Study of the lipase-catalyzed hydrolysis of waste oleochemical streams

ilustraciones, gráficas, tablas

Autores:
Baena Novoa, Helbert Alexander
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82957
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82957
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Residuos industriales
Catalizadores
Factory and trade waste
Catalysts
Enzymatic immobilization
Enzymatic hydrolysis
Used cooking oil
Candida antartica lipase B.
Activated carbons
Inmovilización enzimática
Hidrólisis enzimática
Aceite usado de cocina
Cándida antártica lipasa B.
Carbonos activados
Tratamiento de residuos
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_4a686f6d8f942e5acc9a7f245248ebab
oai_identifier_str oai:repositorio.unal.edu.co:unal/82957
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
dc.title.translated.spa.fl_str_mv Estudio de la hidrólisis catalizada por lipasas de corrientes oleoquímicas residuales
title Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
spellingShingle Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Residuos industriales
Catalizadores
Factory and trade waste
Catalysts
Enzymatic immobilization
Enzymatic hydrolysis
Used cooking oil
Candida antartica lipase B.
Activated carbons
Inmovilización enzimática
Hidrólisis enzimática
Aceite usado de cocina
Cándida antártica lipasa B.
Carbonos activados
Tratamiento de residuos
title_short Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
title_full Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
title_fullStr Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
title_full_unstemmed Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
title_sort Study of the lipase-catalyzed hydrolysis of waste oleochemical streams
dc.creator.fl_str_mv Baena Novoa, Helbert Alexander
dc.contributor.advisor.none.fl_str_mv Orjuela Londoño, Alvaro
dc.contributor.author.none.fl_str_mv Baena Novoa, Helbert Alexander
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
topic 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Residuos industriales
Catalizadores
Factory and trade waste
Catalysts
Enzymatic immobilization
Enzymatic hydrolysis
Used cooking oil
Candida antartica lipase B.
Activated carbons
Inmovilización enzimática
Hidrólisis enzimática
Aceite usado de cocina
Cándida antártica lipasa B.
Carbonos activados
Tratamiento de residuos
dc.subject.other.spa.fl_str_mv Residuos industriales
Catalizadores
dc.subject.other.eng.fl_str_mv Factory and trade waste
Catalysts
dc.subject.proposal.eng.fl_str_mv Enzymatic immobilization
Enzymatic hydrolysis
Used cooking oil
Candida antartica lipase B.
Activated carbons
dc.subject.proposal.spa.fl_str_mv Inmovilización enzimática
Hidrólisis enzimática
Aceite usado de cocina
Cándida antártica lipasa B.
Carbonos activados
dc.subject.spines.spa.fl_str_mv Tratamiento de residuos
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-19
dc.date.accessioned.none.fl_str_mv 2023-01-16T21:04:37Z
dc.date.available.none.fl_str_mv 2023-01-16T21:04:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82957
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82957
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.
F. Shahidi, Bailey’s Industrial Oil and Fat Products, 7th ed., Wiley, New York, 2020.
J.K. Satyarthi, D. Srinivas, P. Ratnasamy, Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts, Appl. Catal. A Gen. 391 (2011) 427–435. https://doi.org/10.1016/j.apcata.2010.03.047.
F.D. Gunstone, R.J. Hamilton, Oleochemical Manufacture and Applications, 1st ed., Sheffield Academic Press, Liverpool, 2001.
N.B. Hasan, W.Y. Tan, N.A. Mohd Zain, S. Mohd Suardi, Immobilization of Candida Rugosa Lipase in PVA-Alginate-Sulfate Beads for Waste Cooking Oil Treatment, J. Teknol. 74 (2015) 215–222.
G. Sharmila, C. Muthukumaran, N.M. Kumar, V.M. Sivakumar, M. Thirumarimurugan, Food waste valorization for biopolymer production, Elsevier, 2020. https://doi.org/10.1016/B978-0-444-64321-6.00012-4.
P. Skoczinski, M.C. Carus, D. De Guzman, K. Harald, R. Chinthapalli, J. Ravenstijn, W. Baltus, R. Achim, Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. [Online], (2021). http://bio-based.eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025/ (accessed July 19, 2021).
A. Jering, J. Günter, Use of renewable raw materials with special emphasis on chemical industry, Eur. Top. Cent. Sustain. Consum. Prod. 2 (2010) 1–58.
T. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management – A review, J. Environ. Manage. 187 (2017) 424–435. https://doi.org/10.1016/j.jenvman.2016.11.003.
M.-J. Dumont, S.S. Narine, Soapstock and deodorizer distillates from North American vegetable oils : Review on their characterization , extraction and utilization, Food Res. Int. 40 (2007) 957–974. https://doi.org/10.1016/j.foodres.2007.06.006.
A. Orjuela, Industrial Oleochemicals from Used Cooking Oils (UCOs) – Sustainability Benefits and Challenges., in: S. Sikdar, F. Princiotta (Eds.), Adv. Carbon Manag. Technol., 1st ed., CRC Press, 2021: pp. 74–96.
Greenea, 2016c. Analysis of the current development of household UCO collection systems in the EU., (n.d.). https://theicct.org/sites/default/files/publications/Greenea Report Household UCO Collection in the EU_ICCT_20160629.pdf (accessed July 21, 2021).
L.A. Rincón, J.G. Cadavid, A. Orjuela, Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia, Waste Manag. 88 (2019) 200–210. https://doi.org/10.1016/j.wasman.2019.03.042.
I.A.F. Husain, M.F. Alkhatib, M.S. Jami, M.E.S. Mirghani, Z. Bin Zainudin, A. Hoda, Problems, control, and treatment of fat, oil, and grease (FOG): A review, J. Oleo
A. Orjuela, J. Clark, Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities, Curr. Opin. Green Sustain. Chem. (2020) 100369. https://doi.org/10.1016/j.cogsc.2020.100369.
J. Cardenas, L.A. Rincón, A. Orjuela, Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks, Environ. Chem. Eng. 9 (2021) 21–23. https://doi.org/10.1016/j.jece.2020.104610.
A. Orjuela, L.S. David, P.C. Narvaez, B. Katryniok, J. Clark, Pre-treatment of used cooking oils for the production of green chemicals : A review, Clean. Prod. J. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125129.
] B. Casali, E. Brenna, F. Parmeggiani, D. Tessaro, F. Tentori, Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes, Sustain. Chem. 2 (2021) 74–91. https://doi.org/10.3390/suschem2010006.
M. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem. 39 (2004) 1347–1361. https://doi.org/10.1016/S0032-9592(03)00266-8.
M.C.P. Zenevicz, A. Jacques, A.F. Furigo, J.V. Oliveira, D. de Oliveira, Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system, Ind. Crops Prod. 80 (2016) 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031.
V. Skliar, G. Krusir, V. Zakharchuk, I. Kovalenko, T. Shpyrko, Investigation of the Fat Fraction Enzymatic Hydrolysis of the Waste From Production of Hydrogenated Fat By the Lipase Rhizopus Japonicus, Food Sci. Technol. 13 (2019) 27–34. https://doi.org/10.15673/fst.v13i1.1332.
V.R. Murty, J. Bhat, P.K.A. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: A review, Biotechnol. Bioprocess Eng. 7 (2002) 57–66. https://doi.org/10.1007/BF02935881.
L. Cao, H. Screening, Industrial Biotransformations Enzymes in Industry Biocatalysis, 2005.
K.P. Preczeski, A.B. Kamanski, T. Scapini, A.F. Camargo, T.A. Modkoski, V. Rossetto, B. Venturin, J. Mulinari, S.M. Golunski, A.J. Mossi, H. Treichel, Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils, Bioprocess Biosyst. Eng. 41 (2018) 851–857. https://doi.org/10.1007/s00449-018-1919-y.
B.R. Facin, M.S. Melchiors, A. Valério, J.V. Oliveira, D. De Oliveira, Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects, Ind. Eng. Chem. Res. 58 (2019) 5358–5378. https://doi.org/10.1021/acs.iecr.9b00448.
E.T. Phuah, T.K. Tang, Y.Y. Lee, T.S.Y. Choong, C.P. Tan, O.M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol. 8 (2015) 1169–1186. https://doi.org/10.1007/s11947-015-1505-0.
G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32 (2016) 60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033.
A. Mazubert, M. Poux, J. Aubin, Intensified processes for FAME production from waste cooking oil: A technological review, Chem. Eng. J. 233 (2013) 201–223. https://doi.org/10.1016/j.cej.2013.07.063.
N.F. Mokhtar, R.N. Raja Noor Zaliha, The immobilization of lipases on porous support by adsorption and hydrophobic interaction method, Catalysts. 10 (2020) 1– J. Ren, B. Fan, Huhetaoli, D. Niu, Y. Gu, C. Li, Biodegradation of Waste Cooking Oils by Klebsiella quasivariicola IUMR-B53 and Characteristics of Its Oil-Degrading Enzyme, Waste and Biomass Valorization. 12 (2021) 1243–1252. https://doi.org/10.1007/s12649-020-01097-z.
X. Ming-Hong, K. I-Ching, Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process, Asia-Pacific J. Chem. Eng. 11 (2016) 910–917. https://doi.org/10.1002/apj.2025.
N. Saifuddin, A.Z. Raziah, H.N. Farah, Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process, E-Journal Chem. 6 (2009). https://doi.org/10.1155/2009/801756.
R. Prakash, S.S. Aulakh, R. Kalra, Effect of frying time on free fatty acid generation and esterification rate in Aspergillus sp.-catalyzed transesterification of cottonseed oil, Biocatal. Biotransformation. 28 (2010) 403–407. https://doi.org/10.3109/10242422.2010.524698.
S. Cesarini, P. Diaz, P.M. Nielsen, Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock, Process Biochem. 48 (2013) 484–487. https://doi.org/10.1016/j.procbio.2013.02.001.
V.G. Tacias-Pascacio, J.J. Virgen-Ortíz, M. Jiménez-Pérez, M. Yates, B. Torrestiana-Sanchez, A. Rosales-Quintero, R. Fernandez-Lafuente, Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support, Fuel. 200 (2017) 1–10. https://doi.org/10.1016/j.fuel.2017.03.054.
L. Cao, Immobilised enzymes: Science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226. https://doi.org/10.1016/j.cbpa.2005.02.014.
T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y.
H.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology, Catal. Sci. Technol. 11 (2021) 1994–2020. https://doi.org/10.1039/D1CY00020A.
C. Ortiz, M.L. Ferreira, O. Barbosa, J.C.S. Dos Santos, R.C. Rodrigues, Á. Berenguer-Murcia, L.E. Briand, R. Fernandez-Lafuente, Novozym 435: The “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol. 9 (2019) 2380–2420. https://doi.org/10.1039/c9cy00415g.
K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies, Process Biochem. 47 (2012) 435–445. https://doi.org/10.1016/j.procbio.2011.11.025.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2022
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 81 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82957/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82957/2/DocumentoFinal1010223522.pdf
https://repositorio.unal.edu.co/bitstream/unal/82957/3/DocumentoFinal1010223522.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f068f4177ad7b92616f401872e51366c
daf074043e6179906143674a4c02989c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090025302753280
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela Londoño, Alvaroa583c5015d0fe88a7d62aa2891228b13Baena Novoa, Helbert Alexanderac51ad04307d0cc05a84330226e08b44600Grupo de Investigación en Procesos Químicos y Bioquímicos2023-01-16T21:04:37Z2023-01-16T21:04:37Z2022-08-19https://repositorio.unal.edu.co/handle/unal/82957Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasResidual vegetable oils and fats have attracted attention around the world because their common mismanagement generates a complex cascade of environmental and health problems. Nonetheless, since they are mostly comprised of triglycerides, they can be used as second generation raw materials in the oleochemical industry. In particular, fatty acids that are intermediates for the manufacture of surfactants, plasticizers, biofuels, among others, can be obtained through the hydrolysis of such waste triglycerides. However, the current industrial process (i.e. Emery-Colgate) for fatty acids production has important disadvantages mainly the energy intensity and waste generation. For this reason, enzymatic processes have been explored as viable alternatives to conventional ones, since they operate under milder temperature and pressure conditions. In the same way, the interest in developing effective enzymes at the industrial level has driven new advances such as immobilization in suitable and tunable solid supports that increase their stability and facilitate their reusability. Likewise, process intensification has also been employed to improve reaction yields and to reduce waste generation. In the present study, the enzymatic hydrolysis of used cooking oils was explored, using Candida Antarctica lipase B immobilized on activated carbons. It was verified a greater enzymatic activity and immobilization efficiency was obtained by amino-functionalization with subsequent cross-linking using glutaraldehyde. Once immobilized, reaction conditions were explored by changing pH, temperature, substrate ratio and immobilized enzyme loading. Finally, a comparison with currently used commercial enzymes and reusability tests were also performed to assess the feasibility of the process.Los aceites vegetales y grasas residuales han captado mundial ya que típicamente se disponen de forma incorrecta generando una compleja cascada de problemas ambientales y de salud. Sin embargo, debido a que estos residuos están compuestos principalmente de triglicéridos, estos se pueden usar como materia prima de segunda generación para la industria oleoquímica. En particular, los ácidos grasos que son un intermediario para la manufactura de surfactantes, plastificantes, biocombustibles entre otros, pueden ser obtenidos mediante la hidrólisis de triglicéridos residuales. No obstante, el proceso industrial actual (i.e. Emery-Colgate) para la producción de ácidos grasos presenta importantes desventajas como su intensidad energética y la generación de residuos. Por esta razón se han explorado procesos enzimáticos como una alternativa viable a los convencionales, ya que estos operan en condiciones de temperatura y presión más benévolas. De la misma forma, el interés por desarrollar enzimas efectivas a nivel industrial ha impulsado nuevos avances tal como la inmovilización de enzimas en soportes sólidos adecuados y modificables para aumentar su estabilidad y facilitar su reusabilidad. Igualmente, se ha empleado la intensificación de procesos para mejorar el rendimiento de la reacción y reducir la generación de residuos. En este estudio se exploró la hidrolisis enzimática de aceites usados de cocina, usando la Cándida antártica lipasa B inmovilizada en carbones activados. Se verificó que la mayor actividad y eficiencia de inmovilización se logró por medio de amino-funcionalización seguida de entrecruzamiento usando glutaraldehído. Una vez inmovilizado, se evaluaron diferentes condiciones de reacción enzimática, variando pH, temperatura, relación de sustratos y carga de enzima inmovilizada. Finalmente, se realizó una comparación de la eficiencia del proceso usando enzimas comerciales y una evaluación de factibilidad a través de ensayos de reusabilidad. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería QuímicaDiseño de bioprocesos y biotecnologíaxvi, 81 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesResiduos industrialesCatalizadoresFactory and trade wasteCatalystsEnzymatic immobilizationEnzymatic hydrolysisUsed cooking oilCandida antartica lipase B.Activated carbonsInmovilización enzimáticaHidrólisis enzimáticaAceite usado de cocinaCándida antártica lipasa B.Carbonos activadosTratamiento de residuosStudy of the lipase-catalyzed hydrolysis of waste oleochemical streamsEstudio de la hidrólisis catalizada por lipasas de corrientes oleoquímicas residualesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMU. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.F. Shahidi, Bailey’s Industrial Oil and Fat Products, 7th ed., Wiley, New York, 2020.J.K. Satyarthi, D. Srinivas, P. Ratnasamy, Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts, Appl. Catal. A Gen. 391 (2011) 427–435. https://doi.org/10.1016/j.apcata.2010.03.047.F.D. Gunstone, R.J. Hamilton, Oleochemical Manufacture and Applications, 1st ed., Sheffield Academic Press, Liverpool, 2001.N.B. Hasan, W.Y. Tan, N.A. Mohd Zain, S. Mohd Suardi, Immobilization of Candida Rugosa Lipase in PVA-Alginate-Sulfate Beads for Waste Cooking Oil Treatment, J. Teknol. 74 (2015) 215–222.G. Sharmila, C. Muthukumaran, N.M. Kumar, V.M. Sivakumar, M. Thirumarimurugan, Food waste valorization for biopolymer production, Elsevier, 2020. https://doi.org/10.1016/B978-0-444-64321-6.00012-4.P. Skoczinski, M.C. Carus, D. De Guzman, K. Harald, R. Chinthapalli, J. Ravenstijn, W. Baltus, R. Achim, Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. [Online], (2021). http://bio-based.eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-production-and-trends-2020-2025/ (accessed July 19, 2021).A. Jering, J. Günter, Use of renewable raw materials with special emphasis on chemical industry, Eur. Top. Cent. Sustain. Consum. Prod. 2 (2010) 1–58.T. Wallace, D. Gibbons, M. O’Dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management – A review, J. Environ. Manage. 187 (2017) 424–435. https://doi.org/10.1016/j.jenvman.2016.11.003.M.-J. Dumont, S.S. Narine, Soapstock and deodorizer distillates from North American vegetable oils : Review on their characterization , extraction and utilization, Food Res. Int. 40 (2007) 957–974. https://doi.org/10.1016/j.foodres.2007.06.006.A. Orjuela, Industrial Oleochemicals from Used Cooking Oils (UCOs) – Sustainability Benefits and Challenges., in: S. Sikdar, F. Princiotta (Eds.), Adv. Carbon Manag. Technol., 1st ed., CRC Press, 2021: pp. 74–96.Greenea, 2016c. Analysis of the current development of household UCO collection systems in the EU., (n.d.). https://theicct.org/sites/default/files/publications/Greenea Report Household UCO Collection in the EU_ICCT_20160629.pdf (accessed July 21, 2021).L.A. Rincón, J.G. Cadavid, A. Orjuela, Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia, Waste Manag. 88 (2019) 200–210. https://doi.org/10.1016/j.wasman.2019.03.042.I.A.F. Husain, M.F. Alkhatib, M.S. Jami, M.E.S. Mirghani, Z. Bin Zainudin, A. Hoda, Problems, control, and treatment of fat, oil, and grease (FOG): A review, J. OleoA. Orjuela, J. Clark, Green Chemicals from Used Cooking Oils: Trends, Challenges and Opportunities, Curr. Opin. Green Sustain. Chem. (2020) 100369. https://doi.org/10.1016/j.cogsc.2020.100369.J. Cardenas, L.A. Rincón, A. Orjuela, Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks, Environ. Chem. Eng. 9 (2021) 21–23. https://doi.org/10.1016/j.jece.2020.104610.A. Orjuela, L.S. David, P.C. Narvaez, B. Katryniok, J. Clark, Pre-treatment of used cooking oils for the production of green chemicals : A review, Clean. Prod. J. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125129.] B. Casali, E. Brenna, F. Parmeggiani, D. Tessaro, F. Tentori, Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes, Sustain. Chem. 2 (2021) 74–91. https://doi.org/10.3390/suschem2010006.M. Adamczak, W. Bednarski, Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles, Process Biochem. 39 (2004) 1347–1361. https://doi.org/10.1016/S0032-9592(03)00266-8.M.C.P. Zenevicz, A. Jacques, A.F. Furigo, J.V. Oliveira, D. de Oliveira, Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system, Ind. Crops Prod. 80 (2016) 235–241. https://doi.org/10.1016/j.indcrop.2015.11.031.V. Skliar, G. Krusir, V. Zakharchuk, I. Kovalenko, T. Shpyrko, Investigation of the Fat Fraction Enzymatic Hydrolysis of the Waste From Production of Hydrogenated Fat By the Lipase Rhizopus Japonicus, Food Sci. Technol. 13 (2019) 27–34. https://doi.org/10.15673/fst.v13i1.1332.V.R. Murty, J. Bhat, P.K.A. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: A review, Biotechnol. Bioprocess Eng. 7 (2002) 57–66. https://doi.org/10.1007/BF02935881.L. Cao, H. Screening, Industrial Biotransformations Enzymes in Industry Biocatalysis, 2005.K.P. Preczeski, A.B. Kamanski, T. Scapini, A.F. Camargo, T.A. Modkoski, V. Rossetto, B. Venturin, J. Mulinari, S.M. Golunski, A.J. Mossi, H. Treichel, Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils, Bioprocess Biosyst. Eng. 41 (2018) 851–857. https://doi.org/10.1007/s00449-018-1919-y.B.R. Facin, M.S. Melchiors, A. Valério, J.V. Oliveira, D. De Oliveira, Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects, Ind. Eng. Chem. Res. 58 (2019) 5358–5378. https://doi.org/10.1021/acs.iecr.9b00448.E.T. Phuah, T.K. Tang, Y.Y. Lee, T.S.Y. Choong, C.P. Tan, O.M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol. 8 (2015) 1169–1186. https://doi.org/10.1007/s11947-015-1505-0.G. V. Waghmare, V.K. Rathod, Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition, Ultrason. Sonochem. 32 (2016) 60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033.A. Mazubert, M. Poux, J. Aubin, Intensified processes for FAME production from waste cooking oil: A technological review, Chem. Eng. J. 233 (2013) 201–223. https://doi.org/10.1016/j.cej.2013.07.063.N.F. Mokhtar, R.N. Raja Noor Zaliha, The immobilization of lipases on porous support by adsorption and hydrophobic interaction method, Catalysts. 10 (2020) 1– J. Ren, B. Fan, Huhetaoli, D. Niu, Y. Gu, C. Li, Biodegradation of Waste Cooking Oils by Klebsiella quasivariicola IUMR-B53 and Characteristics of Its Oil-Degrading Enzyme, Waste and Biomass Valorization. 12 (2021) 1243–1252. https://doi.org/10.1007/s12649-020-01097-z.X. Ming-Hong, K. I-Ching, Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process, Asia-Pacific J. Chem. Eng. 11 (2016) 910–917. https://doi.org/10.1002/apj.2025.N. Saifuddin, A.Z. Raziah, H.N. Farah, Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process, E-Journal Chem. 6 (2009). https://doi.org/10.1155/2009/801756.R. Prakash, S.S. Aulakh, R. Kalra, Effect of frying time on free fatty acid generation and esterification rate in Aspergillus sp.-catalyzed transesterification of cottonseed oil, Biocatal. Biotransformation. 28 (2010) 403–407. https://doi.org/10.3109/10242422.2010.524698.S. Cesarini, P. Diaz, P.M. Nielsen, Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock, Process Biochem. 48 (2013) 484–487. https://doi.org/10.1016/j.procbio.2013.02.001.V.G. Tacias-Pascacio, J.J. Virgen-Ortíz, M. Jiménez-Pérez, M. Yates, B. Torrestiana-Sanchez, A. Rosales-Quintero, R. Fernandez-Lafuente, Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support, Fuel. 200 (2017) 1–10. https://doi.org/10.1016/j.fuel.2017.03.054.L. Cao, Immobilised enzymes: Science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226. https://doi.org/10.1016/j.cbpa.2005.02.014.T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801–821. https://doi.org/10.1007/s10450-014-9623-y.H.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology, Catal. Sci. Technol. 11 (2021) 1994–2020. https://doi.org/10.1039/D1CY00020A.C. Ortiz, M.L. Ferreira, O. Barbosa, J.C.S. Dos Santos, R.C. Rodrigues, Á. Berenguer-Murcia, L.E. Briand, R. Fernandez-Lafuente, Novozym 435: The “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol. 9 (2019) 2380–2420. https://doi.org/10.1039/c9cy00415g.K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies, Process Biochem. 47 (2012) 435–445. https://doi.org/10.1016/j.procbio.2011.11.025.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82957/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALDocumentoFinal1010223522.pdfDocumentoFinal1010223522.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1325444https://repositorio.unal.edu.co/bitstream/unal/82957/2/DocumentoFinal1010223522.pdff068f4177ad7b92616f401872e51366cMD52THUMBNAILDocumentoFinal1010223522.pdf.jpgDocumentoFinal1010223522.pdf.jpgGenerated Thumbnailimage/jpeg4178https://repositorio.unal.edu.co/bitstream/unal/82957/3/DocumentoFinal1010223522.pdf.jpgdaf074043e6179906143674a4c02989cMD53unal/82957oai:repositorio.unal.edu.co:unal/829572023-08-13 23:03:57.381Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=