Penalized bayesian optimal designs for nonlinear models of Continuous Response

Experimental design is an important phase in both scienti_c and industrial research. In recent years, Bayesian optimal designs have become more and more popular, particularly in biomedical research and clinical trials. The Bayesian experimental design approach allows the prior information of unknown...

Full description

Autores:
Rudnykh, Svetlana Ivanovna
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75605
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75605
Palabra clave:
Matemáticas::Probabilidades y matemáticas aplicadas
Bayesian optimal designs
Desirability functions
Penalized designs
Diseños óptimos bayesianos
Funciones de deseabilidad
Diseños penalizados
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4a090837ee8c16ab2e45983348a4595b
oai_identifier_str oai:repositorio.unal.edu.co:unal/75605
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Penalized bayesian optimal designs for nonlinear models of Continuous Response
title Penalized bayesian optimal designs for nonlinear models of Continuous Response
spellingShingle Penalized bayesian optimal designs for nonlinear models of Continuous Response
Matemáticas::Probabilidades y matemáticas aplicadas
Bayesian optimal designs
Desirability functions
Penalized designs
Diseños óptimos bayesianos
Funciones de deseabilidad
Diseños penalizados
title_short Penalized bayesian optimal designs for nonlinear models of Continuous Response
title_full Penalized bayesian optimal designs for nonlinear models of Continuous Response
title_fullStr Penalized bayesian optimal designs for nonlinear models of Continuous Response
title_full_unstemmed Penalized bayesian optimal designs for nonlinear models of Continuous Response
title_sort Penalized bayesian optimal designs for nonlinear models of Continuous Response
dc.creator.fl_str_mv Rudnykh, Svetlana Ivanovna
dc.contributor.advisor.spa.fl_str_mv López Ríos, Víctor Ignacio
dc.contributor.author.spa.fl_str_mv Rudnykh, Svetlana Ivanovna
dc.subject.ddc.spa.fl_str_mv Matemáticas::Probabilidades y matemáticas aplicadas
topic Matemáticas::Probabilidades y matemáticas aplicadas
Bayesian optimal designs
Desirability functions
Penalized designs
Diseños óptimos bayesianos
Funciones de deseabilidad
Diseños penalizados
dc.subject.proposal.eng.fl_str_mv Bayesian optimal designs
Desirability functions
Penalized designs
dc.subject.proposal.spa.fl_str_mv Diseños óptimos bayesianos
Funciones de deseabilidad
Diseños penalizados
description Experimental design is an important phase in both scienti_c and industrial research. In recent years, Bayesian optimal designs have become more and more popular, particularly in biomedical research and clinical trials. The Bayesian experimental design approach allows the prior information of unknown parameters to be incorporated into the design process in order to achieve a better design. The Bayesian optimal design theory can, however, produce inadequate designs from a practical perspective that conict with common practice in laboratories or other guidelines established. In this research, the penalized optimal design strategy with the Bayesian approach is suggested to reduce problems associated with the inadequacy of experimental designs from a practical perspective. New optimality criteria, which combine the use of desirability functions and the Bayesian approach, are constructed for linear and nonlinear regression models. The proposed technique based on the use of desirability functions helps to obtain optimal designs that ful_ll Bayesian optimal design criteria and also satisfy practical preferences. The proposed penalized strategy is illustrated with corresponding examples for both linear and nonlinear models. Furthermore, the methodology of choosing the appropriate desirability functions according to the practical design preferences is proposed and illustrated by an example of the Michaelis-Menten model.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019
dc.date.accessioned.spa.fl_str_mv 2020-02-14T19:04:22Z
dc.date.available.spa.fl_str_mv 2020-02-14T19:04:22Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75605
url https://repositorio.unal.edu.co/handle/unal/75605
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Albert, J. (2009), Bayesian computation with R, Springer Science & Business Media.
Atkinson, A., Bogacka, B. & Zocchi, S. (2000), `Equivalence theory for design augmentation and parsimonious model checking: response surfaces and yield density models', Listy Biometryczne-Biometrical Letters 37(2), 67{95.
Bates, D. M. & Watts, D. G. (1988), Nonlinear regression analysis and its applications, John Wiles & Sons, Inc.
Bender, R. (2009), Introduction to the use of regression models in epidemiology, in `Cancer Epidemiology', Springer, pp. 179{195.
Borchers, H. W. (2018), `Package `adagio': Discrete and global optimization routines', Available: https://CRAN.R-project.org/package=adagio
Chaloner, K. & Larntz, K. (1989), `Optimal bayesian design applied to logistic regression experiments', Journal of Statistical Planning and Inference 21(2), 191{208.
Cook, D. & Fedorov, V. (1995), `Invited discussion paper constrained optimization of experimental design', Statistics 26(2), 129{148.
Del Castillo, E., Montgomery, D. & McCarville, D. (1996), `Modi ed desirability functions for multiples response optimization', Journal of quality technology 28(3), 337{345
Derringer, G. C. (1994), `A balancing act-optimizing a products properties', Quality Progress 27(6), 51{58.
Dette, H. & Biedermann, S. (2003), `Robust and e cient designs for the michaelismenten model', Journal of the American Statistical Association 98(463), 679{686.
Dette, H. & Sperlich, S. (1994), `A note on bayesian d-optimal designs for a generalization of the exponential growth model', South African Statist. J 28, 103{11
Dragalin, V., Fedorov, V. & Wu, Y. (2008), `Adaptive designs for selecting drug combinations based on e cacy{toxicity response', Journal of Statistical Planning and Inference 138(2), 352{373.
Ermakov, S. M. & Zhiglijavsky, A. A. (1987), The Mathematical Theory of Optimum Experiments, Nauka, Moscow. (In Russian).
Firth, D. & Hinde, J. (1997), `On bayesian d-optimum design criteria and the equivalence theorem in non-linear models', Journal of the Royal Statistical Society: Series B Statistical Methodology) 59(4), 793{797.
Gao, L. & Rosenberger, W. F. (2013), Adaptive bayesian design with penalty based on toxicity-e cacy response, in D. Ucinski, A. C. Atkinson & M. Patan, eds, `mODa 10{Advances in Model-Oriented Design and Analysis', Springer, Heidelberg, pp. 91{ 98.
George, P. & Ogot, M. M. (2006), `A compromise experimental design method for parametric polynomial response surface approximations', Journal of Applied Statistics 33(10), 1037{1050
Haines, L. M., Perevozskaya, I. & Rosenberger, W. F. (2003), `Bayesian optimal designs for phase i clinical trials', Biometrics 59(3), 591{600.
Kiefer, J. (1959), `Optimum experimental designs', Journal of the Royal Statistical Society: Series B (Methodological) 21(2), 272{304.
Kiefer, J., Wolfowitz, J. et al. (1959), `Optimum designs in regression problems', The Annals of Mathematical Statistics 30(2), 271{294.
Mukhopadhyay, S. & Haines, L. M. (1995), `Bayesian d-optimal designs for the exponential growth model', Journal of Statistical Planning and Inference 44(3), 385{397.
Mullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. (2016), `Deoptim: An r package for global optimization by di erential evolution', Available: https://CRAN.Rproject. org/package=DEoptim.
Parker, S. & Gennings, C. (2008), `Penalized Locally Optimal Experimental Designs for Nonlinear Models', Journal of Agricultural, Biological, and Environmental Statistics 13(3), 334{354.
Parker, S. M. (2005), Solutions to reduce problems associated with experimental designs for nonlinear models: Conditional analyses and penalized optimal designs, PhD thesis, Virginia Commonwealth University
Storn, R. & Price, K. (1997), `Di erential evolution{a simple and e cient heuristicfor global optimization over continuous spaces', Journal of global optimization 11(4), 341{359.
Team, R. C. (2018), `R: A language and environment for statistical computing. r foundation for statistical computing, vienna, austria. 2013 (version 3.5.1)', Available: http://www.R-project.org.
Tranda r, C. & L opez-Fidalgo, J. (2004), Locally optimal designs for an extension of the michaelis-menten model, in A. Di Bucchianico, H. Ler & H. P. Wynn, eds, `mODa 7{Advances in Model-Oriented Design and Analysis', Physica-Verlag, Heidelberg, pp. 173{181.
Yeatts, S. D., Gennings, C. & Crofton, K. M. (2012), `Optimal design for the precise estimation of an interaction threshold: The impact of exposure to a mixture of 18 polyhalogenated aromatic hydrocarbons', Risk Analysis 32(10), 1784{1797
Ypma, J., Borchers, H. & Eddelbuettel, D. (2014), `R package `nloptr': R interface to nlopt', Available: https://CRAN.R-project.org/package=nloptr
Zhang, Y. (2006), Bayesian D-optimal design for generalized linear models, PhD thesis, Virginia Tech.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 144
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Escuela de estadística
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75605/1/1140821034.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75605/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75605/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75605/4/1140821034.2019.pdf.jpg
bitstream.checksum.fl_str_mv 729e0532c5ae7a38527aacd10541122c
6f3f13b02594d02ad110b3ad534cd5df
4460e5956bc1d1639be9ae6146a50347
36fe295458787bd40c167dae8c85693f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089822577360896
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Ríos, Víctor Ignacio8161396a-0a77-44a4-a5ef-8d8bc5a9d917-1Rudnykh, Svetlana Ivanovna764f951e-08d2-4fa9-be0d-ffcee4c8b9ac2020-02-14T19:04:22Z2020-02-14T19:04:22Z2019https://repositorio.unal.edu.co/handle/unal/75605Experimental design is an important phase in both scienti_c and industrial research. In recent years, Bayesian optimal designs have become more and more popular, particularly in biomedical research and clinical trials. The Bayesian experimental design approach allows the prior information of unknown parameters to be incorporated into the design process in order to achieve a better design. The Bayesian optimal design theory can, however, produce inadequate designs from a practical perspective that conict with common practice in laboratories or other guidelines established. In this research, the penalized optimal design strategy with the Bayesian approach is suggested to reduce problems associated with the inadequacy of experimental designs from a practical perspective. New optimality criteria, which combine the use of desirability functions and the Bayesian approach, are constructed for linear and nonlinear regression models. The proposed technique based on the use of desirability functions helps to obtain optimal designs that ful_ll Bayesian optimal design criteria and also satisfy practical preferences. The proposed penalized strategy is illustrated with corresponding examples for both linear and nonlinear models. Furthermore, the methodology of choosing the appropriate desirability functions according to the practical design preferences is proposed and illustrated by an example of the Michaelis-Menten model.El diseño experimental es una fase importante tanto en la investigación científica como en la industria. En los últimos años, los diseños óptimos bayesianos se han vuelto cada vez más populares, particularmente en la investigación biomédica y los ensayos clínicos. El enfoque de diseño experimental bayesiano permite incorporar la información previa disponible de parámetros desconocidos en el proceso de diseño y así poder obtener un mejor diseño. Sin embargo, la teoría del diseño _optimo bayesiano puede producir diseños inadecuados desde una perspectiva práctica que entran en contacto con la práctica de laboratorio común u otras pautas establecidas. Con el objetivo de reducir los problemas asociados con la inadecuación de los diseños experimentales desde una perspectiva práctica, en esta investigación, se proponen nuevos criterios de optimalidad que combinan el uso de funciones de deseabilidad y el enfoque bayesiano, tanto para modelos de regresión lineal, como no lineal. La técnica propuesta basada en el uso de las funciones de deseabilidad ayuda a obtener diseños _óptimos penalizados que cumplen con los criterios de diseño _óptimos bayesianos y también satisfacen preferencias prácticas. La estrategia penalizada propuesta se ilustra con los respectivos ejemplos para modelos lineales y no lineales. Además, se propone y se ilustra una metodología a para elegir las funciones de deseabilidad apropiadas de acuerdo con las preferencias experimentales desde un punto de vista práctico mediante un ejemplo del modelo de Michaelis-Menten.Doctora en Ciencias EstadísticaDoctorado144application/pdfengMatemáticas::Probabilidades y matemáticas aplicadasBayesian optimal designsDesirability functionsPenalized designsDiseños óptimos bayesianosFunciones de deseabilidadDiseños penalizadosPenalized bayesian optimal designs for nonlinear models of Continuous ResponseDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPEscuela de estadísticaUniversidad Nacional de Colombia - Sede MedellínAlbert, J. (2009), Bayesian computation with R, Springer Science & Business Media.Atkinson, A., Bogacka, B. & Zocchi, S. (2000), `Equivalence theory for design augmentation and parsimonious model checking: response surfaces and yield density models', Listy Biometryczne-Biometrical Letters 37(2), 67{95.Bates, D. M. & Watts, D. G. (1988), Nonlinear regression analysis and its applications, John Wiles & Sons, Inc.Bender, R. (2009), Introduction to the use of regression models in epidemiology, in `Cancer Epidemiology', Springer, pp. 179{195.Borchers, H. W. (2018), `Package `adagio': Discrete and global optimization routines', Available: https://CRAN.R-project.org/package=adagioChaloner, K. & Larntz, K. (1989), `Optimal bayesian design applied to logistic regression experiments', Journal of Statistical Planning and Inference 21(2), 191{208.Cook, D. & Fedorov, V. (1995), `Invited discussion paper constrained optimization of experimental design', Statistics 26(2), 129{148.Del Castillo, E., Montgomery, D. & McCarville, D. (1996), `Modi ed desirability functions for multiples response optimization', Journal of quality technology 28(3), 337{345Derringer, G. C. (1994), `A balancing act-optimizing a products properties', Quality Progress 27(6), 51{58.Dette, H. & Biedermann, S. (2003), `Robust and e cient designs for the michaelismenten model', Journal of the American Statistical Association 98(463), 679{686.Dette, H. & Sperlich, S. (1994), `A note on bayesian d-optimal designs for a generalization of the exponential growth model', South African Statist. J 28, 103{11Dragalin, V., Fedorov, V. & Wu, Y. (2008), `Adaptive designs for selecting drug combinations based on e cacy{toxicity response', Journal of Statistical Planning and Inference 138(2), 352{373.Ermakov, S. M. & Zhiglijavsky, A. A. (1987), The Mathematical Theory of Optimum Experiments, Nauka, Moscow. (In Russian).Firth, D. & Hinde, J. (1997), `On bayesian d-optimum design criteria and the equivalence theorem in non-linear models', Journal of the Royal Statistical Society: Series B Statistical Methodology) 59(4), 793{797.Gao, L. & Rosenberger, W. F. (2013), Adaptive bayesian design with penalty based on toxicity-e cacy response, in D. Ucinski, A. C. Atkinson & M. Patan, eds, `mODa 10{Advances in Model-Oriented Design and Analysis', Springer, Heidelberg, pp. 91{ 98.George, P. & Ogot, M. M. (2006), `A compromise experimental design method for parametric polynomial response surface approximations', Journal of Applied Statistics 33(10), 1037{1050Haines, L. M., Perevozskaya, I. & Rosenberger, W. F. (2003), `Bayesian optimal designs for phase i clinical trials', Biometrics 59(3), 591{600.Kiefer, J. (1959), `Optimum experimental designs', Journal of the Royal Statistical Society: Series B (Methodological) 21(2), 272{304.Kiefer, J., Wolfowitz, J. et al. (1959), `Optimum designs in regression problems', The Annals of Mathematical Statistics 30(2), 271{294.Mukhopadhyay, S. & Haines, L. M. (1995), `Bayesian d-optimal designs for the exponential growth model', Journal of Statistical Planning and Inference 44(3), 385{397.Mullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. (2016), `Deoptim: An r package for global optimization by di erential evolution', Available: https://CRAN.Rproject. org/package=DEoptim.Parker, S. & Gennings, C. (2008), `Penalized Locally Optimal Experimental Designs for Nonlinear Models', Journal of Agricultural, Biological, and Environmental Statistics 13(3), 334{354.Parker, S. M. (2005), Solutions to reduce problems associated with experimental designs for nonlinear models: Conditional analyses and penalized optimal designs, PhD thesis, Virginia Commonwealth UniversityStorn, R. & Price, K. (1997), `Di erential evolution{a simple and e cient heuristicfor global optimization over continuous spaces', Journal of global optimization 11(4), 341{359.Team, R. C. (2018), `R: A language and environment for statistical computing. r foundation for statistical computing, vienna, austria. 2013 (version 3.5.1)', Available: http://www.R-project.org.Tranda r, C. & L opez-Fidalgo, J. (2004), Locally optimal designs for an extension of the michaelis-menten model, in A. Di Bucchianico, H. Ler & H. P. Wynn, eds, `mODa 7{Advances in Model-Oriented Design and Analysis', Physica-Verlag, Heidelberg, pp. 173{181.Yeatts, S. D., Gennings, C. & Crofton, K. M. (2012), `Optimal design for the precise estimation of an interaction threshold: The impact of exposure to a mixture of 18 polyhalogenated aromatic hydrocarbons', Risk Analysis 32(10), 1784{1797Ypma, J., Borchers, H. & Eddelbuettel, D. (2014), `R package `nloptr': R interface to nlopt', Available: https://CRAN.R-project.org/package=nloptrZhang, Y. (2006), Bayesian D-optimal design for generalized linear models, PhD thesis, Virginia Tech.ORIGINAL1140821034.2019.pdf1140821034.2019.pdfapplication/pdf1019313https://repositorio.unal.edu.co/bitstream/unal/75605/1/1140821034.2019.pdf729e0532c5ae7a38527aacd10541122cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75605/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/75605/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1140821034.2019.pdf.jpg1140821034.2019.pdf.jpgGenerated Thumbnailimage/jpeg3677https://repositorio.unal.edu.co/bitstream/unal/75605/4/1140821034.2019.pdf.jpg36fe295458787bd40c167dae8c85693fMD54unal/75605oai:repositorio.unal.edu.co:unal/756052023-03-23 09:03:58.45Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==