, Society of Petroleum Engineers, 2016.
E. Papamichos, “Sand production and well productivity in conventional reservoirs,” Rock Mech. for Industry, pp. 209–216, 1999.
P. Hoek, G. Hertogh, A. Kooijman, P. Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drilling & Completion, vol. 15, no. 4, pp. 261–273, 2000.
S. Hashemi y N. Melkoumian, “Effect of different stress path regimes on borehole instability in poorly cemented granular formations,” Journal of Petroleum Science and Engineering, vol. 146, pp. 30–49, 2016.
E. Papamichos, L. Walle, A. Berntsen y J. Stenebr˚aten, “Sand mass production in true triaxial borehole tests,” 53rd U.S. Rock Mechanics/Geomechanics Symposium, 2019.
A. Younessi y A. Khaksar, “A comprehensive geomechanical study for deep-water feld development planning: A case study from Southeast Asia,” en International Petroleum Technology Conference, 14-16 November, Bangkok, Thailand, pp. 1–10, IPTC, 2016.
A. Younessi, V. Rasouli y B. Wu, “The effect of stress anisotropy on sanding: An experimental study,” en 46th US Rock Mechanics / Geomechanics Symposium, 24-27 Junio, Chicago, Illinois, USA, American Rock Mechanics Association, 2012.
A. Younessi y V. Rasouli, “Numerical simulations of sanding under different stress regimes,” en 46th US Rock Mechanics / Geomechanics Symposium 2012, Chicago, p. 8, American Rock Mechanics Association, 2012.
A. Kooijman, P. Halleck, P. de Bree, C. Veeken y C. Kenter, “Large-scale laboratory sand production test,” en 67th Annual Technical Conference and Exhibition, 4-7 Octubre, Washington D.C., USA, pp. 325–338, Society of Petroleum Engineers, 1992.
T. Unander, E. Papamichos, J. Tronvoll y A. Skjærstein, “Flow geometry effects on sand production from an oil producing perforation cavity,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 293.e1–293.e15, Abril 1997.
H. Rahmati, M. Jafarpour, S. Azadbakht, ... Y. Xiao, “Review of sand production prediction models,” Journal of Petroleum Engineering, vol. 2013, pp. 1–16, 2013.
P. Ranjith, M. Perera, W. Perera, S. Choi y E. Yasar, “Sand production during the extrusion of hydrocarbons from geological formations: A review,” Journal of Petroleum Science and Engineering, vol. 124, pp. 72–82, 2014.
E. Khamehchi y E. Reisi, “Sand production prediction using ratio of shear modulus to bulk compressibility (case study),” Egyptian Journal of Petroleum, vol. 24, no. 2, pp. 113–118, 2015.
M. Kanj y Y. Abousleiman, “Realistic sanding predictions: a neural approach,” en SPE Annual Technical Conference and Exhibition, 3-6 Octubre, Houston, Texas, Society of Petroleum Engineers, 1999.
E. Khamehchi, I. Kivi y M. Akbari, “A novel approach to sand production prediction using artifcial intelligence,” Journal of Petroleum Science and Engineering, vol. 123, pp. 147–154, 2014.
I. Bradford y J. Cook, “A semi-analytic elastoplastic model for wellbore stability with applications to sanding,” en Rock Mechanics in Petroleum Engineering, 29-31 Agosto, Delft, The Netherlands, pp. 347–354, Society of Petroleum Engineers, 1994.
A. Nouri, H. Vaziri y E. Kuru, “Physical and analytical studies of sand production from a supported wellbore in unconsolidated sand media with single-and two-phase flow,” Journal of Canadian Petroleum Technology, vol. 46, no. 06, pp. 41–48, 2007.
G. Oluyemi y M. Oyeneyin, “Analytical critical drawdown (CDD) failure model for real time sanding potential prediction based on Hoek and Brown failure criterion,” Journal of Petroleum and Gas Engineering, vol. 1, no. 2, pp. 16–25, 2010.
E. Papamichos y K. Furui, “Analytical models for sand onset under feld conditions,” Journal of Petroleum Science and Engineering, vol. 172, no. Septiembre 2018, pp. 171– 189, 2019
B. Wu y C. Tan, “Sand production prediction of gas feld - methodology and feld application,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irvin, Texas, USA, pp. 596–605, Society of Petroleum Engineers, 2002.
B. Zhang, Y. Wang y Y. Zeng, “Thermal effects on sand prediction,” en 50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.
K. Lezhnev, A. Roshchektaev y V. Pashkin, “Coupled reservoir - well model of sand production processes,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.
J. Tronvoll, E. Papamichos, A. Skjærstein y F. Sanflippo, “Sand production in ultraweak sandstones: Is sand control absolutely necessary?,” en Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, 30 Agosto - 3 Septiembre, Rio de Janeiro, Brasil, 1997.
E. Araujo, G. Alzate, A. Arbelaez, S. Pe˜na, A. Cardona y A. Naranjo, “Analytical prediction model of sand production integrating geomechanics for open hole and cased – perforated wells,” en SPE Heavy and Extra Heavy Oil Conference: Latin America, 24-26 Septiembre, Medell´ın, Colombia, Society of Petroleum Engineers, 2014.
S. Pe˜na, E. Araujo, A. Arbelaez, A. Naranjo y G. Alzate, “An analytic geomechanical model to defne the optimal well direction and perforated orientation in order to reduce sand production potential,” en XVI Congreso Colombiano Petroleo y gasetroleo y Gas, Agosto 26-28, Bogota, Colombia, Asociaci´on Colombiana de Ingenieros de Petr´oleos, 2015.
E. Fjær, R. Holt, A. Raaen y P. Horsrud, Petroleum related rock mechanics, vol. 53. Amsterdam: Elsevier Science, 2nd ed., 2008.
K. Rahman, A. Khaksar y T. Kayes, “An integrated geomechanical and passive sandcontrol approach to minimizing sanding risk from openhole and cased-and-perforated wells,” SPE Drilling and Completion, vol. 25, no. 2, pp. 155–167, 2010.
R. Risnes, R. Bratlik y P. Horsrud, “Sand stresses around a wellbore,” Society of Petroleum Engineers Journal, vol. 22, no. 06, pp. 883 – 898, 1982.
N. Morita, D. Whitfll, I. Massie y T. Knudsen, “Realistic sand-production prediction: numerical approach,” SPE Production Engineering, vol. 4, no. 1, pp. 15–24, 1989.
P. Van Den Hoek, G. Hertogh, A. Kooijman, P. de Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drill. & Completion, vol. 15, no. 4, pp. 261–273, 2000.
Y. Wang y M. Dusseault, “Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata part ii. permeable media,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, no. 4, pp. 247–260, 1991.
Q. Zhang, B. Jiang, S. Wang, X. Ge y H. Zhang, “Elasto-plastic analysis of a circular opening in strain-softening rock mass,” International Journal of Rock Mechanics and Mining Sciences, vol. 50, no. 2012, pp. 38–46, 2012.
R. Jensen y D. Preece, “Modeling sand production with darcy-flow coupled with discrete elements,” reporte t´ecnico, Sandia National Laboratories, Albuquerque, NM USA, 2000.
M. Zeghal y U. El Shamy, “A continuum-discrete hydromechanical analysis of granular deposit liquefaction,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 1361–1383, Diciembre 2004.
Y. Cui, A. Nouri, D. Chan y E. Rahmati, “A new approach to DEM simulation of sand production,” Journal of Petroleum Science and Engineering, vol. 147, pp. 56–67, 2016.
N. Climent, M. Arroyo, C. Osullivan y A. Gens, “Sand production simulation coupling DEM with CFD,” European Journal of Environmental and Civil Engineering, vol. 18, no. 9, pp. 983–1008, 2014.
N. Climent, A coupled CFD-DEM model for sand production in oil wells. Tesis Ph.D., Univeritat Politecnica de Catalunya, 2016
A. Rakhimzhanova, C. Thornton, Y. Amanbek y Y. Zhao, “Numerical simulations of sand production in oil wells using the CFD-DEM-IBM approach,” Journal of Petroleum Science and Engineering, vol. 208, no. C, pp. 1–24,
D. Potyondy y P. Cundall, “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 8, pp. 1329–1364, 2004.
A. Skjærstein, M. Stavropoulou, I. Vardoulakis y J. Tronvoll, “Hydrodynamic erosion; a potential mechanism of sand production in weak sandstones,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, Abril 1997.
M. Stavropoulou, P. Papanastasiou y I. Vardoulakis, “Coupled wellbore erosion and stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 22, pp. 749–769, 1998.
E. Papamichos y I. Vardoulakis, “Sand erosion with a porosity diffusion law,” Computers and Geotechnics, vol. 32, pp. 47–58, Enero 2005.
J. Wang, R. Wan, A. Settari y D. Walters, “Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes,” en American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, no. USRMS 05-842, 25-29 Junio, Anchorage, Alaska, American Rock Mechanics Association, 2005.
J. Wang, R. Wan, A. Settari, D. Walters y Y. Liu, “Sand production and instability analysis in a wellbore using a fully coupled reservoir-geomechanics model,” en Gulf Rocks 2004, The 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, 5-9 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2004.
J. Shao y P. Marzoina, “A damage mechanics approach for the modelling of sand production in heavy oil reservoirs,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irving, Texas, Society of Petroleum Engineers, 2002.
G. Servant, P. Marzoina y J. Nauroy, “Near-wellbore modeling: Sand production issues,” en SPE Annual Technical Conference and Exhibition, 11-14 November, Anaheim, California, USA, Society of Petroleum Engineers, 2007.
G. Servant, P. Marzoina, Y. Peysson, E. Bemer y J. Nauroy, “Sand erosion in weakly consolidated reservoirs : Experiments and numerical modeling,” en SPE/DOE Symposium on Improved Oil Recovery, 22-26 Abril, Tulsa, Oklahoma, pp. 1–8, Society of Petroleum Engineers, 2006.
H. Vaziri, Y. Xiao, R. Islam y A. Nouri, “Numerical modeling of seepage-induced sand production in oil and gas reservoirs,” Journal of Petroleum Science and Engineering, vol. 36, pp. 71–86, Octubre 2002.
A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “A comprehensive approach to modeling sanding during oil production,” en SPE Latin American and Caribbean Petroleum Engineering Conference, 27-30 Abril, Port-of-Spain, Trinidad and Tobago, Society of Petroleum Engineers, 2003
A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Comprehensive transient modeling of sand production in horizontal wellbores,” en SPE Annual Technical Conference and Exhibition, 5-8 Octubre, Denver, Colorado, Society of Petroleum Engineers, 2003
A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Effect of volumetric failure on sand production in oil-wellbores,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 15-17 Abril, Jakarta, Indonesia, Society of Petroleum Engineers, 2003.
A. Nouri, E. Kuru y H. Vaziri, “Enhanced modelling of sand production through improved deformation and stress analysis,” en 8th Canadian International Petroleum Conference, 12-14 Junio, Calgary, Alberta, Canada, Petroelum Society, 2007.
A. Nouri, H. Vaziri, E. Kuru y R. Islam, “A comparison of two sanding criteria in physical and numerical modeling of sand production,” Journal of Petroleum Science and Engineering, vol. 50, no. 1, pp. 55–70, 2006.
H. Rahmati, A. Nouri, H. Vaziri y D. Chan, “Validation of predicted cumulative sand and sand rate against physical-model test,” Journal of Canadian Petroleum Technology, vol. 51, no. 5, pp. 403–410, 2012.
S. Alquwizani y M. Sharma, “Three-dimensional modeling of wellbore and perforation stability in weak sands,” en SPE International Symposium and Exhibition on Formation Damage Control, 26-28 Febrero, Lafayette, Louisiana, USA, Society of Petroleum Engineers, 2014.
M. Nassir y D. Walters, “3D geomechanical modeling of cavity growth in loosely consolidated sandstone,” en ISRM Regional Symposium - EUROCK, 27-29 Mayo, Vigo, Spain, ISRM, 2014.
E. Gravanis, E. Sarris y P. Papanastasiou, “Hydro-mechanical erosion models for sand production,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 39, no. 18, pp. 2017–2036, 2015.
B. Wu, S.K. Choi, R. Denke, ... B.B. Madon, “A new and practical model for amount and rate of sand production estimation,” en Offshore Technology Conference Asia, 22-25 Mayo, Kuala Lumpur, Malaysia, pp. 2830–2847, 2016.
H. Wang y M. Sharma, “A fully 3-D, multi-phase, poro-elasto-plastic model for sand production,” en SPE Annual Technical Conference and Exhibition, 26-28 Septiembre, Dubai, UAE, pp. 26–28, Society of Petroleum Engineers, 2016.
H. Wang, D. Gala y M. Sharma, “Effect of fluid type and multiphase flow on sand production in oil and gas wells,” SPE Journal, vol. 24, no. 2, pp. 733–743, 2019.
Z. Fan, D. Yang y X. Li, “Quantifcation of sand production using a pressure-gradientbased sand-failure criterion,” SPE Journal, vol. 24, no. 3, pp. 988–1001, 2019.
A. Mohamad-Hussein y Q. Ni, “Numerical modeling of onset and rate of sand production in perforated wells,” Journal of Petroleum Exploration and Production Technology, vol. 8, no. 4, pp. 1255–1271, 2018.
R. Zimmerman, W. Somerton y M. King, “Compressibility of porous rocks,” Journal of Geophysical Research, vol. 91, no. B12, pp. 12765–12777, 1986.
O. Schenk y K. Gartner, “Solving unsymmetric sparse systems of linear equations with PARDISO,” Future Generation Computer Systems, vol. 20, no. 3, pp. 475–487, 2004.
S. Sloan, “Substepping schemes for the numerical integration of elastoplastic stress–strain relations,” International Journal for Numerical Methods in Engineering, vol. 24, no. 5, pp. 893–911, 1987.
E. Detournay y A. H. Cheng, “Poroelastodynamic response of a borehole in a nonhydrostatic stress feld,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 25, no. 3, pp. 171–182, 1988.
A. Singh, K. Seshagiri Rao y R. Ayothiraman, “A Closed-Form Analytical Solution for Circular Opening in Rocks Using Drucker–Prager Criterion,” Indian Geotechnical Journal, vol. 49, no. 4, pp. 437–454, 2019.
J. Gomez, R. Chalaturnyk y G. Zambrano-Narvaez, “Experimental investigation of the mechanical behavior and permeability of 3D printed sandstone analogues under triaxial conditions,” Transport in Porous Media, vol. 129, no. 2, pp. 541–557, 2018.
J. Gomez, Mechanical properties characterization of printed reservoir sandstone analogues. Tesis M.Sc., University of Alberta, 2017.
N. Ardila, Hydraulic properties characterization of 3D printed sandstone analogues. Tesis M.Sc., University of Alberta, 2018.
B. Primkulov, J. Chalaturnyk, R. Chalaturnyk y G. Zambrano Narvaez, “3D printed sandstone strength: Curing of furfuryl alcohol resin-based sandstones,” 3D Printing and Additive Manufacturing, vol. 4, no. 3, pp. 149–155, 2017.
ASTM International, “ASTM D854 - 00 standard test methods for specifc gravity of soil solids by water pycnometer,” ASTM, 2000.
ASTM International, “ASTM D2166-06 standard test method for unconfned compressive strength of cohesive soil,” 2007.
ASTM International, “ASTM D7181-11 standard test method for consolidated drained triaxial compression test for soils,” 2011.
P. Charlez, Rock mechanics: volume 1. Theoretical fundamentals. editions t ed., 1991
S. Maksimov, Underwater arc welding of higher strength low-alloy steels, vol. 24. Springer, 2010.
C. Tamagnini y M. Ciantia, “Plasticity with generalized hardening: Constitutive modeling and computational aspects,” Acta Geotechnica, vol. 11, no. 3, pp. 595–623, 2016.
S. Ghabezloo, J. Sulem y J. Saint-Marc, “Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 761–768, 2009.
J. Reddy, An introduction to the fnite element method. New York: McGraw-Hill, 2nd ed., 1993
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 323 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Facultad de Minas
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86629/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86629/2/1085289667.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/86629/3/1085289667.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
216ff389061bdd48283f13747d5bed0d
b66b7c25236353dfe241922c431986cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089380748328960
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Gallego, José Gildardo01c4a33ce140f462981afc32e64b975eAlzate Espinosa, Guillermo Arturo0afd7cbf110c48449c9893cb0135ef75Araujo Guerrero, Edson Felipea501fb34b322df8f3e2fb3b5aaf58229Grupo de Investigación en Geomecánica AplicadaAraujo Guerrero, Edson Felipe [0000-0002-8382-4878]2024-07-26T13:12:57Z2024-07-26T13:12:57Z2022https://repositorio.unal.edu.co/handle/unal/86629Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, gráficos, tablasDebido a la débil relación encontrada en los modelos disponibles entre la producción de arena y el comportamiento geomecánico, en este trabajo se presenta un modelo numérico para cuantificar la producción de arena el cual parte de un criterio de arenamiento enfocado en las deformaciones plásticas por cizalla como causa base del fenómeno de producción de arena. El modelo se desarrolla bajo la hipótesis de que la producción de arena depende del nivel de deformaciones plásticas por cizalla y que el arenamiento tiene efectos geomecánicos tanto en las deformaciones como en los esfuerzos. Usando núcleos obtenidos con la tecnología de impresión 3D, se desarrolla un programa de pruebas de laboratorio para caracterizar tanto el comportamiento mecánico como la producción de arena de los mismos, resultados que se aplicaron en simulaciones numéricas a escala de laboratorio con el fin de validar el modelo. Los resultados muestran que un criterio de producción de arena basado en la deformación plástica por cizalla permite predecir correctamente el nivel de producción de arena, aunque presuntamente, a niveles altos de confinamiento efectivo, el límite de colapso de poro también tendría un aporte al nivel de arenamiento. Los resultados obtenidos se extienden a escala yacimiento, en un caso genérico, con el fin de explicar el efecto que tienen la cohesión, el estado de esfuerzos y el depletamiento en el nivel de producción de arena predicho, con lo que se concluye que, entre las variables analizadas, la cohesión es el parámetro con mayor efecto sobre el arenamiento seguido por el estado de esfuerzos en el yacimiento. (Tomado de la fuente)Due to the weak relationship found in the available models between sand production and geomechanical behavior, this paper presents a numerical model to quantify sand production, which starts from a sanding criterion focused on plastic shear deformations as root cause of the phenomenon of sand production. The model is developed under the hypothesis that sand production depends on the level of plastic shear strains and that sanding has geomechanical effects on both strains and stresses. Using cores obtained with 3D printing technology, a laboratory test program is developed to characterize both their mechanical and sand production behavior, results that were applied in numerical simulations on a laboratory scale in order to validate the model. The results show that a sand production criterion based on plastic shear deformation correctly predicts the level of sand production, although presumably, at high levels of effective confinement, the limit of pore collapse would also have a contribution to the level of sanding. The results obtained are extended to the reservoir scale, in a generic case, in order to explain the effect of cohesion, stress state and depletion on the predicted level of sand production, with which it is concluded that, among the analyzed variables, cohesion is the parameter with the greatest effect on sanding followed by the state of stress in the reservoir.DoctoradoDoctor en Ingeniería - Sistemas EnergéticosEsta trabajo está enfocado a mejorar los pronósticos de producción de arena utilizando el modelamiento numérico a través de la definición de un nuevo criterio de producción de arena, basado en la física del problema. Para lograrlo, se presenta una revisión de los principales modelos de producción de arena y sus componentes. Esto se realiza para abordar las bases teóricas del problema que sustentan. Los componentes más importantes de los modelos de producción de arena presentados son: el criterio de producción de arena, el acoplamiento actual utilizado del flujo de fluido y el comportamiento mecánico, el comportamiento elastoplástico de los materiales, el criterio de falla utilizado y el comportamiento de Endurecimiento/Ablandamiento. Se construye un criterio de producción de arena con base en el nivel de deformación plástica. Se realiza una serie de pruebas de laboratorio enfocadas en la caracterización y determinación de parámetros para la evaluación del comportamiento de la producción de arena. Posteriormente se construye un modelo numérico en el cual se integra el criterio de producción de arena y el comportamiento acoplado de flujo de fluidos con geomecánica. Las pruebas experimentales realizadas se usan para validar el comportamiento del modelo propuesto a través del modelamiento de las pruebas experimentales. Finalmente se realizan varios análisis de sensibilidad para verificar la respuesta del modelo de producción de arena propuesto en condiciones de campo construidos a partir de datos de prueba de laboratorio.Geomecánica de Pozos y YacimientosIngeniería Química E Ingeniería De Petróleos.Sede Medellín323 páginasapplication/pdfspaUniversidad Nacional de Colombia, Facultad de MinasMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasArena - ProducciónArena - Producción - Modelos matemáticosPlanificación de la producción - Modelos matemáticosArenas petrolíferas - Producción - Modelos matemáticosModelamiento NumericoArenamientoCriterio de ArenamientoTWCPruebas de arenamientoSandingAdditive ManufacturingSand ProductionNumerical ModelingModelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plásticoCoupled model for the quantification of sand production using a new criterion based on a plastic damage intensity factorTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaM. Dusseault y F. Santarelli, “A conceptual model for massive solids production in poorly-consolidated sandstones,” en ISRM International Symposium, Pau, France, pp. 789–797, International Society for Rock Mechanics, 1989.F. Gharagheizi, A. Mohammadi, M. Arabloo y A. Shokrollahi, “Prediction of sand production onset in petroleum reservoirs using a reliable classifcation approach,” Petroleum, vol. 3, no. 2, pp. 280–285, 2017.J. Bellarby, Well completion design, vol. 56. ElK. Han, G. Shepstone, I. Harmawan, ... J. Diessl, “A comprehensive study of sanding rate from a gas feld: From reservoir to completion, production, and surface facilities,” SPE Journal, vol. 16, no. 2, pp. 463–481, 2011.E. Papamichos, J. Tronvoll, A. Skjærstein y T. Unander, “Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion,” Journal of Petroleum Science and Engineering, vol. 72, no. 1-2, pp. 78–92, 2010.J. Tronvoll, N. Kessler, N. Morita, E. Fjær y F. Santarelli, “The effect of anisotropic stress state on the stability of perforation cavities,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 30, no. 7, pp. 1085–1089, 1993.H. Chen, L. Teufel y R. Lee, “Coupled fluid flow and geomechanics in reservoir study - i. theory and governing equations,” en SPE Annual Technical Conference and Exhibition, 22-25 Octubre, Dallas, Texas, pp. 507–519, Society of Petroleum Engineers, 1995.H. Chen y L. Teufel, “Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs - model description and comparison,” en SPE International Petroleum Conference and Exhibition in Mexico, no. 1, 1-3 Febrero, Villahermosa, Mexico, pp. 1–10, Society of Petroleum Engineers, 2000.F. Da¨ım, R. Eymard, D. Hilhorst, M. Mainguy y R. Masson, “A preconditioned conjugate gradient based algorithm for coupling geomechanical-reservoir simulations,” Oil & Gas Science and Technology – Rev. IFP, vol. 57, no. 5, pp. 515–523, 2002.L. Pereira, F. Falc˜ao, L. Guimar˜aes y B. Jacob, “Sensitivity study of geomechanical effects on reservoir simulation,” International Journal of Modeling and Simulation for the Petroleum Industry, vol. 3, no. 1, pp. 57–63, 2009.Q. Tao y A. Ghassemi, “Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength,” Geothermics, vol. 39, no. 3, pp. 250–259, 2010.I. Vardoulakis, M. Stavropoulou y P. Papanastasiou, “Hydro-mechanical aspects of the sand production problem,” Transport in Porous Media, vol. 22, pp. 225–244, Febrero 1996.I. Vardoulakis, P. Papanastasiou y M. Stavropoulou, “Sand erosion in axial flow conditions,” Transport in Porous Media, vol. 45, no. 2, pp. 267–280, 2001.C. Detournay, “Numerical modeling of the slit mode of cavity evolution associated with sand production,” SPE Journal, vol. 14, no. 4, pp. 797–804, 2009.A. Nouri, E. Kuru y H. Vaziri, “Elastoplastic modelling of sand production using fracture energy regularization method,” Journal of Canadian Petroleum Technology, vol. 48, no. 4, pp. 64–71, 2009.H. Wang, P. Cardiff y M. Sharma, “A 3-D poro-elasto-plastic model for sand production around open-hole and cased & perforated wellbores,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, vol. 2, 26-29 Junio, Houston, Texas, pp. 879–888, American Rock Mechanics Association, 2016.A. Kim, M. Sharma y H. Fitzpatrick, “A predictive model for sand production in poorly consolidated sands,” en International Petroleum Technology Conference, IPTC, 7-9 Febrero, Bangkok, Thailand, pp. 2668–2678, IPTC, 2012.Z. Zhou, A. Yu y S. Choi, “Numerical simulation of the liquid-induced erosion in a weakly bonded sand assembly,” Powder Technology, vol. 211, pp. 237–249, Agosto 2011.Y. Wang, “Fundamental behaviors and borehole deformation on wellbore stability and sand production in conventional and hydrates-bearing gas reservoirs,” en SPE Middle East Oil and Gas Show and Conference, 18-21 Marzo, Manama, Bahrain, Society of Petroleum Engineers, 2019.C. Veeken, D. Davies, C. Kenter y A. Kooijman, “Sand production prediction review: developing an integrated approach,” en SPE Annual Technical Conference and Exhibition, 6-9 Octubre, Dallas, Texas, Society of Petroleum Engineers, 1991.A. Gupta, N. Borhan, D.B. Kamat, ... B.B. Madon, “Holistic sand management methodology: A multi-disciplinary team approach to cater sub-surface & surface aspects of sand production and optimization,” en Offshore Technology Conference Asia, 22-25 Marzo, Kuala Lumpur, Malaysia, OTCA, 2016.F. Moreno, P. Guizada, A. Aziz y R. Khanferi, “Application of critical drawdown pressure prediction in completion design to minimize sanding in a clastic gas reservoir in Saudi Arabia,” en SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 24-27 Abril, Dammam, Saudi Arabia, Society of Petroleum Engineers, 2017.H. Vaziri y L. Lemoine, “Strong support for signifcant productivity boost through sand production,” en 4th North American Rock Mechanics Symposium, 31 Julio - 3 Agosto, Seattle, Washington, USA, pp. 295–302, Pacifc Rocks 2000, 2000.I. Palmer, J. McLennan y H. Vaziri, “Cavity-like completions in weak sands,” en International Symposium on Formation Damage Control, 23-24 Febrero, Lafayette, Louisiana, Society of Petroleum Engineers, 2000.M. Nassir, D. Walters, D. Yale, R. Chivvis y J. Turak, “3D modeling of sand production in waterflooding by coupled flow/geomechanical numerical solutions,” en 49th US Rock Mechanics / Geomechanics Symposium 2015, 28 Junio - 1 Julio, San Francisco, California, USA, American Rock Mechanics Association, 2015.F. Baghdadi, A. Gupta, A. Hamid y B. Madon, “An innovative approach in sand onset prediction at different water cuts and estimating sand production for future feld life,” en International Petroleum Technology Conference, 26 - 28 Marzo, Beijing, China, IPTC, 2019.P. Cerasi, A. Berntsen, L. Walle y E. Papamichos, “Sand production delay in gas flow experiments,” en 49th U.S. Rock Mechanics/Geomechanics Symposium, 28 Junio-1 Julio, San Francisco, California, pp. 1–6, American Rock Mechanics Association, 2015.C. David, J. Dautriat, J. Sarout, ... D. Bertauld, “Water weakening triggers mechanical instability in laboratory fluid substitution experiments on a weakly-consolidated sandstone,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.L. Qiao, Z. Wang y A. Huang, “Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects,” Rock Mechanics and Rock Engineering, vol. 50, no. 2, pp. 255–267, 2017.R. Zhang, X. Shi, R. Zhu, ... J. Feng, “Critical drawdown pressure of sanding onset for offshore depleted and water cut gas reservoirs: Modeling and application,” Journal of Natural Gas Science and Engineering, vol. 34, pp. 159–169, 2016.R. Nepop, N. Smirnov, R. Molodtsov, ... G. Nemirovich, “Thick-walled cylinder core tests with flushing by various fluids: Results and practical applications,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.J. Sulem, I. Vardoulakis, E. Papamichos, A. Oulahna y J. Tronvoll, “Elasto-plastic modelling of Red Wildmoor sandstone,” Mechanics of Cohesive Frictional Materials, vol. 4, pp. 215–245, 1999.E. Papamichos, I. Vardoulakis, J. Tronvoll y A. Skjærstein, “Volumetric sand production model and experiment,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 25, pp. 789–808, Julio 2001.J. Tronvoll, A. Skjærstein y E. Papamichos, “Sand production: Mechanical failure or hydrodynamic erosion?,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 291.e1–291.e17, Abril 1997.A. Younessi, V. Rasouli y B. Wu, “Sand production simulation under true-triaxial stress conditions,” International Journal of Rock Mechanics and Mining Sciences, vol. 61, pp. 130–140, 2013.A. Younessi, F. Gui, S. Asadi y A. Khaksar, “Calibration of sand production prediction models at early feld life in the absence of feld sanding data,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 23-25 Octubre, Brisbane, Australia, Society of Petroleum Engineers, 2018.F. Gui, A. Khaksar, W. Van Der Zee y P. Cadogan, “Improving the sanding evaluation accuracy by integrating core tests, feld observations and numerical simulation,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016C. Santana y F. Likrama, “Workflow on incorporating thick-walled cylinder test results in fnite element models of near wellbore for sanding prediction studies,” en 50th US Rock Mechanics / Geomechanics Symposium, vol. 3, 26-29 Junio, Houston, Texas, USA, p. 9, ARMA, 2016.A. Younessi y A. Khaksar, “A novel approach to evaluate the risk of sanding for optimum well completion design: A deep-water case study from Southeast Asia,” en SPE Asia Pacifc Oil & Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016.F. Ferreira, E. Santos, D. Rossi y A. Borba, “Sanding onset prediction on a ultradeepwater well using a probabilistic approach: From lab to feld,” en OTC Brasil 2015: The Atlantic: From East to West - An Ocean of Innovation, pp. 1156–1166, 2015.S. Hashemi, N. Melkoumian y A. Taheri, “A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 7, no. 5, pp. 519–531, 2015.S. Tehrani, A. Sinaki, M. Sarmadivaleh y V. Golmohammadi, “The effect of inner borehole and outer boundary dimensions in thick-walled cylinder test,” en SPE Eastern Regional Meeting, 13-15 Septiembre, Canton, Ohio, USA, Society of Petroleum Engineers, 2016.E. Papamichos, “Sand production and well productivity in conventional reservoirs,” Rock Mech. for Industry, pp. 209–216, 1999.P. Hoek, G. Hertogh, A. Kooijman, P. Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drilling & Completion, vol. 15, no. 4, pp. 261–273, 2000.S. Hashemi y N. Melkoumian, “Effect of different stress path regimes on borehole instability in poorly cemented granular formations,” Journal of Petroleum Science and Engineering, vol. 146, pp. 30–49, 2016.E. Papamichos, L. Walle, A. Berntsen y J. Stenebr˚aten, “Sand mass production in true triaxial borehole tests,” 53rd U.S. Rock Mechanics/Geomechanics Symposium, 2019.A. Younessi y A. Khaksar, “A comprehensive geomechanical study for deep-water feld development planning: A case study from Southeast Asia,” en International Petroleum Technology Conference, 14-16 November, Bangkok, Thailand, pp. 1–10, IPTC, 2016.A. Younessi, V. Rasouli y B. Wu, “The effect of stress anisotropy on sanding: An experimental study,” en 46th US Rock Mechanics / Geomechanics Symposium, 24-27 Junio, Chicago, Illinois, USA, American Rock Mechanics Association, 2012.A. Younessi y V. Rasouli, “Numerical simulations of sanding under different stress regimes,” en 46th US Rock Mechanics / Geomechanics Symposium 2012, Chicago, p. 8, American Rock Mechanics Association, 2012.A. Kooijman, P. Halleck, P. de Bree, C. Veeken y C. Kenter, “Large-scale laboratory sand production test,” en 67th Annual Technical Conference and Exhibition, 4-7 Octubre, Washington D.C., USA, pp. 325–338, Society of Petroleum Engineers, 1992.T. Unander, E. Papamichos, J. Tronvoll y A. Skjærstein, “Flow geometry effects on sand production from an oil producing perforation cavity,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 293.e1–293.e15, Abril 1997.H. Rahmati, M. Jafarpour, S. Azadbakht, ... Y. Xiao, “Review of sand production prediction models,” Journal of Petroleum Engineering, vol. 2013, pp. 1–16, 2013.P. Ranjith, M. Perera, W. Perera, S. Choi y E. Yasar, “Sand production during the extrusion of hydrocarbons from geological formations: A review,” Journal of Petroleum Science and Engineering, vol. 124, pp. 72–82, 2014.E. Khamehchi y E. Reisi, “Sand production prediction using ratio of shear modulus to bulk compressibility (case study),” Egyptian Journal of Petroleum, vol. 24, no. 2, pp. 113–118, 2015.M. Kanj y Y. Abousleiman, “Realistic sanding predictions: a neural approach,” en SPE Annual Technical Conference and Exhibition, 3-6 Octubre, Houston, Texas, Society of Petroleum Engineers, 1999.E. Khamehchi, I. Kivi y M. Akbari, “A novel approach to sand production prediction using artifcial intelligence,” Journal of Petroleum Science and Engineering, vol. 123, pp. 147–154, 2014.I. Bradford y J. Cook, “A semi-analytic elastoplastic model for wellbore stability with applications to sanding,” en Rock Mechanics in Petroleum Engineering, 29-31 Agosto, Delft, The Netherlands, pp. 347–354, Society of Petroleum Engineers, 1994.A. Nouri, H. Vaziri y E. Kuru, “Physical and analytical studies of sand production from a supported wellbore in unconsolidated sand media with single-and two-phase flow,” Journal of Canadian Petroleum Technology, vol. 46, no. 06, pp. 41–48, 2007.G. Oluyemi y M. Oyeneyin, “Analytical critical drawdown (CDD) failure model for real time sanding potential prediction based on Hoek and Brown failure criterion,” Journal of Petroleum and Gas Engineering, vol. 1, no. 2, pp. 16–25, 2010.E. Papamichos y K. Furui, “Analytical models for sand onset under feld conditions,” Journal of Petroleum Science and Engineering, vol. 172, no. Septiembre 2018, pp. 171– 189, 2019B. Wu y C. Tan, “Sand production prediction of gas feld - methodology and feld application,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irvin, Texas, USA, pp. 596–605, Society of Petroleum Engineers, 2002.B. Zhang, Y. Wang y Y. Zeng, “Thermal effects on sand prediction,” en 50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.K. Lezhnev, A. Roshchektaev y V. Pashkin, “Coupled reservoir - well model of sand production processes,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.J. Tronvoll, E. Papamichos, A. Skjærstein y F. Sanflippo, “Sand production in ultraweak sandstones: Is sand control absolutely necessary?,” en Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, 30 Agosto - 3 Septiembre, Rio de Janeiro, Brasil, 1997.E. Araujo, G. Alzate, A. Arbelaez, S. Pe˜na, A. Cardona y A. Naranjo, “Analytical prediction model of sand production integrating geomechanics for open hole and cased – perforated wells,” en SPE Heavy and Extra Heavy Oil Conference: Latin America, 24-26 Septiembre, Medell´ın, Colombia, Society of Petroleum Engineers, 2014.S. Pe˜na, E. Araujo, A. Arbelaez, A. Naranjo y G. Alzate, “An analytic geomechanical model to defne the optimal well direction and perforated orientation in order to reduce sand production potential,” en XVI Congreso Colombiano Petroleo y gasetroleo y Gas, Agosto 26-28, Bogota, Colombia, Asociaci´on Colombiana de Ingenieros de Petr´oleos, 2015.E. Fjær, R. Holt, A. Raaen y P. Horsrud, Petroleum related rock mechanics, vol. 53. Amsterdam: Elsevier Science, 2nd ed., 2008.K. Rahman, A. Khaksar y T. Kayes, “An integrated geomechanical and passive sandcontrol approach to minimizing sanding risk from openhole and cased-and-perforated wells,” SPE Drilling and Completion, vol. 25, no. 2, pp. 155–167, 2010.R. Risnes, R. Bratlik y P. Horsrud, “Sand stresses around a wellbore,” Society of Petroleum Engineers Journal, vol. 22, no. 06, pp. 883 – 898, 1982.N. Morita, D. Whitfll, I. Massie y T. Knudsen, “Realistic sand-production prediction: numerical approach,” SPE Production Engineering, vol. 4, no. 1, pp. 15–24, 1989.P. Van Den Hoek, G. Hertogh, A. Kooijman, P. de Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drill. & Completion, vol. 15, no. 4, pp. 261–273, 2000.Y. Wang y M. Dusseault, “Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata part ii. permeable media,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, no. 4, pp. 247–260, 1991.Q. Zhang, B. Jiang, S. Wang, X. Ge y H. Zhang, “Elasto-plastic analysis of a circular opening in strain-softening rock mass,” International Journal of Rock Mechanics and Mining Sciences, vol. 50, no. 2012, pp. 38–46, 2012.R. Jensen y D. Preece, “Modeling sand production with darcy-flow coupled with discrete elements,” reporte t´ecnico, Sandia National Laboratories, Albuquerque, NM USA, 2000.M. Zeghal y U. El Shamy, “A continuum-discrete hydromechanical analysis of granular deposit liquefaction,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 1361–1383, Diciembre 2004.Y. Cui, A. Nouri, D. Chan y E. Rahmati, “A new approach to DEM simulation of sand production,” Journal of Petroleum Science and Engineering, vol. 147, pp. 56–67, 2016.N. Climent, M. Arroyo, C. Osullivan y A. Gens, “Sand production simulation coupling DEM with CFD,” European Journal of Environmental and Civil Engineering, vol. 18, no. 9, pp. 983–1008, 2014.N. Climent, A coupled CFD-DEM model for sand production in oil wells. Tesis Ph.D., Univeritat Politecnica de Catalunya, 2016A. Rakhimzhanova, C. Thornton, Y. Amanbek y Y. Zhao, “Numerical simulations of sand production in oil wells using the CFD-DEM-IBM approach,” Journal of Petroleum Science and Engineering, vol. 208, no. C, pp. 1–24,D. Potyondy y P. Cundall, “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 8, pp. 1329–1364, 2004.A. Skjærstein, M. Stavropoulou, I. Vardoulakis y J. Tronvoll, “Hydrodynamic erosion; a potential mechanism of sand production in weak sandstones,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, Abril 1997.M. Stavropoulou, P. Papanastasiou y I. Vardoulakis, “Coupled wellbore erosion and stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 22, pp. 749–769, 1998.E. Papamichos y I. Vardoulakis, “Sand erosion with a porosity diffusion law,” Computers and Geotechnics, vol. 32, pp. 47–58, Enero 2005.J. Wang, R. Wan, A. Settari y D. Walters, “Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes,” en American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, no. USRMS 05-842, 25-29 Junio, Anchorage, Alaska, American Rock Mechanics Association, 2005.J. Wang, R. Wan, A. Settari, D. Walters y Y. Liu, “Sand production and instability analysis in a wellbore using a fully coupled reservoir-geomechanics model,” en Gulf Rocks 2004, The 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, 5-9 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2004.J. Shao y P. Marzoina, “A damage mechanics approach for the modelling of sand production in heavy oil reservoirs,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irving, Texas, Society of Petroleum Engineers, 2002.G. Servant, P. Marzoina y J. Nauroy, “Near-wellbore modeling: Sand production issues,” en SPE Annual Technical Conference and Exhibition, 11-14 November, Anaheim, California, USA, Society of Petroleum Engineers, 2007.G. Servant, P. Marzoina, Y. Peysson, E. Bemer y J. Nauroy, “Sand erosion in weakly consolidated reservoirs : Experiments and numerical modeling,” en SPE/DOE Symposium on Improved Oil Recovery, 22-26 Abril, Tulsa, Oklahoma, pp. 1–8, Society of Petroleum Engineers, 2006.H. Vaziri, Y. Xiao, R. Islam y A. Nouri, “Numerical modeling of seepage-induced sand production in oil and gas reservoirs,” Journal of Petroleum Science and Engineering, vol. 36, pp. 71–86, Octubre 2002.A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “A comprehensive approach to modeling sanding during oil production,” en SPE Latin American and Caribbean Petroleum Engineering Conference, 27-30 Abril, Port-of-Spain, Trinidad and Tobago, Society of Petroleum Engineers, 2003A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Comprehensive transient modeling of sand production in horizontal wellbores,” en SPE Annual Technical Conference and Exhibition, 5-8 Octubre, Denver, Colorado, Society of Petroleum Engineers, 2003A. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Effect of volumetric failure on sand production in oil-wellbores,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 15-17 Abril, Jakarta, Indonesia, Society of Petroleum Engineers, 2003.A. Nouri, E. Kuru y H. Vaziri, “Enhanced modelling of sand production through improved deformation and stress analysis,” en 8th Canadian International Petroleum Conference, 12-14 Junio, Calgary, Alberta, Canada, Petroelum Society, 2007.A. Nouri, H. Vaziri, E. Kuru y R. Islam, “A comparison of two sanding criteria in physical and numerical modeling of sand production,” Journal of Petroleum Science and Engineering, vol. 50, no. 1, pp. 55–70, 2006.H. Rahmati, A. Nouri, H. Vaziri y D. Chan, “Validation of predicted cumulative sand and sand rate against physical-model test,” Journal of Canadian Petroleum Technology, vol. 51, no. 5, pp. 403–410, 2012.S. Alquwizani y M. Sharma, “Three-dimensional modeling of wellbore and perforation stability in weak sands,” en SPE International Symposium and Exhibition on Formation Damage Control, 26-28 Febrero, Lafayette, Louisiana, USA, Society of Petroleum Engineers, 2014.M. Nassir y D. Walters, “3D geomechanical modeling of cavity growth in loosely consolidated sandstone,” en ISRM Regional Symposium - EUROCK, 27-29 Mayo, Vigo, Spain, ISRM, 2014.E. Gravanis, E. Sarris y P. Papanastasiou, “Hydro-mechanical erosion models for sand production,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 39, no. 18, pp. 2017–2036, 2015.B. Wu, S.K. Choi, R. Denke, ... B.B. Madon, “A new and practical model for amount and rate of sand production estimation,” en Offshore Technology Conference Asia, 22-25 Mayo, Kuala Lumpur, Malaysia, pp. 2830–2847, 2016.H. Wang y M. Sharma, “A fully 3-D, multi-phase, poro-elasto-plastic model for sand production,” en SPE Annual Technical Conference and Exhibition, 26-28 Septiembre, Dubai, UAE, pp. 26–28, Society of Petroleum Engineers, 2016.H. Wang, D. Gala y M. Sharma, “Effect of fluid type and multiphase flow on sand production in oil and gas wells,” SPE Journal, vol. 24, no. 2, pp. 733–743, 2019.Z. Fan, D. Yang y X. Li, “Quantifcation of sand production using a pressure-gradientbased sand-failure criterion,” SPE Journal, vol. 24, no. 3, pp. 988–1001, 2019.A. Mohamad-Hussein y Q. Ni, “Numerical modeling of onset and rate of sand production in perforated wells,” Journal of Petroleum Exploration and Production Technology, vol. 8, no. 4, pp. 1255–1271, 2018.R. Zimmerman, W. Somerton y M. King, “Compressibility of porous rocks,” Journal of Geophysical Research, vol. 91, no. B12, pp. 12765–12777, 1986.O. Schenk y K. Gartner, “Solving unsymmetric sparse systems of linear equations with PARDISO,” Future Generation Computer Systems, vol. 20, no. 3, pp. 475–487, 2004.S. Sloan, “Substepping schemes for the numerical integration of elastoplastic stress–strain relations,” International Journal for Numerical Methods in Engineering, vol. 24, no. 5, pp. 893–911, 1987.E. Detournay y A. H. Cheng, “Poroelastodynamic response of a borehole in a nonhydrostatic stress feld,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 25, no. 3, pp. 171–182, 1988.A. Singh, K. Seshagiri Rao y R. Ayothiraman, “A Closed-Form Analytical Solution for Circular Opening in Rocks Using Drucker–Prager Criterion,” Indian Geotechnical Journal, vol. 49, no. 4, pp. 437–454, 2019.J. Gomez, R. Chalaturnyk y G. Zambrano-Narvaez, “Experimental investigation of the mechanical behavior and permeability of 3D printed sandstone analogues under triaxial conditions,” Transport in Porous Media, vol. 129, no. 2, pp. 541–557, 2018.J. Gomez, Mechanical properties characterization of printed reservoir sandstone analogues. Tesis M.Sc., University of Alberta, 2017.N. Ardila, Hydraulic properties characterization of 3D printed sandstone analogues. Tesis M.Sc., University of Alberta, 2018.B. Primkulov, J. Chalaturnyk, R. Chalaturnyk y G. Zambrano Narvaez, “3D printed sandstone strength: Curing of furfuryl alcohol resin-based sandstones,” 3D Printing and Additive Manufacturing, vol. 4, no. 3, pp. 149–155, 2017.ASTM International, “ASTM D854 - 00 standard test methods for specifc gravity of soil solids by water pycnometer,” ASTM, 2000.ASTM International, “ASTM D2166-06 standard test method for unconfned compressive strength of cohesive soil,” 2007.ASTM International, “ASTM D7181-11 standard test method for consolidated drained triaxial compression test for soils,” 2011.P. Charlez, Rock mechanics: volume 1. Theoretical fundamentals. editions t ed., 1991S. Maksimov, Underwater arc welding of higher strength low-alloy steels, vol. 24. Springer, 2010.C. Tamagnini y M. Ciantia, “Plasticity with generalized hardening: Constitutive modeling and computational aspects,” Acta Geotechnica, vol. 11, no. 3, pp. 595–623, 2016.S. Ghabezloo, J. Sulem y J. Saint-Marc, “Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 761–768, 2009.J. Reddy, An introduction to the fnite element method. New York: McGraw-Hill, 2nd ed., 1993Proyecto 015-2016 titulado ”Modelamiento geomecánico para el diagnóstico, evaluación y manejo de la producción de arena en pozos offshore”.Agencia Nacional de Hidrocarburos ANHUniversidad Nacional de ColombiaEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86629/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1085289667.2022.pdf1085289667.2022.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf6668548https://repositorio.unal.edu.co/bitstream/unal/86629/2/1085289667.2022.pdf216ff389061bdd48283f13747d5bed0dMD52THUMBNAIL1085289667.2022.pdf.jpg1085289667.2022.pdf.jpgGenerated Thumbnailimage/jpeg4915https://repositorio.unal.edu.co/bitstream/unal/86629/3/1085289667.2022.pdf.jpgb66b7c25236353dfe241922c431986cbMD53unal/86629oai:repositorio.unal.edu.co:unal/866292024-07-26 23:38:57.51Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=