Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®

ilustraciones, gráficas, tablas

Autores:
Grajales García, Jhon Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80771
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80771
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geophysical prediction
Coulees
Predicciones geofísicas
Cañadas
Hazard
Mapping
Landslides
Mass movements
Amenaza
Zonificación
Deslizamientos
Movimientos en masa
Deslizamiento de tierra
Landslides
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4a186e6a0c1618a648d738d124b75d9f
oai_identifier_str oai:repositorio.unal.edu.co:unal/80771
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
dc.title.translated.spa.fl_str_mv Evaluación de amenaza por deslizamiento por eventos climáticos en la cuenca de la Quebrada El Rosario - Manizales, usando la aplicación ALICE ®
title Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
spellingShingle Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geophysical prediction
Coulees
Predicciones geofísicas
Cañadas
Hazard
Mapping
Landslides
Mass movements
Amenaza
Zonificación
Deslizamientos
Movimientos en masa
Deslizamiento de tierra
Landslides
title_short Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
title_full Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
title_fullStr Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
title_full_unstemmed Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
title_sort Landslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®
dc.creator.fl_str_mv Grajales García, Jhon Alexander
dc.contributor.advisor.spa.fl_str_mv Rodríguez Pineda, Carlos Eduardo
dc.contributor.author.spa.fl_str_mv Grajales García, Jhon Alexander
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Geotecnia Gigun
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geophysical prediction
Coulees
Predicciones geofísicas
Cañadas
Hazard
Mapping
Landslides
Mass movements
Amenaza
Zonificación
Deslizamientos
Movimientos en masa
Deslizamiento de tierra
Landslides
dc.subject.lemb.eng.fl_str_mv Geophysical prediction
Coulees
dc.subject.lemb.spa.fl_str_mv Predicciones geofísicas
Cañadas
dc.subject.proposal.eng.fl_str_mv Hazard
Mapping
Landslides
Mass movements
dc.subject.proposal.spa.fl_str_mv Amenaza
Zonificación
Deslizamientos
Movimientos en masa
dc.subject.unesco.spa.fl_str_mv Deslizamiento de tierra
dc.subject.unesco.eng.fl_str_mv Landslides
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-10T17:15:39Z
dc.date.available.none.fl_str_mv 2021-12-10T17:15:39Z
dc.date.issued.none.fl_str_mv 2021-12-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80771
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80771
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Álvarez, A. J. (1983). Geología de la Coordillera Central y el Occidente Colombiano y Petroquímica de los Intrusivos Granitoides Mesocenozoicos. Boletín Geológico - Ingeominas, 26(2), 1–175.
APA. (2020). Publication Manual of the American Psychological Association. In The International Journal for Research in Education (7th ed., Vol. 44, Issue 3). American Psychological Association. https://doi.org/10.36771/ijre.44.3.20-pp352-356
Arcila, M. M., García, J., Montejo, J. S., Eraso, J. F., Valcárcel, J. A., Mora, M. G., Viganò, D., Pagani, M., & Díaz, F. (2020). Modelo nacional de amenaza sísmica para Colombia. In Modelo nacional de amenaza sísmica para Colombia. Servicio Geológico Colombiano y Fundación Global Earthquake Model. https://doi.org/10.32685/9789585279469
Arcila, M., & Muñoz-Martín, A. (2020). Integrated Perspective of the Present-Day Stress and Strain Regime in Colombia from Analysis of Earthquake Focal Mechanisms and Geodetic Data. In The Geology of Colombia (Vol. 4, pp. 549–569). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.17
Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189–236.
Base, N. (1994). Probabilities and Materials. In Probabilities and Materials. https://doi.org/10.1007/978-94-011-1142-3
Baum, R. L., Savage, W. Z., & Godt, J. W. (2008). TRIGRS — A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report, 2008–1159, 75.
Sepúlveda, A., & Patiño Franco, J. (2016). Metodología para la evaluación de riesgo por flujo de detritos detonados por lluvia. Pontificia Universidad Javeriana.
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
Bieniawski, Z. T. (1976). Rock mass classification in rock engineering. Proceedings of the Symposium on Exploration Rock Engineering, Johannesburg, South Africa., 1, 97–106.
Bieniawski, Z. T. (1974). Geomechanics classification of rock masses and Its application. Proceedings of the Third International Congress on Rock Mechanics, ISRM, Denver, Col, U.S., 11A, 27–32.
Bishop, A. W., & Morgenstern, N. (1960). Stability coefficients for Earth Slopes. Géotechnique, 10(4), 129–153. https://doi.org/https://doi.org/10.1680/geot.1960.10.4.129
Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7–17. https://doi.org/10.1680/geot.1955.5.1.7
Bonachea Pico, J. (2006). Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. In Tesis Doctoral (pp. 45–76). http://www.tesisenred.net/handle/10803/10610
Botero, G. (1963). Contribución al conocimiento de la Geología de la parte central de Antioquia. Anales Facultad de Minas, Medellín, 57–101.
Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers Colorado State University, 3, 1–27.
Casadei, M., Dietrich, W. E., & Miller, N. L. (2003). Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28(9), 925–950. https://doi.org/10.1002/esp.470
Chow, V. Te, Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. In Applied Hydrology. McGraw-Hill.
Clark, C. (2002). Measured and estimated evaporation and soil moisture deficit for growers and the water industry. Meteorological Applications, 9, 95–93.
Coates, D. R. (1977). Landslides.
Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
Correa Montaño, I. C., & Hincapie Salazar, L. C. (2010). Caracterización Geológica, Geomorfológica y Zonificación de Amenazas por Fenómenos Asociados a Flujos de Lodo, Avalanchas y Lahares, Para el Plan Parcial El Rosario. 1–101.
Coussot, P., & Meunier, M. (1996). Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3–4), 209–227. https://doi.org/10.1016/0012- 8252(95)00065-8
Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3–4), 260–267. https://doi.org/10.1016/j.geomorph.2010.04.009
Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In Landslides: Investigation and mitigation (pp. 36–75).
Deere, D. U. (1964). Technical Description of Rock Cores for Engineering Purpose. Rock Mechanics and Engineering Geology, 1(1), 17–22.
Dietrich, W. E., Reiss, R., Hsu, M., & Montgomery, D. R. (1995). A Process-based model for culluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9.
Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(August), 486–493.
DNP. (2019). Gestión del riesgo de desastres y adaptación al cambio climático en los proyectos de inversión pública. https://www.dnp.gov.co/programas/ambiente/gestion-del-riesgo/Paginas/gestion- del-riesgo.aspx
DNP. (2018). 6.7 millones de colombianos están en riesgo por inundaciones, deslizamientos y avalanchas. https://www.dnp.gov.co/Paginas/6,7-millones-de-colombianos-están-en-riesgo-por- inundaciones,-deslizamientos-y-avalanchas.aspx
Duncan, J. M., & Wright, S. G. (2005). Soil strenght and slope stability (1st ed.). Wiley.
Duque Escobar, G. (2021). Discussion about basin of Q. El Rosario.
Duque Escobar, G., & Duque Escobar, E. (2009). Geomecánica de las Laderas de Manizales. Foro: Gestión Del Riesgo Por Inestabilidad Por Terrenos En Manizales.
Duque Escobar, G., & Duque Escobar, E. (2010). Túnel Manizales. Conferencia XIII Congreso Colombiano de Geotecnia, SCG-U.N. de Colombia, Manizales, Sep 21 a 23 de 2010.
Farrell, D. A., & Larson, W. E. (1972). Modeling the pore structure of porous media. Water Resources Research, 8(3), 699–706. https://doi.org/10.1029/WR008i003p00699
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3–4), 99–111. https://doi.org/10.1016/j.enggeo.2008.03.014
Fellenius, W. (1936). Calculation of stability of earth dam.
Fenton, G. A., & Griffiths, D. V. (2008). Risk Assessment in Geotechnical Engineering. John Wiley & Sons, Inc. https://doi.org/10.1061/9780784480731.024
van Beek, R. (2002). Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. In Nederlandse Geografische Studies (Issue 294).
Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Vandromme, R., Thiery, Y., Bernardie, S., & Sedan, O. (2020). ALICE (Assessment of Landslides Induced by Climatic Events): A single tool to integrate shallow and deep landslides for susceptibility and hazard assessment. In Geomorphology (Vol. 367, p. 107307). Elsevier B.V. https://doi.org/10.1016/j.geomorph.2020.107307
Vargas, M. R. (1998). Curvas Sintéticas Regionalizadas de Intensidad-Duración-Frecuencia para Colombia. Universidad de los Andes.
Varnes, D. (1978). Slope Movement Types and Processes. Transportation and Road Research Board, National Academy of Science, 176, 11–33. http://onlinepubs.trb.org/Onlinepubs/sr/sr176/176- 002.pdf
Vesic, A. S., & Clough, G. W. (1968). Behaviour of Granular Materials Under High Stresses. Journal of the Soil Mechanics and Foundations Division, 94(3). https://doi.org/https://doi.org/10.1061/JSFEAQ.0001134
Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton, R., Kossin, J. P., Taylor, P. C., Waple, A. M., & Yohe, C. P. (2017). Executive summary. Climate Science Special Report: Fourth National Climate Assessment, Volume I. https://doi.org/10.7930/J0DJ5CTG
Xie, M., Esaki, T., & Cai, M. (2004). A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environmental Geology, 46(6–7), 840–850. https://doi.org/10.1007/s00254-004-1069-1
Xie, M., Esaki, T., & Cai, M. (2004). A GIS-based method for locating the critical 3D slip surface in a slope. Computers and Geotechnics, 31(4), 267–277. https://doi.org/10.1016/j.compgeo.2004.03.003
Xie, M., Esaki, T., Qiu, C., & Wang, C. (2006). Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Computers and Geotechnics, 33(4–5), 260–274. https://doi.org/10.1016/j.compgeo.2006.07.003
Xie, M., Esaki, T., & Zhou, G. (2004). GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33(2), 265–282. https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d
Xie, M., Esaki, T., Zhou, G., & Mitani, Y. (2003). Three-dimensional stability evaluation of landslides and a sliding process simulation using a new geographic information systems component. Environmental Geology, 43(5), 503–512. https://doi.org/10.1007/s00254-002-0655-3
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 227 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
application/vnd.ms-powerpoint
dc.coverage.city.spa.fl_str_mv Manizales
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80771/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80771/4/1113308623.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80771/5/Annex%20Maps%201.zip
https://repositorio.unal.edu.co/bitstream/unal/80771/6/Annex%20Maps%202.zip
https://repositorio.unal.edu.co/bitstream/unal/80771/7/Annex%20Maps%203.zip
https://repositorio.unal.edu.co/bitstream/unal/80771/8/Annex%20Maps%204.zip
https://repositorio.unal.edu.co/bitstream/unal/80771/9/Geotech_Trig_Data.xlsx
https://repositorio.unal.edu.co/bitstream/unal/80771/10/1113308623.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
d4e18641bd42f3aa0ec250c3bb36967f
a26c8af7ac02860e644deaa84238900a
ea9eeadff245426733e8590303bea381
f41157a89ca0e7816370c6ab472375c2
81f0e072523a2ce6ed5c80126acabdec
7bd27a3b4d7d0b67f8fabfd9e50b8a8e
0164455c3c69f2b618dc92f87b3460fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089728858783744
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Pineda, Carlos Eduardob954af0360b40e5197ca64222afcdc8cGrajales García, Jhon Alexanderde66b8618c61b91a0a73c475bcad1470Grupo de Investigación en Geotecnia Gigun2021-12-10T17:15:39Z2021-12-10T17:15:39Z2021-12-07https://repositorio.unal.edu.co/handle/unal/80771Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasThere are several manners of doing maps according to the hazard assessment of mass movements in watersheds. However, physical-based methods are popular since they might catch many physical and mechanical characteristics of the sliding mass. Now, it is often that many physical-based methods- PBMs- are applied only in one mass movement, this is not enough for risk-informed decision-making at large scales. Which is why it is paramount to select a PMB whose main method could be applied for several mass movement types. This project is applied in a Colombian basin in which hazard maps have been done in the past, using knowledge-driven and data-driven methods that did not capture the instability of the slopes as a systemic process. To solve this issue, the French Geological Survey, BRGM, developed a software tool that can detect three types of mass movements, resulting in a better hazard assessment estimation. Most of the income data was developed by the author using different methodologies for developing geotechnical-geological models at a large scale, as well as methods of climatic triggering factors for landslides. This project concluded that, despite of the efforts for mapping areas that are prone to landslide activity using physical based methods, the existing information nowadays is not enough for these methods to overcome other types of methods that are highly related to the amount of information available. However, it is expected that further developments in the industry enhance the quantity and quality of information so physical based methods become more productive as more information becomes available.Actualmente hay muchas formas de realizar mapas de evaluación de amenaza por movimientos en masa a nivel de cuencas. Sin embargo, los métodos mecánicos son populares dado que pueden capturar características físicas y mecánicas de la masa que se desliza que otros métodos no pueden. Ahora bien, algunas veces se piensa que estos métodos solo se aplican a escala de detalle y esto no es suficiente para la toma de decisiones con respecto al riesgo por deslizamiento a mayores escalas. Esta es la razón por la cual es importante seleccionar un método mecánico, PBM, el cual pueda ser aplicado a muchos tipos de movimiento en masa de manera paralela. Este proyecto es aplicado en una cuenca Colombiana en la cual se han realizado mapas de amenaza por deslizamiento utilizando métodos basados en datos y conocimiento, los cuales no capturan la inestabilidad de las laderas de forma sistémica. Para resolver este problema, el Servicio Geológico Francés, BRGM, desarrolló un software el cual puede capturar tres tipos de movimientos en masa dando como resultado una mejor estimación de la evaluación de amenaza. La mayoría de los datos utilizados para este proyecto fueron desarrollados por el autor utilizando diferentes metodologías para obtener modelos geológico-geotécnicos a gran escala, así como métodos que incorporan el clima como un factor desencadenante de deslizamientos. Este proyecto concluye que, a pesar de los esfuerzos para zonificar áreas propensas a los procesos de deslizamientos a través de PBM, la información existente actualmente no es suficiente para estos métodos mecánicos y así superar otros tipos de metodologías las cuales están altamente relacionadas con la cantidad de información disponible. Sin embargo, se espera que futuros desarrollos en la industria mejoren la cantidad y calidad de la información de detalle de manera tal que los métodos mecánicos sean mas productivos a medida que esta información esté disponible. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - GeotecniaRisk and reliability analysis associated to geotechnical environments227 páginasapplication/pdfapplication/vnd.ms-powerpointengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilGeophysical predictionCouleesPredicciones geofísicasCañadasHazardMappingLandslidesMass movementsAmenazaZonificaciónDeslizamientosMovimientos en masaDeslizamiento de tierraLandslidesLandslide hazard assessment by climatic events in the basin of Quebrada El Rosario – Manizales using application ALICE ®Evaluación de amenaza por deslizamiento por eventos climáticos en la cuenca de la Quebrada El Rosario - Manizales, usando la aplicación ALICE ®Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMManizalesÁlvarez, A. J. (1983). Geología de la Coordillera Central y el Occidente Colombiano y Petroquímica de los Intrusivos Granitoides Mesocenozoicos. Boletín Geológico - Ingeominas, 26(2), 1–175.APA. (2020). Publication Manual of the American Psychological Association. In The International Journal for Research in Education (7th ed., Vol. 44, Issue 3). American Psychological Association. https://doi.org/10.36771/ijre.44.3.20-pp352-356Arcila, M. M., García, J., Montejo, J. S., Eraso, J. F., Valcárcel, J. A., Mora, M. G., Viganò, D., Pagani, M., & Díaz, F. (2020). Modelo nacional de amenaza sísmica para Colombia. In Modelo nacional de amenaza sísmica para Colombia. Servicio Geológico Colombiano y Fundación Global Earthquake Model. https://doi.org/10.32685/9789585279469Arcila, M., & Muñoz-Martín, A. (2020). Integrated Perspective of the Present-Day Stress and Strain Regime in Colombia from Analysis of Earthquake Focal Mechanisms and Geodetic Data. In The Geology of Colombia (Vol. 4, pp. 549–569). Servicio Geológico Colombiano. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.17Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189–236.Base, N. (1994). Probabilities and Materials. In Probabilities and Materials. https://doi.org/10.1007/978-94-011-1142-3Baum, R. L., Savage, W. Z., & Godt, J. W. (2008). TRIGRS — A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report, 2008–1159, 75.Sepúlveda, A., & Patiño Franco, J. (2016). Metodología para la evaluación de riesgo por flujo de detritos detonados por lluvia. Pontificia Universidad Javeriana.Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834Bieniawski, Z. T. (1976). Rock mass classification in rock engineering. Proceedings of the Symposium on Exploration Rock Engineering, Johannesburg, South Africa., 1, 97–106.Bieniawski, Z. T. (1974). Geomechanics classification of rock masses and Its application. Proceedings of the Third International Congress on Rock Mechanics, ISRM, Denver, Col, U.S., 11A, 27–32.Bishop, A. W., & Morgenstern, N. (1960). Stability coefficients for Earth Slopes. Géotechnique, 10(4), 129–153. https://doi.org/https://doi.org/10.1680/geot.1960.10.4.129Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7–17. https://doi.org/10.1680/geot.1955.5.1.7Bonachea Pico, J. (2006). Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. In Tesis Doctoral (pp. 45–76). http://www.tesisenred.net/handle/10803/10610Botero, G. (1963). Contribución al conocimiento de la Geología de la parte central de Antioquia. Anales Facultad de Minas, Medellín, 57–101.Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers Colorado State University, 3, 1–27.Casadei, M., Dietrich, W. E., & Miller, N. L. (2003). Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28(9), 925–950. https://doi.org/10.1002/esp.470Chow, V. Te, Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. In Applied Hydrology. McGraw-Hill.Clark, C. (2002). Measured and estimated evaporation and soil moisture deficit for growers and the water industry. Meteorological Applications, 9, 95–93.Coates, D. R. (1977). Landslides.Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104Correa Montaño, I. C., & Hincapie Salazar, L. C. (2010). Caracterización Geológica, Geomorfológica y Zonificación de Amenazas por Fenómenos Asociados a Flujos de Lodo, Avalanchas y Lahares, Para el Plan Parcial El Rosario. 1–101.Coussot, P., & Meunier, M. (1996). Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3–4), 209–227. https://doi.org/10.1016/0012- 8252(95)00065-8Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3–4), 260–267. https://doi.org/10.1016/j.geomorph.2010.04.009Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In Landslides: Investigation and mitigation (pp. 36–75).Deere, D. U. (1964). Technical Description of Rock Cores for Engineering Purpose. Rock Mechanics and Engineering Geology, 1(1), 17–22.Dietrich, W. E., Reiss, R., Hsu, M., & Montgomery, D. R. (1995). A Process-based model for culluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9.Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(August), 486–493.DNP. (2019). Gestión del riesgo de desastres y adaptación al cambio climático en los proyectos de inversión pública. https://www.dnp.gov.co/programas/ambiente/gestion-del-riesgo/Paginas/gestion- del-riesgo.aspxDNP. (2018). 6.7 millones de colombianos están en riesgo por inundaciones, deslizamientos y avalanchas. https://www.dnp.gov.co/Paginas/6,7-millones-de-colombianos-están-en-riesgo-por- inundaciones,-deslizamientos-y-avalanchas.aspxDuncan, J. M., & Wright, S. G. (2005). Soil strenght and slope stability (1st ed.). Wiley.Duque Escobar, G. (2021). Discussion about basin of Q. El Rosario.Duque Escobar, G., & Duque Escobar, E. (2009). Geomecánica de las Laderas de Manizales. Foro: Gestión Del Riesgo Por Inestabilidad Por Terrenos En Manizales.Duque Escobar, G., & Duque Escobar, E. (2010). Túnel Manizales. Conferencia XIII Congreso Colombiano de Geotecnia, SCG-U.N. de Colombia, Manizales, Sep 21 a 23 de 2010.Farrell, D. A., & Larson, W. E. (1972). Modeling the pore structure of porous media. Water Resources Research, 8(3), 699–706. https://doi.org/10.1029/WR008i003p00699Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3–4), 99–111. https://doi.org/10.1016/j.enggeo.2008.03.014Fellenius, W. (1936). Calculation of stability of earth dam.Fenton, G. A., & Griffiths, D. V. (2008). Risk Assessment in Geotechnical Engineering. John Wiley & Sons, Inc. https://doi.org/10.1061/9780784480731.024van Beek, R. (2002). Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. In Nederlandse Geografische Studies (Issue 294).Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002xVandromme, R., Thiery, Y., Bernardie, S., & Sedan, O. (2020). ALICE (Assessment of Landslides Induced by Climatic Events): A single tool to integrate shallow and deep landslides for susceptibility and hazard assessment. In Geomorphology (Vol. 367, p. 107307). Elsevier B.V. https://doi.org/10.1016/j.geomorph.2020.107307Vargas, M. R. (1998). Curvas Sintéticas Regionalizadas de Intensidad-Duración-Frecuencia para Colombia. Universidad de los Andes.Varnes, D. (1978). Slope Movement Types and Processes. Transportation and Road Research Board, National Academy of Science, 176, 11–33. http://onlinepubs.trb.org/Onlinepubs/sr/sr176/176- 002.pdfVesic, A. S., & Clough, G. W. (1968). Behaviour of Granular Materials Under High Stresses. Journal of the Soil Mechanics and Foundations Division, 94(3). https://doi.org/https://doi.org/10.1061/JSFEAQ.0001134Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton, R., Kossin, J. P., Taylor, P. C., Waple, A. M., & Yohe, C. P. (2017). Executive summary. Climate Science Special Report: Fourth National Climate Assessment, Volume I. https://doi.org/10.7930/J0DJ5CTGXie, M., Esaki, T., & Cai, M. (2004). A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environmental Geology, 46(6–7), 840–850. https://doi.org/10.1007/s00254-004-1069-1Xie, M., Esaki, T., & Cai, M. (2004). A GIS-based method for locating the critical 3D slip surface in a slope. Computers and Geotechnics, 31(4), 267–277. https://doi.org/10.1016/j.compgeo.2004.03.003Xie, M., Esaki, T., Qiu, C., & Wang, C. (2006). Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Computers and Geotechnics, 33(4–5), 260–274. https://doi.org/10.1016/j.compgeo.2006.07.003Xie, M., Esaki, T., & Zhou, G. (2004). GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33(2), 265–282. https://doi.org/10.1023/B:NHAZ.0000037036.01850.0dXie, M., Esaki, T., Zhou, G., & Mitani, Y. (2003). Three-dimensional stability evaluation of landslides and a sliding process simulation using a new geographic information systems component. Environmental Geology, 43(5), 503–512. https://doi.org/10.1007/s00254-002-0655-3Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80771/3/license.txt8153f7789df02f0a4c9e079953658ab2MD53ORIGINAL1113308623.2021.pdf1113308623.2021.pdfTesis de Maestría en Inginiería - Geotecniaapplication/pdf44140916https://repositorio.unal.edu.co/bitstream/unal/80771/4/1113308623.2021.pdfd4e18641bd42f3aa0ec250c3bb36967fMD54Annex Maps 1.zipAnnex Maps 1.zipAnnex Maps 1application/octet-stream224308852https://repositorio.unal.edu.co/bitstream/unal/80771/5/Annex%20Maps%201.zipa26c8af7ac02860e644deaa84238900aMD55Annex Maps 2.zipAnnex Maps 2.zipAnnex Maps 2application/octet-stream136503863https://repositorio.unal.edu.co/bitstream/unal/80771/6/Annex%20Maps%202.zipea9eeadff245426733e8590303bea381MD56Annex Maps 3.zipAnnex Maps 3.zipAnnex Maps 3application/octet-stream288521221https://repositorio.unal.edu.co/bitstream/unal/80771/7/Annex%20Maps%203.zipf41157a89ca0e7816370c6ab472375c2MD57Annex Maps 4.zipAnnex Maps 4.zipAnnex Maps 4application/octet-stream216732640https://repositorio.unal.edu.co/bitstream/unal/80771/8/Annex%20Maps%204.zip81f0e072523a2ce6ed5c80126acabdecMD58Geotech_Trig_Data.xlsxGeotech_Trig_Data.xlsxAnnex Main data 5application/vnd.openxmlformats-officedocument.spreadsheetml.sheet11846882https://repositorio.unal.edu.co/bitstream/unal/80771/9/Geotech_Trig_Data.xlsx7bd27a3b4d7d0b67f8fabfd9e50b8a8eMD59THUMBNAIL1113308623.2021.pdf.jpg1113308623.2021.pdf.jpgGenerated Thumbnailimage/jpeg4809https://repositorio.unal.edu.co/bitstream/unal/80771/10/1113308623.2021.pdf.jpg0164455c3c69f2b618dc92f87b3460fbMD510unal/80771oai:repositorio.unal.edu.co:unal/807712023-07-31 23:04:05.829Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK