Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
ilustraciones, gráficas, tablas
- Autores:
-
Baena Novoa, Helbert Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82957
- Palabra clave:
- 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Residuos industriales
Catalizadores
Factory and trade waste
Catalysts
Enzymatic immobilization
Enzymatic hydrolysis
Used cooking oil
Candida antartica lipase B.
Activated carbons
Inmovilización enzimática
Hidrólisis enzimática
Aceite usado de cocina
Cándida antártica lipasa B.
Carbonos activados
Tratamiento de residuos
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_4a686f6d8f942e5acc9a7f245248ebab |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82957 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
dc.title.translated.spa.fl_str_mv |
Estudio de la hidrólisis catalizada por lipasas de corrientes oleoquímicas residuales |
title |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
spellingShingle |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales Residuos industriales Catalizadores Factory and trade waste Catalysts Enzymatic immobilization Enzymatic hydrolysis Used cooking oil Candida antartica lipase B. Activated carbons Inmovilización enzimática Hidrólisis enzimática Aceite usado de cocina Cándida antártica lipasa B. Carbonos activados Tratamiento de residuos |
title_short |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
title_full |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
title_fullStr |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
title_full_unstemmed |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
title_sort |
Study of the lipase-catalyzed hydrolysis of waste oleochemical streams |
dc.creator.fl_str_mv |
Baena Novoa, Helbert Alexander |
dc.contributor.advisor.none.fl_str_mv |
Orjuela Londoño, Alvaro |
dc.contributor.author.none.fl_str_mv |
Baena Novoa, Helbert Alexander |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Procesos Químicos y Bioquímicos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales |
topic |
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales Residuos industriales Catalizadores Factory and trade waste Catalysts Enzymatic immobilization Enzymatic hydrolysis Used cooking oil Candida antartica lipase B. Activated carbons Inmovilización enzimática Hidrólisis enzimática Aceite usado de cocina Cándida antártica lipasa B. Carbonos activados Tratamiento de residuos |
dc.subject.other.spa.fl_str_mv |
Residuos industriales Catalizadores |
dc.subject.other.eng.fl_str_mv |
Factory and trade waste Catalysts |
dc.subject.proposal.eng.fl_str_mv |
Enzymatic immobilization Enzymatic hydrolysis Used cooking oil Candida antartica lipase B. Activated carbons |
dc.subject.proposal.spa.fl_str_mv |
Inmovilización enzimática Hidrólisis enzimática Aceite usado de cocina Cándida antártica lipasa B. Carbonos activados |
dc.subject.spines.spa.fl_str_mv |
Tratamiento de residuos |
description |
ilustraciones, gráficas, tablas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-08-19 |
dc.date.accessioned.none.fl_str_mv |
2023-01-16T21:04:37Z |
dc.date.available.none.fl_str_mv |
2023-01-16T21:04:37Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82957 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82957 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767. F. Shahidi, Bailey’s Industrial Oil and Fat Products, 7th ed., Wiley, New York, 2020. J.K. Satyarthi, D. Srinivas, P. Ratnasamy, Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts, Appl. Catal. A Gen. 391 (2011) 427–435. https://doi.org/10.1016/j.apcata.2010.03.047. F.D. Gunstone, R.J. Hamilton, Oleochemical Manufacture and Applications, 1st ed., Sheffield Academic Press, Liverpool, 2001. N.B. Hasan, W.Y. Tan, N.A. Mohd Zain, S. Mohd Suardi, Immobilization of Candida Rugosa Lipase in PVA-Alginate-Sulfate Beads for Waste Cooking Oil Treatment, J. Teknol. 74 (2015) 215–222. G. Sharmila, C. Muthukumaran, N.M. Kumar, V.M. Sivakumar, M. Thirumarimurugan, Food waste valorization for biopolymer production, Elsevier, 2020. https://doi.org/10.1016/B978-0-444-64321-6.00012-4. P. Skoczinski, M.C. Carus, D. De Guzman, K. Harald, R. Chinthapalli, J. Ravenstijn, W. Baltus, R. Achim, Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. [Online], (2021). http://bio-based.eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025/ (accessed July 19, 2021). A. Jering, J. Günter, Use of renewable raw materials with special emphasis on chemical industry, Eur. Top. Cent. Sustain. Consum. Prod. 2 (2010) 1–58. T. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management – A review, J. Environ. Manage. 187 (2017) 424–435. https://doi.org/10.1016/j.jenvman.2016.11.003. M.-J. Dumont, S.S. Narine, Soapstock and deodorizer distillates from North American vegetable oils : Review on their characterization , extraction and utilization, Food Res. Int. 40 (2007) 957–974. https://doi.org/10.1016/j.foodres.2007.06.006. A. Orjuela, Industrial Oleochemicals from Used Cooking Oils (UCOs) – Sustainability Benefits and Challenges., in: S. Sikdar, F. Princiotta (Eds.), Adv. Carbon Manag. Technol., 1st ed., CRC Press, 2021: pp. 74–96. Greenea, 2016c. Analysis of the current development of household UCO collection systems in the EU., (n.d.). https://theicct.org/sites/default/files/publications/Greenea Report Household UCO Collection in the EU_ICCT_20160629.pdf (accessed July 21, 2021). L.A. Rincón, J.G. Cadavid, A. Orjuela, Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia, Waste Manag. 88 (2019) 200–210. https://doi.org/10.1016/j.wasman.2019.03.042. I.A.F. Husain, M.F. Alkhatib, M.S. Jami, M.E.S. Mirghani, Z. Bin Zainudin, A. Hoda, Problems, control, and treatment of fat, oil, and grease (FOG): A review, J. Oleo A. Orjuela, J. Clark, Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities, Curr. Opin. Green Sustain. Chem. (2020) 100369. https://doi.org/10.1016/j.cogsc.2020.100369. J. Cardenas, L.A. Rincón, A. Orjuela, Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks, Environ. Chem. Eng. 9 (2021) 21–23. https://doi.org/10.1016/j.jece.2020.104610. A. Orjuela, L.S. David, P.C. Narvaez, B. Katryniok, J. Clark, Pre-treatment of used cooking oils for the production of green chemicals : A review, Clean. Prod. J. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125129. ] B. Casali, E. Brenna, F. Parmeggiani, D. Tessaro, F. Tentori, Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes, Sustain. Chem. 2 (2021) 74–91. https://doi.org/10.3390/suschem2010006. M. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem. 39 (2004) 1347–1361. https://doi.org/10.1016/S0032-9592(03)00266-8. M.C.P. Zenevicz, A. Jacques, A.F. Furigo, J.V. Oliveira, D. de Oliveira, Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system, Ind. Crops Prod. 80 (2016) 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031. V. Skliar, G. Krusir, V. Zakharchuk, I. Kovalenko, T. Shpyrko, Investigation of the Fat Fraction Enzymatic Hydrolysis of the Waste From Production of Hydrogenated Fat By the Lipase Rhizopus Japonicus, Food Sci. Technol. 13 (2019) 27–34. https://doi.org/10.15673/fst.v13i1.1332. V.R. Murty, J. Bhat, P.K.A. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: A review, Biotechnol. Bioprocess Eng. 7 (2002) 57–66. https://doi.org/10.1007/BF02935881. L. Cao, H. Screening, Industrial Biotransformations Enzymes in Industry Biocatalysis, 2005. K.P. Preczeski, A.B. Kamanski, T. Scapini, A.F. Camargo, T.A. Modkoski, V. Rossetto, B. Venturin, J. Mulinari, S.M. Golunski, A.J. Mossi, H. Treichel, Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils, Bioprocess Biosyst. Eng. 41 (2018) 851–857. https://doi.org/10.1007/s00449-018-1919-y. B.R. Facin, M.S. Melchiors, A. Valério, J.V. Oliveira, D. De Oliveira, Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects, Ind. Eng. Chem. Res. 58 (2019) 5358–5378. https://doi.org/10.1021/acs.iecr.9b00448. E.T. Phuah, T.K. Tang, Y.Y. Lee, T.S.Y. Choong, C.P. Tan, O.M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol. 8 (2015) 1169–1186. https://doi.org/10.1007/s11947-015-1505-0. G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32 (2016) 60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033. A. Mazubert, M. Poux, J. Aubin, Intensified processes for FAME production from waste cooking oil: A technological review, Chem. Eng. J. 233 (2013) 201–223. https://doi.org/10.1016/j.cej.2013.07.063. N.F. Mokhtar, R.N. Raja Noor Zaliha, The immobilization of lipases on porous support by adsorption and hydrophobic interaction method, Catalysts. 10 (2020) 1– J. Ren, B. Fan, Huhetaoli, D. Niu, Y. Gu, C. Li, Biodegradation of Waste Cooking Oils by Klebsiella quasivariicola IUMR-B53 and Characteristics of Its Oil-Degrading Enzyme, Waste and Biomass Valorization. 12 (2021) 1243–1252. https://doi.org/10.1007/s12649-020-01097-z. X. Ming-Hong, K. I-Ching, Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process, Asia-Pacific J. Chem. Eng. 11 (2016) 910–917. https://doi.org/10.1002/apj.2025. N. Saifuddin, A.Z. Raziah, H.N. Farah, Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process, E-Journal Chem. 6 (2009). https://doi.org/10.1155/2009/801756. R. Prakash, S.S. Aulakh, R. Kalra, Effect of frying time on free fatty acid generation and esterification rate in Aspergillus sp.-catalyzed transesterification of cottonseed oil, Biocatal. Biotransformation. 28 (2010) 403–407. https://doi.org/10.3109/10242422.2010.524698. S. Cesarini, P. Diaz, P.M. Nielsen, Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock, Process Biochem. 48 (2013) 484–487. https://doi.org/10.1016/j.procbio.2013.02.001. V.G. Tacias-Pascacio, J.J. Virgen-Ortíz, M. Jiménez-Pérez, M. Yates, B. Torrestiana-Sanchez, A. Rosales-Quintero, R. Fernandez-Lafuente, Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support, Fuel. 200 (2017) 1–10. https://doi.org/10.1016/j.fuel.2017.03.054. L. Cao, Immobilised enzymes: Science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226. https://doi.org/10.1016/j.cbpa.2005.02.014. T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y. H.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology, Catal. Sci. Technol. 11 (2021) 1994–2020. https://doi.org/10.1039/D1CY00020A. C. Ortiz, M.L. Ferreira, O. Barbosa, J.C.S. Dos Santos, R.C. Rodrigues, Á. Berenguer-Murcia, L.E. Briand, R. Fernandez-Lafuente, Novozym 435: The “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol. 9 (2019) 2380–2420. https://doi.org/10.1039/c9cy00415g. K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies, Process Biochem. 47 (2012) 435–445. https://doi.org/10.1016/j.procbio.2011.11.025. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2022 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 81 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82957/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82957/2/DocumentoFinal1010223522.pdf https://repositorio.unal.edu.co/bitstream/unal/82957/3/DocumentoFinal1010223522.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f068f4177ad7b92616f401872e51366c daf074043e6179906143674a4c02989c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090025302753280 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela Londoño, Alvaroa583c5015d0fe88a7d62aa2891228b13Baena Novoa, Helbert Alexanderac51ad04307d0cc05a84330226e08b44600Grupo de Investigación en Procesos Químicos y Bioquímicos2023-01-16T21:04:37Z2023-01-16T21:04:37Z2022-08-19https://repositorio.unal.edu.co/handle/unal/82957Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasResidual vegetable oils and fats have attracted attention around the world because their common mismanagement generates a complex cascade of environmental and health problems. Nonetheless, since they are mostly comprised of triglycerides, they can be used as second generation raw materials in the oleochemical industry. In particular, fatty acids that are intermediates for the manufacture of surfactants, plasticizers, biofuels, among others, can be obtained through the hydrolysis of such waste triglycerides. However, the current industrial process (i.e. Emery-Colgate) for fatty acids production has important disadvantages mainly the energy intensity and waste generation. For this reason, enzymatic processes have been explored as viable alternatives to conventional ones, since they operate under milder temperature and pressure conditions. In the same way, the interest in developing effective enzymes at the industrial level has driven new advances such as immobilization in suitable and tunable solid supports that increase their stability and facilitate their reusability. Likewise, process intensification has also been employed to improve reaction yields and to reduce waste generation. In the present study, the enzymatic hydrolysis of used cooking oils was explored, using Candida Antarctica lipase B immobilized on activated carbons. It was verified a greater enzymatic activity and immobilization efficiency was obtained by amino-functionalization with subsequent cross-linking using glutaraldehyde. Once immobilized, reaction conditions were explored by changing pH, temperature, substrate ratio and immobilized enzyme loading. Finally, a comparison with currently used commercial enzymes and reusability tests were also performed to assess the feasibility of the process.Los aceites vegetales y grasas residuales han captado mundial ya que típicamente se disponen de forma incorrecta generando una compleja cascada de problemas ambientales y de salud. Sin embargo, debido a que estos residuos están compuestos principalmente de triglicéridos, estos se pueden usar como materia prima de segunda generación para la industria oleoquímica. En particular, los ácidos grasos que son un intermediario para la manufactura de surfactantes, plastificantes, biocombustibles entre otros, pueden ser obtenidos mediante la hidrólisis de triglicéridos residuales. No obstante, el proceso industrial actual (i.e. Emery-Colgate) para la producción de ácidos grasos presenta importantes desventajas como su intensidad energética y la generación de residuos. Por esta razón se han explorado procesos enzimáticos como una alternativa viable a los convencionales, ya que estos operan en condiciones de temperatura y presión más benévolas. De la misma forma, el interés por desarrollar enzimas efectivas a nivel industrial ha impulsado nuevos avances tal como la inmovilización de enzimas en soportes sólidos adecuados y modificables para aumentar su estabilidad y facilitar su reusabilidad. Igualmente, se ha empleado la intensificación de procesos para mejorar el rendimiento de la reacción y reducir la generación de residuos. En este estudio se exploró la hidrolisis enzimática de aceites usados de cocina, usando la Cándida antártica lipasa B inmovilizada en carbones activados. Se verificó que la mayor actividad y eficiencia de inmovilización se logró por medio de amino-funcionalización seguida de entrecruzamiento usando glutaraldehído. Una vez inmovilizado, se evaluaron diferentes condiciones de reacción enzimática, variando pH, temperatura, relación de sustratos y carga de enzima inmovilizada. Finalmente, se realizó una comparación de la eficiencia del proceso usando enzimas comerciales y una evaluación de factibilidad a través de ensayos de reusabilidad. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería QuímicaDiseño de bioprocesos y biotecnologíaxvi, 81 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesResiduos industrialesCatalizadoresFactory and trade wasteCatalystsEnzymatic immobilizationEnzymatic hydrolysisUsed cooking oilCandida antartica lipase B.Activated carbonsInmovilización enzimáticaHidrólisis enzimáticaAceite usado de cocinaCándida antártica lipasa B.Carbonos activadosTratamiento de residuosStudy of the lipase-catalyzed hydrolysis of waste oleochemical streamsEstudio de la hidrólisis catalizada por lipasas de corrientes oleoquímicas residualesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMU. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.F. Shahidi, Bailey’s Industrial Oil and Fat Products, 7th ed., Wiley, New York, 2020.J.K. Satyarthi, D. Srinivas, P. Ratnasamy, Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts, Appl. Catal. A Gen. 391 (2011) 427–435. https://doi.org/10.1016/j.apcata.2010.03.047.F.D. Gunstone, R.J. Hamilton, Oleochemical Manufacture and Applications, 1st ed., Sheffield Academic Press, Liverpool, 2001.N.B. Hasan, W.Y. Tan, N.A. Mohd Zain, S. Mohd Suardi, Immobilization of Candida Rugosa Lipase in PVA-Alginate-Sulfate Beads for Waste Cooking Oil Treatment, J. Teknol. 74 (2015) 215–222.G. Sharmila, C. Muthukumaran, N.M. Kumar, V.M. Sivakumar, M. Thirumarimurugan, Food waste valorization for biopolymer production, Elsevier, 2020. https://doi.org/10.1016/B978-0-444-64321-6.00012-4.P. Skoczinski, M.C. Carus, D. De Guzman, K. Harald, R. Chinthapalli, J. Ravenstijn, W. Baltus, R. Achim, Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. [Online], (2021). http://bio-based.eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025/ (accessed July 19, 2021).A. Jering, J. Günter, Use of renewable raw materials with special emphasis on chemical industry, Eur. Top. Cent. Sustain. Consum. Prod. 2 (2010) 1–58.T. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management – A review, J. Environ. Manage. 187 (2017) 424–435. https://doi.org/10.1016/j.jenvman.2016.11.003.M.-J. Dumont, S.S. Narine, Soapstock and deodorizer distillates from North American vegetable oils : Review on their characterization , extraction and utilization, Food Res. Int. 40 (2007) 957–974. https://doi.org/10.1016/j.foodres.2007.06.006.A. Orjuela, Industrial Oleochemicals from Used Cooking Oils (UCOs) – Sustainability Benefits and Challenges., in: S. Sikdar, F. Princiotta (Eds.), Adv. Carbon Manag. Technol., 1st ed., CRC Press, 2021: pp. 74–96.Greenea, 2016c. Analysis of the current development of household UCO collection systems in the EU., (n.d.). https://theicct.org/sites/default/files/publications/Greenea Report Household UCO Collection in the EU_ICCT_20160629.pdf (accessed July 21, 2021).L.A. Rincón, J.G. Cadavid, A. Orjuela, Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia, Waste Manag. 88 (2019) 200–210. https://doi.org/10.1016/j.wasman.2019.03.042.I.A.F. Husain, M.F. Alkhatib, M.S. Jami, M.E.S. Mirghani, Z. Bin Zainudin, A. Hoda, Problems, control, and treatment of fat, oil, and grease (FOG): A review, J. OleoA. Orjuela, J. Clark, Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities, Curr. Opin. Green Sustain. Chem. (2020) 100369. https://doi.org/10.1016/j.cogsc.2020.100369.J. Cardenas, L.A. Rincón, A. Orjuela, Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks, Environ. Chem. Eng. 9 (2021) 21–23. https://doi.org/10.1016/j.jece.2020.104610.A. Orjuela, L.S. David, P.C. Narvaez, B. Katryniok, J. Clark, Pre-treatment of used cooking oils for the production of green chemicals : A review, Clean. Prod. J. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125129.] B. Casali, E. Brenna, F. Parmeggiani, D. Tessaro, F. Tentori, Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes, Sustain. Chem. 2 (2021) 74–91. https://doi.org/10.3390/suschem2010006.M. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem. 39 (2004) 1347–1361. https://doi.org/10.1016/S0032-9592(03)00266-8.M.C.P. Zenevicz, A. Jacques, A.F. Furigo, J.V. Oliveira, D. de Oliveira, Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system, Ind. Crops Prod. 80 (2016) 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031.V. Skliar, G. Krusir, V. Zakharchuk, I. Kovalenko, T. Shpyrko, Investigation of the Fat Fraction Enzymatic Hydrolysis of the Waste From Production of Hydrogenated Fat By the Lipase Rhizopus Japonicus, Food Sci. Technol. 13 (2019) 27–34. https://doi.org/10.15673/fst.v13i1.1332.V.R. Murty, J. Bhat, P.K.A. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: A review, Biotechnol. Bioprocess Eng. 7 (2002) 57–66. https://doi.org/10.1007/BF02935881.L. Cao, H. Screening, Industrial Biotransformations Enzymes in Industry Biocatalysis, 2005.K.P. Preczeski, A.B. Kamanski, T. Scapini, A.F. Camargo, T.A. Modkoski, V. Rossetto, B. Venturin, J. Mulinari, S.M. Golunski, A.J. Mossi, H. Treichel, Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils, Bioprocess Biosyst. Eng. 41 (2018) 851–857. https://doi.org/10.1007/s00449-018-1919-y.B.R. Facin, M.S. Melchiors, A. Valério, J.V. Oliveira, D. De Oliveira, Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects, Ind. Eng. Chem. Res. 58 (2019) 5358–5378. https://doi.org/10.1021/acs.iecr.9b00448.E.T. Phuah, T.K. Tang, Y.Y. Lee, T.S.Y. Choong, C.P. Tan, O.M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol. 8 (2015) 1169–1186. https://doi.org/10.1007/s11947-015-1505-0.G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32 (2016) 60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033.A. Mazubert, M. Poux, J. Aubin, Intensified processes for FAME production from waste cooking oil: A technological review, Chem. Eng. J. 233 (2013) 201–223. https://doi.org/10.1016/j.cej.2013.07.063.N.F. Mokhtar, R.N. Raja Noor Zaliha, The immobilization of lipases on porous support by adsorption and hydrophobic interaction method, Catalysts. 10 (2020) 1– J. Ren, B. Fan, Huhetaoli, D. Niu, Y. Gu, C. Li, Biodegradation of Waste Cooking Oils by Klebsiella quasivariicola IUMR-B53 and Characteristics of Its Oil-Degrading Enzyme, Waste and Biomass Valorization. 12 (2021) 1243–1252. https://doi.org/10.1007/s12649-020-01097-z.X. Ming-Hong, K. I-Ching, Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process, Asia-Pacific J. Chem. Eng. 11 (2016) 910–917. https://doi.org/10.1002/apj.2025.N. Saifuddin, A.Z. Raziah, H.N. Farah, Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process, E-Journal Chem. 6 (2009). https://doi.org/10.1155/2009/801756.R. Prakash, S.S. Aulakh, R. Kalra, Effect of frying time on free fatty acid generation and esterification rate in Aspergillus sp.-catalyzed transesterification of cottonseed oil, Biocatal. Biotransformation. 28 (2010) 403–407. https://doi.org/10.3109/10242422.2010.524698.S. Cesarini, P. Diaz, P.M. Nielsen, Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock, Process Biochem. 48 (2013) 484–487. https://doi.org/10.1016/j.procbio.2013.02.001.V.G. Tacias-Pascacio, J.J. Virgen-Ortíz, M. Jiménez-Pérez, M. Yates, B. Torrestiana-Sanchez, A. Rosales-Quintero, R. Fernandez-Lafuente, Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support, Fuel. 200 (2017) 1–10. https://doi.org/10.1016/j.fuel.2017.03.054.L. Cao, Immobilised enzymes: Science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226. https://doi.org/10.1016/j.cbpa.2005.02.014.T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y.H.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology, Catal. Sci. Technol. 11 (2021) 1994–2020. https://doi.org/10.1039/D1CY00020A.C. Ortiz, M.L. Ferreira, O. Barbosa, J.C.S. Dos Santos, R.C. Rodrigues, Á. Berenguer-Murcia, L.E. Briand, R. Fernandez-Lafuente, Novozym 435: The “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol. 9 (2019) 2380–2420. https://doi.org/10.1039/c9cy00415g.K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies, Process Biochem. 47 (2012) 435–445. https://doi.org/10.1016/j.procbio.2011.11.025.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82957/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALDocumentoFinal1010223522.pdfDocumentoFinal1010223522.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1325444https://repositorio.unal.edu.co/bitstream/unal/82957/2/DocumentoFinal1010223522.pdff068f4177ad7b92616f401872e51366cMD52THUMBNAILDocumentoFinal1010223522.pdf.jpgDocumentoFinal1010223522.pdf.jpgGenerated Thumbnailimage/jpeg4178https://repositorio.unal.edu.co/bitstream/unal/82957/3/DocumentoFinal1010223522.pdf.jpgdaf074043e6179906143674a4c02989cMD53unal/82957oai:repositorio.unal.edu.co:unal/829572023-08-13 23:03:57.381Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |