Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos

ilustraciones

Autores:
Gomez Carrillo, Tania Gineth
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83902
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83902
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
WPT
Apantallamiento
Núcleo magnéticos
Seguridad electromagnética
Transmisión inalámbrica de potencia
WPT
Shielding
Magnetic core
Electromagnetic safety
Wireless power transmission
Tecnología electrónica
Vehículo automotor
Ingeniería eléctrica
Electronic engineering
Motor vehicles
Electrical engineering
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_49f3856b6f1633b5ace110e71695970f
oai_identifier_str oai:repositorio.unal.edu.co:unal/83902
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
dc.title.translated.eng.fl_str_mv Electromagnetic shielding design for a wireless power transmission system for electric vehicles
title Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
spellingShingle Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
620 - Ingeniería y operaciones afines::621 - Física aplicada
WPT
Apantallamiento
Núcleo magnéticos
Seguridad electromagnética
Transmisión inalámbrica de potencia
WPT
Shielding
Magnetic core
Electromagnetic safety
Wireless power transmission
Tecnología electrónica
Vehículo automotor
Ingeniería eléctrica
Electronic engineering
Motor vehicles
Electrical engineering
title_short Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
title_full Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
title_fullStr Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
title_full_unstemmed Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
title_sort Diseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricos
dc.creator.fl_str_mv Gomez Carrillo, Tania Gineth
dc.contributor.advisor.spa.fl_str_mv Cortés Guerrero, Camilo Andrés
Martínez Martínez, Wilmar Hernán
dc.contributor.author.spa.fl_str_mv Gomez Carrillo, Tania Gineth
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Emc-Un
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
WPT
Apantallamiento
Núcleo magnéticos
Seguridad electromagnética
Transmisión inalámbrica de potencia
WPT
Shielding
Magnetic core
Electromagnetic safety
Wireless power transmission
Tecnología electrónica
Vehículo automotor
Ingeniería eléctrica
Electronic engineering
Motor vehicles
Electrical engineering
dc.subject.proposal.spa.fl_str_mv WPT
Apantallamiento
Núcleo magnéticos
Seguridad electromagnética
Transmisión inalámbrica de potencia
dc.subject.proposal.eng.fl_str_mv WPT
Shielding
Magnetic core
Electromagnetic safety
Wireless power transmission
dc.subject.unesco.spa.fl_str_mv Tecnología electrónica
Vehículo automotor
Ingeniería eléctrica
dc.subject.unesco.eng.fl_str_mv Electronic engineering
Motor vehicles
Electrical engineering
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-29T20:31:39Z
dc.date.available.none.fl_str_mv 2023-05-29T20:31:39Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83902
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83902
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akhil, A.G. et al. (2021) ‘Coupled wireless charging system for electric vehicles’, Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, (Icicv), pp. 475–479. Available at: https://doi.org/10.1109/ICICV50876.2021.9388458.
ANSYS (2013) ‘Ansys Maxweel V16 Training Manual, Lecture 3: Static Magnetic Solvers’.
Ansys Inc (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 6: Meshing and Mesh Operations’.
Ansys INC (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 1: Introduction to Ansys Maxwell’.
Badwey, M.A., Abbasy, N.H. and Eldallal, G.M. (2022) ‘An efficient design of LC-compensated hybrid wireless power transfer system for electric vehicle charging applications’, Alexandria Engineering Journal, 61(8), pp. 6565–6580. Available at: https://doi.org/10.1016/j.aej.2021.12.016.
Bandyopadhyay, S. et al. (2017) ‘Design considerations for a misalignment tolerant wireless inductive power system for electric vehicle (EV) charging’, 2017 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, 2017-Janua, pp. 1–10. Available at: https://doi.org/10.23919/EPE17ECCEEurope.2017.8099320.
Barth, D., Klaus, B. and Leibfried, T. (2017) ‘Litz wire design for wireless power transfer in electric vehicles’, WPTC 2017 - Wireless Power Transfer Conference [Preprint]. Available at: https://doi.org/10.1109/WPT.2017.7953819.
Benalia, N., Laroussi, K. and Benlaloui, I. (2022) ‘Improvement of the Magnetic Coupler design for Wireless Inductive Power Transfer’, Proceedings - 2022 5th International Conference on Power Electronics and their Applications, ICPEA 2022, 1(March), pp. 1–6. Available at: https://doi.org/10.1109/ICPEA51060.2022.9791150.
Budhia, M. et al. (2013) ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Transactions on Industrial Electronics, 60(1), pp. 318–328. Available at: https://doi.org/10.1109/TIE.2011.2179274.
Campi, T. et al. (2015) ‘Magnetic shielding design of wireless power transfer systems’, Annual Review of Progress in Applied Computational Electromagnetics, 2015-May (1), pp. 422–425.
Choi, B.G. and Kim, Y.S. (2021) ‘New Structure Design of Ferrite Cores for Wireless Electric Vehicle Charging by Machine Learning’, IEEE Transactions on Industrial Electronics, 68(12), pp. 12162– 12172. Available at: https://doi.org/10.1109/TIE.2020.3047041.
Chowdhury, M.S.A. (2019) Design and performance evaluation of different power pad topologies for electric vehicles wireless charging systems. Available at: https://research.library.mun.ca/13949/.
Corti, F. et al. (2019) ‘Circular Coil for EV Wireless Charging Design and Optimization Considering Ferrite Saturation’, 5th International Forum on Research and Technologies for Society and Industry: Innovation to Shape the Future, RTSI 2019 - Proceedings, pp. 279–284. Available at: https://doi.org/10.1109/RTSI.2019.8895601.
Cruciani, S. et al. (2018) ‘Application of the artificial material single layer (AMSL) method to assess the magnetic field generated by a WPT system with shield’, 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, EMC/APEMC 2018, pp. 80–83. Available at: https://doi.org/10.1109/ISEMC.2018.8393743.
El-Shahat, A. and Ayisire, E. (2021) ‘Novel electrical modeling, design and comparative control techniques for wireless electric vehicle battery charging’, Electronics (Switzerland), 10(22). Available at: https://doi.org/10.3390/electronics10222842.
Emmons Terman, F. (1943) Radio engineer’s handbook, Textile Research Journal. Available at: http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=UCC.xis&method=post&formato=2&cantidad=1&expresion=mfn=031555 %0Apapers2://publication/uuid/1060C9BD-59A1-4088-871E-C79F9568A608.
Feliziani, M. and Cruciani, S. (2013) ‘Mitigation of the magnetic field generated by a wireless power transfer (WPT) system without reducing the WPT efficiency’, IEEE International Symposium on Electromagnetic Compatibility, pp. 610–615.
Feng, H. et al. (2020) ‘Advances in High-Power Wireless Charging Systems: Overview and Design Considerations’, IEEE Transactions on Transportation Electrification, 6(3), pp. 886–919. Available at: https://doi.org/10.1109/TTE.2020.3012543.
Gaona, D.E., Jiang, C. and Long, T. (2021) ‘Highly Efficient 11.1-kW Wireless Power Transfer Utilizing Nanocrystalline Ribbon Cores’, IEEE Transactions on Power Electronics, 36(9), pp. 9955– 9969. Available at: https://doi.org/10.1109/TPEL.2021.3064902.
Ghosh, A. (2020) ‘Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review’, Energies, 13(10). Available at: https://doi.org/10.3390/en13102602.
Gómez, T. and Hernández, W. (2015) Técnicas de control para convertidores DC / DC de potencia intercalados con acoplamiento magnético.
Hariri, A. et al. (2016) ‘An Iterative Design Approach for Shielding of WPT Systems in Electric Vehicle Charging Applications’, 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, pp. 1–4. Available at: https://doi.org/10.1109/VPPC.2016.7791613.
Iclodean, C. et al. (2017) ‘Comparison of Different Battery Types for Electric Vehicles’, IOP Conference Series: Materials Science and Engineering, 252(1). Available at: https://doi.org/10.1088/1757-899X/252/1/012058.
International Electrotechnical Commission (2019) IEC TS 61980-2:2019 Electric vehicle wireless power transfer (WPT) systems - Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure. Available at: https://webstore.iec.ch/publication/31050 (Accessed: 5 December 2022).
International Electrotechnical Commission (2022) IEC 61980-3:2022 Electric vehicle wireless power transfer (WPT) systems - Part 3: Specific requirements for magnetic field wireless power transfer systems. Available at: https://webstore.iec.ch/publication/66059 (Accessed: 5 December 2022).
International Electrotechnical Commission (no date) IEC 61980-1:2020 Electric vehicle wireless power transfer (WPT) systems - Part 1: General requirements, 2020. Available at: https://webstore.iec.ch/publication/31657 (Accessed: 5 December 2022).
Jensen, K.D. (2020) ‘Litz Wire: Practical Design Considerations for Today´s High Frecuency Applications’.
Kadem, K. et al. (2019) ‘Reduction of the shielding effect on the coupling factor of an EV WPT system’, 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2019, pp. 21–24. Available at: https://doi.org/10.1109/WoW45936.2019.9030652.
Kan, T. (2020) ‘Modelling Inductive-Based Wireless Power Transfer Using Ansys Maxwell’
Kavitha, M., Bobba, P.B. and Prasad, D. (2017) ‘Effect of coil geometry and shielding on wireless power transfer system’, 2016 IEEE 7th Power India International Conference, PIICON 2016, pp. 1– 6. Available at: https://doi.org/10.1109/POWERI.2016.8077154.
Kim, S. et al. (2014) ‘Modeling of electromagnetic interference shielding materials in wireless power transfer for board-to-board level interconnections’, IEEE Wireless Power Transfer Conference 2014, IEEE WPTC 2014, pp. 273–276. Available at: https://doi.org/10.1109/WPT.2014.6839561.
Knaisch, K. and Gratzfeld, P. (2015) ‘Comparison of magnetic couplers for inductive electric vehicle charging using accurate numerical simulation and statistical methods’, 2015 5th International Conference on Electric Drives Production, EDPC 2015 - Proceedings, pp. 1–10. Available at: https://doi.org/10.1109/EDPC.2015.7323223.
Lawton, P.A.J., Lin, F.J. and Covic, G.A. (2022) ‘Magnetic Design Considerations for High-Power Wireless Charging Systems’, IEEE Transactions on Power Electronics, 37(8), pp. 9972–9982. Available at: https://doi.org/10.1109/TPEL.2022.3154365.
Li, S. and Mi, C.C. (2020) ‘Wireless power transfer for electric vehicle charging’, AIP Conference Proceedings, 2306(March). Available at: https://doi.org/10.1063/5.0032383.
Liang, J. and Kan, T. (2021) ‘Wireless Charging Systems - Create Better Designs Through Simulation’.
Liu, C., Jiang, C. and Qiu, C. (2017) ‘Overview of coil designs for wireless charging of electric vehicle’, 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2017, pp. 15–18. Available at: https://doi.org/10.1109/WoW.2017.7959389.
De Marco, D. et al. (2019) ‘Design and performance analysis of pads for dynamicwireless charging of EVs using the finite element method’, Energies, 12(21). Available at: https://doi.org/10.3390/en12214139.
Martinez, W. (2020) Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters. Universidad Nacional de Colombia.
Martínez, W. (2013) Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño. Universidad Nacional de Colombia.
Mohamed, A.A.S. et al. (2020) ‘A comprehensive overview of inductive pad in electric vehicles stationary charging’, Applied Energy, 262(February), p. 114584. Available at: https://doi.org/10.1016/j.apenergy.2020.114584.
Mohamed, N., Aymen, F., Alharbi, T.E.A., et al. (2022) ‘A Comprehensive Analysis of Wireless Charging Systems for Electric Vehicles’, IEEE Access, 10, pp. 43865–43881. Available at: https://doi.org/10.1109/ACCESS.2022.3168727.
Mohamed, N., Aymen, F., Alqarni, M., et al. (2022) ‘A new wireless charging system for electric vehicles using two receiver coils’, Ain Shams Engineering Journal, 13(2), p. 101569. Available at: https://doi.org/10.1016/j.asej.2021.08.012.
Mohammed, S.A.Q. and Jung, J.W. (2021) ‘A Comprehensive State-of-the-Art Review of Wired/Wireless Charging Technologies for Battery Electric Vehicles: Classification/Common Topologies/Future Research Issues’, IEEE Access, 9, pp. 19572–19585. Available at: https://doi.org/10.1109/ACCESS.2021.3055027.
Mou, X. et al. (2019) ‘Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging’, IET Power Electronics, 12(12), pp. 3005–3020. Available at: https://doi.org/10.1049/iet-pel.2019.0529.
Naik Mude, K. (2014) Wireless power transfer for electric vehicle.
New England Wire Technologies (2005) ‘Litz and Winding Wires’, in, pp. 127–136.
New England Wire Technologies (2017) Litz Wire Theory. Available at: https://www.newenglandwire.com/products/litz-wire-and-formed-cables/theory (Accessed: 16 December 2022).
Parikh, P.P., Sidhu, T.S. and Shami, A. (2013) ‘A Comprehensive Investigation of Wireless LAN for IEC 61850-2013; Based Smart Distribution Substation Applications’, IEEE Transactions on Industrial Informatics, pp. 1466–1476. Available at: https://doi.org/10.1109/TII.2012.2223225.
Pavelek, M., Frivaldsky, M. and Spanik, P. (2018) ‘Influence of the passive shielding on the optimal working point of the wireless power transfer systems’, SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 773–778. Available at: https://doi.org/10.1109/SPEEDAM.2018.8445377.
Pellitteri, F. (2016) Wireless charging systems for electric vehicle batteries.
Petersen, M. and Fuchs, F.W. (2013) ‘Comparative study on optimal core design for maximizing the coupling coefficient in electric vehicle inductive power transfer system’, PCIM Europe Conference Proceedings, (May), pp. 1525–1530.
Pinto, R., Lopresto, V. and Genovese, A. (2018) ‘A numerical study for the design of a new DD coil prototype for dynamic wireless charging of electric vehicles’, IET Conference Publications, 2018(CP741), pp. 2–6. Available at: https://doi.org/10.1049/cp.2018.1096.
Pusti, A. et al. (2021) ‘Essential analysis of MRC-WPT system for electric vehicle charging using coupled mode theory’, 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, ODICON 2021 [Preprint]. Available at: https://doi.org/10.1109/ODICON50556.2021.9429020.
Rahman, M. et al. (2021) ‘Magnetic Resonance Coupled Wireless Power Transfer Analysis for Electric Vehicle’, Proceedings - 2021 IEEE 3rd Global Power, Energy and Communication Conference, GPECOM 2021, pp. 28–33. Available at: https://doi.org/10.1109/GPECOM52585.2021.9587543.
Razu, M.R.R. et al. (2021) ‘Wireless Charging of Electric Vehicle while Driving’, IEEE Access, 9(December), pp. 157973–157983. Available at: https://doi.org/10.1109/ACCESS.2021.3130099.
SAE International (2019) ‘Surface Vehicle Recomended Practice J2954’, SAE International, 4970(724), pp. 1–5.
Talluri, G. et al. (2021) ‘Analysis of Power Losses due to Magnetic Shielding for Electric Vehicle Wireless Charging’, 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2021, pp. 1–6. Available at: https://doi.org/10.1109/CPE-POWERENG50821.2021.9501223.
TDK Corporation (2017a) ‘Ferrites and accessories - SIFERRIT material N87 Datasheet’, (September 2017), pp. 1–11. Available at: https://www.tdkelectronics.tdk.com/download/528882/71e02c7b9384de1331b3f625ce4b2123/pdf-n87.pdf.
TDK Corporation (2017b) ‘Ferrites and accessories - SIFERRIT material N95 Datasheet’, (May 2017)
TDK Corporation (2023) Magnetic Design Tool. Available at: https://tools.tdk-electronics.tdk.com/ (Accessed: 20 January 2021).
Thein, M.E. et al. (2021) ‘Investigation of power transfer efficiency: utilizing different coil designs in wireless charging of electric vehicles’, IOP Conference Series: Materials Science and Engineering, 1137(1), p. 012019. Available at: https://doi.org/10.1088/1757-899x/1137/1/012019.
Triviño-Cabrera, A., González-González, J.M. and Aguado, J.A. (2020) Wireless Power Transfer for Electric Vehicles: Foundations and Design Approach, Power Systems. Available at: https://doi.org/10.1007/978-3-030-26706-3_1.
Velandia, F. (2018) Diseño e Implementación de un Convertidor de Potencia de Alta Eficiencia para un Vehículo Eléctrico de Alto Desempeño. Universidad Nacional de Colombia.
Xie, W., Chen, Q.G. and Lei, S.Z. (2021) ‘An Optimized Design of an Electric Vehicle Wireless Charging Coupling Coil’, Journal of Physics: Conference Series, 2125(1). Available at: https://doi.org/10.1088/1742-6596/2125/1/012035.
Xiong, M. et al. (2021) ‘Design and effect analysis of wireless energy transmission device for electric vehicle’, Proceedings - 2021 International Conference on Information Control, Electrical Engineering and Rail Transit, ICEERT 2021, pp. 91–94. Available at: https://doi.org/10.1109/ICEERT53919.2021.00027.
Yang, Y., Cui, J. and Cui, X. (2020) ‘Design and analysis of magnetic coils for optimizing the coupling coefficient in an electric vehicle wireless power transfer system’, Energies, 13(6). Available at: https://doi.org/10.3390/en13164143.
Zhang, X., Zhu, C. and Song, H. (2011) Wireless power transfer technologies for electric vehicles, SAE Technical Papers. Available at: https://doi.org/10.1149/10701.18697ecst.
Zhu, H. et al. (2011) ‘Design of auto air pressure balance system for fire control and numerical simulation of pressure balance effect’, Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on, pp. 2503–2507. Available at: https://doi.org/10.1109/FSKD.2011.6019963.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 85 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83902/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83902/2/1032453485.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83902/3/1032453485.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
3157e389b078094aa9417b719f571375
ab4496c371317712275af2e7811a43e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089270872244224
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Guerrero, Camilo Andrés7f8ae2adc53274e372e9ae39030efb28Martínez Martínez, Wilmar Hernánf9f313e029af2057afe7439a8d100e84Gomez Carrillo, Tania Gineth00db155fd04f926f2f31b174135d69baGrupo de Investigación Emc-Un2023-05-29T20:31:39Z2023-05-29T20:31:39Z2023https://repositorio.unal.edu.co/handle/unal/83902Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn este trabajo de investigación, se llevó a cabo una revisión bibliográfica sobre de las tecnologías disponibles para la transferencia inalámbrica de energía en vehículos eléctricos. Con base en esta revisión, se estableció una metodología para el diseño de un sistema de transferencia inalámbrica de energía que se enfoca principalmente en el diseño del sistema de apantallamiento electromagnético mediante el uso de software de simulación de elementos finitos. Como resultado de la evaluación de distintas combinaciones de dimensiones de las bobinas y el sistema de apantallamiento, se identificó un diseño óptimo que logró maximizar el coeficiente de acoplamiento entre las bobinas, reducir el tamaño total y garantizar el cumplimiento de los estándares de seguridad electromagnética. Tras realizar modificaciones al sistema de apantallamiento, se evaluaron diferentes materiales y formas para mejorar su eficiencia, lo que permitió identificar los más apropiados para reducir las pérdidas obtenidas por el apantallamiento. (Texto tomado de la fuente).In this research work, a state of the art review was carried out on the technologies available for wireless power transfer of energy in electric vehicles. Based on this review, a methodology was established for the design of a wireless power transfer system that focuses mainly on the design of the electromagnetic shielding system through the use of finite element simulation software. As a result of the evaluation of different combinations of dimensions of the coils and the shielding system, an optimal design was identified. Such system will maximize the concentration coefficient between the coils, reduce the overall size, and guarantee compliance with electromagnetic safety standards. After making modifications to the shielding system, different materials and shapes were evaluated to improve its efficiency, which allowed identifying the most appropriate to reduce the losses obtained by the shielding.Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería ElectrónicaElectrónica de potencia, diseño de componentes magnéticosxix, 85 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaWPTApantallamientoNúcleo magnéticosSeguridad electromagnéticaTransmisión inalámbrica de potenciaWPTShieldingMagnetic coreElectromagnetic safetyWireless power transmissionTecnología electrónicaVehículo automotorIngeniería eléctricaElectronic engineeringMotor vehiclesElectrical engineeringDiseño del apantallamiento electromagnético para un sistema de transmisión inalámbrica de energía de vehículos eléctricosElectromagnetic shielding design for a wireless power transmission system for electric vehiclesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAkhil, A.G. et al. (2021) ‘Coupled wireless charging system for electric vehicles’, Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, (Icicv), pp. 475–479. Available at: https://doi.org/10.1109/ICICV50876.2021.9388458.ANSYS (2013) ‘Ansys Maxweel V16 Training Manual, Lecture 3: Static Magnetic Solvers’.Ansys Inc (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 6: Meshing and Mesh Operations’.Ansys INC (2013) ‘Ansys Maxwell V16 Training Manual - Lecture 1: Introduction to Ansys Maxwell’.Badwey, M.A., Abbasy, N.H. and Eldallal, G.M. (2022) ‘An efficient design of LC-compensated hybrid wireless power transfer system for electric vehicle charging applications’, Alexandria Engineering Journal, 61(8), pp. 6565–6580. Available at: https://doi.org/10.1016/j.aej.2021.12.016.Bandyopadhyay, S. et al. (2017) ‘Design considerations for a misalignment tolerant wireless inductive power system for electric vehicle (EV) charging’, 2017 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, 2017-Janua, pp. 1–10. Available at: https://doi.org/10.23919/EPE17ECCEEurope.2017.8099320.Barth, D., Klaus, B. and Leibfried, T. (2017) ‘Litz wire design for wireless power transfer in electric vehicles’, WPTC 2017 - Wireless Power Transfer Conference [Preprint]. Available at: https://doi.org/10.1109/WPT.2017.7953819.Benalia, N., Laroussi, K. and Benlaloui, I. (2022) ‘Improvement of the Magnetic Coupler design for Wireless Inductive Power Transfer’, Proceedings - 2022 5th International Conference on Power Electronics and their Applications, ICPEA 2022, 1(March), pp. 1–6. Available at: https://doi.org/10.1109/ICPEA51060.2022.9791150.Budhia, M. et al. (2013) ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Transactions on Industrial Electronics, 60(1), pp. 318–328. Available at: https://doi.org/10.1109/TIE.2011.2179274.Campi, T. et al. (2015) ‘Magnetic shielding design of wireless power transfer systems’, Annual Review of Progress in Applied Computational Electromagnetics, 2015-May (1), pp. 422–425.Choi, B.G. and Kim, Y.S. (2021) ‘New Structure Design of Ferrite Cores for Wireless Electric Vehicle Charging by Machine Learning’, IEEE Transactions on Industrial Electronics, 68(12), pp. 12162– 12172. Available at: https://doi.org/10.1109/TIE.2020.3047041.Chowdhury, M.S.A. (2019) Design and performance evaluation of different power pad topologies for electric vehicles wireless charging systems. Available at: https://research.library.mun.ca/13949/.Corti, F. et al. (2019) ‘Circular Coil for EV Wireless Charging Design and Optimization Considering Ferrite Saturation’, 5th International Forum on Research and Technologies for Society and Industry: Innovation to Shape the Future, RTSI 2019 - Proceedings, pp. 279–284. Available at: https://doi.org/10.1109/RTSI.2019.8895601.Cruciani, S. et al. (2018) ‘Application of the artificial material single layer (AMSL) method to assess the magnetic field generated by a WPT system with shield’, 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, EMC/APEMC 2018, pp. 80–83. Available at: https://doi.org/10.1109/ISEMC.2018.8393743.El-Shahat, A. and Ayisire, E. (2021) ‘Novel electrical modeling, design and comparative control techniques for wireless electric vehicle battery charging’, Electronics (Switzerland), 10(22). Available at: https://doi.org/10.3390/electronics10222842.Emmons Terman, F. (1943) Radio engineer’s handbook, Textile Research Journal. Available at: http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=UCC.xis&method=post&formato=2&cantidad=1&expresion=mfn=031555 %0Apapers2://publication/uuid/1060C9BD-59A1-4088-871E-C79F9568A608.Feliziani, M. and Cruciani, S. (2013) ‘Mitigation of the magnetic field generated by a wireless power transfer (WPT) system without reducing the WPT efficiency’, IEEE International Symposium on Electromagnetic Compatibility, pp. 610–615.Feng, H. et al. (2020) ‘Advances in High-Power Wireless Charging Systems: Overview and Design Considerations’, IEEE Transactions on Transportation Electrification, 6(3), pp. 886–919. Available at: https://doi.org/10.1109/TTE.2020.3012543.Gaona, D.E., Jiang, C. and Long, T. (2021) ‘Highly Efficient 11.1-kW Wireless Power Transfer Utilizing Nanocrystalline Ribbon Cores’, IEEE Transactions on Power Electronics, 36(9), pp. 9955– 9969. Available at: https://doi.org/10.1109/TPEL.2021.3064902.Ghosh, A. (2020) ‘Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review’, Energies, 13(10). Available at: https://doi.org/10.3390/en13102602.Gómez, T. and Hernández, W. (2015) Técnicas de control para convertidores DC / DC de potencia intercalados con acoplamiento magnético.Hariri, A. et al. (2016) ‘An Iterative Design Approach for Shielding of WPT Systems in Electric Vehicle Charging Applications’, 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, pp. 1–4. Available at: https://doi.org/10.1109/VPPC.2016.7791613.Iclodean, C. et al. (2017) ‘Comparison of Different Battery Types for Electric Vehicles’, IOP Conference Series: Materials Science and Engineering, 252(1). Available at: https://doi.org/10.1088/1757-899X/252/1/012058.International Electrotechnical Commission (2019) IEC TS 61980-2:2019 Electric vehicle wireless power transfer (WPT) systems - Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure. Available at: https://webstore.iec.ch/publication/31050 (Accessed: 5 December 2022).International Electrotechnical Commission (2022) IEC 61980-3:2022 Electric vehicle wireless power transfer (WPT) systems - Part 3: Specific requirements for magnetic field wireless power transfer systems. Available at: https://webstore.iec.ch/publication/66059 (Accessed: 5 December 2022).International Electrotechnical Commission (no date) IEC 61980-1:2020 Electric vehicle wireless power transfer (WPT) systems - Part 1: General requirements, 2020. Available at: https://webstore.iec.ch/publication/31657 (Accessed: 5 December 2022).Jensen, K.D. (2020) ‘Litz Wire: Practical Design Considerations for Today´s High Frecuency Applications’.Kadem, K. et al. (2019) ‘Reduction of the shielding effect on the coupling factor of an EV WPT system’, 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2019, pp. 21–24. Available at: https://doi.org/10.1109/WoW45936.2019.9030652.Kan, T. (2020) ‘Modelling Inductive-Based Wireless Power Transfer Using Ansys Maxwell’Kavitha, M., Bobba, P.B. and Prasad, D. (2017) ‘Effect of coil geometry and shielding on wireless power transfer system’, 2016 IEEE 7th Power India International Conference, PIICON 2016, pp. 1– 6. Available at: https://doi.org/10.1109/POWERI.2016.8077154.Kim, S. et al. (2014) ‘Modeling of electromagnetic interference shielding materials in wireless power transfer for board-to-board level interconnections’, IEEE Wireless Power Transfer Conference 2014, IEEE WPTC 2014, pp. 273–276. Available at: https://doi.org/10.1109/WPT.2014.6839561.Knaisch, K. and Gratzfeld, P. (2015) ‘Comparison of magnetic couplers for inductive electric vehicle charging using accurate numerical simulation and statistical methods’, 2015 5th International Conference on Electric Drives Production, EDPC 2015 - Proceedings, pp. 1–10. Available at: https://doi.org/10.1109/EDPC.2015.7323223.Lawton, P.A.J., Lin, F.J. and Covic, G.A. (2022) ‘Magnetic Design Considerations for High-Power Wireless Charging Systems’, IEEE Transactions on Power Electronics, 37(8), pp. 9972–9982. Available at: https://doi.org/10.1109/TPEL.2022.3154365.Li, S. and Mi, C.C. (2020) ‘Wireless power transfer for electric vehicle charging’, AIP Conference Proceedings, 2306(March). Available at: https://doi.org/10.1063/5.0032383.Liang, J. and Kan, T. (2021) ‘Wireless Charging Systems - Create Better Designs Through Simulation’.Liu, C., Jiang, C. and Qiu, C. (2017) ‘Overview of coil designs for wireless charging of electric vehicle’, 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2017, pp. 15–18. Available at: https://doi.org/10.1109/WoW.2017.7959389.De Marco, D. et al. (2019) ‘Design and performance analysis of pads for dynamicwireless charging of EVs using the finite element method’, Energies, 12(21). Available at: https://doi.org/10.3390/en12214139.Martinez, W. (2020) Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters Modeling and Multi-Objective Optimization of Inductive Components in High Voltage Gain Power Converters. Universidad Nacional de Colombia.Martínez, W. (2013) Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño Diseño de un sistema de carga y descarga de energía eléctrica para vehículos eléctricos de alto desempeño. Universidad Nacional de Colombia.Mohamed, A.A.S. et al. (2020) ‘A comprehensive overview of inductive pad in electric vehicles stationary charging’, Applied Energy, 262(February), p. 114584. Available at: https://doi.org/10.1016/j.apenergy.2020.114584.Mohamed, N., Aymen, F., Alharbi, T.E.A., et al. (2022) ‘A Comprehensive Analysis of Wireless Charging Systems for Electric Vehicles’, IEEE Access, 10, pp. 43865–43881. Available at: https://doi.org/10.1109/ACCESS.2022.3168727.Mohamed, N., Aymen, F., Alqarni, M., et al. (2022) ‘A new wireless charging system for electric vehicles using two receiver coils’, Ain Shams Engineering Journal, 13(2), p. 101569. Available at: https://doi.org/10.1016/j.asej.2021.08.012.Mohammed, S.A.Q. and Jung, J.W. (2021) ‘A Comprehensive State-of-the-Art Review of Wired/Wireless Charging Technologies for Battery Electric Vehicles: Classification/Common Topologies/Future Research Issues’, IEEE Access, 9, pp. 19572–19585. Available at: https://doi.org/10.1109/ACCESS.2021.3055027.Mou, X. et al. (2019) ‘Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging’, IET Power Electronics, 12(12), pp. 3005–3020. Available at: https://doi.org/10.1049/iet-pel.2019.0529.Naik Mude, K. (2014) Wireless power transfer for electric vehicle.New England Wire Technologies (2005) ‘Litz and Winding Wires’, in, pp. 127–136.New England Wire Technologies (2017) Litz Wire Theory. Available at: https://www.newenglandwire.com/products/litz-wire-and-formed-cables/theory (Accessed: 16 December 2022).Parikh, P.P., Sidhu, T.S. and Shami, A. (2013) ‘A Comprehensive Investigation of Wireless LAN for IEC 61850-2013; Based Smart Distribution Substation Applications’, IEEE Transactions on Industrial Informatics, pp. 1466–1476. Available at: https://doi.org/10.1109/TII.2012.2223225.Pavelek, M., Frivaldsky, M. and Spanik, P. (2018) ‘Influence of the passive shielding on the optimal working point of the wireless power transfer systems’, SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 773–778. Available at: https://doi.org/10.1109/SPEEDAM.2018.8445377.Pellitteri, F. (2016) Wireless charging systems for electric vehicle batteries.Petersen, M. and Fuchs, F.W. (2013) ‘Comparative study on optimal core design for maximizing the coupling coefficient in electric vehicle inductive power transfer system’, PCIM Europe Conference Proceedings, (May), pp. 1525–1530.Pinto, R., Lopresto, V. and Genovese, A. (2018) ‘A numerical study for the design of a new DD coil prototype for dynamic wireless charging of electric vehicles’, IET Conference Publications, 2018(CP741), pp. 2–6. Available at: https://doi.org/10.1049/cp.2018.1096.Pusti, A. et al. (2021) ‘Essential analysis of MRC-WPT system for electric vehicle charging using coupled mode theory’, 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, ODICON 2021 [Preprint]. Available at: https://doi.org/10.1109/ODICON50556.2021.9429020.Rahman, M. et al. (2021) ‘Magnetic Resonance Coupled Wireless Power Transfer Analysis for Electric Vehicle’, Proceedings - 2021 IEEE 3rd Global Power, Energy and Communication Conference, GPECOM 2021, pp. 28–33. Available at: https://doi.org/10.1109/GPECOM52585.2021.9587543.Razu, M.R.R. et al. (2021) ‘Wireless Charging of Electric Vehicle while Driving’, IEEE Access, 9(December), pp. 157973–157983. Available at: https://doi.org/10.1109/ACCESS.2021.3130099.SAE International (2019) ‘Surface Vehicle Recomended Practice J2954’, SAE International, 4970(724), pp. 1–5.Talluri, G. et al. (2021) ‘Analysis of Power Losses due to Magnetic Shielding for Electric Vehicle Wireless Charging’, 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2021, pp. 1–6. Available at: https://doi.org/10.1109/CPE-POWERENG50821.2021.9501223.TDK Corporation (2017a) ‘Ferrites and accessories - SIFERRIT material N87 Datasheet’, (September 2017), pp. 1–11. Available at: https://www.tdkelectronics.tdk.com/download/528882/71e02c7b9384de1331b3f625ce4b2123/pdf-n87.pdf.TDK Corporation (2017b) ‘Ferrites and accessories - SIFERRIT material N95 Datasheet’, (May 2017)TDK Corporation (2023) Magnetic Design Tool. Available at: https://tools.tdk-electronics.tdk.com/ (Accessed: 20 January 2021).Thein, M.E. et al. (2021) ‘Investigation of power transfer efficiency: utilizing different coil designs in wireless charging of electric vehicles’, IOP Conference Series: Materials Science and Engineering, 1137(1), p. 012019. Available at: https://doi.org/10.1088/1757-899x/1137/1/012019.Triviño-Cabrera, A., González-González, J.M. and Aguado, J.A. (2020) Wireless Power Transfer for Electric Vehicles: Foundations and Design Approach, Power Systems. Available at: https://doi.org/10.1007/978-3-030-26706-3_1.Velandia, F. (2018) Diseño e Implementación de un Convertidor de Potencia de Alta Eficiencia para un Vehículo Eléctrico de Alto Desempeño. Universidad Nacional de Colombia.Xie, W., Chen, Q.G. and Lei, S.Z. (2021) ‘An Optimized Design of an Electric Vehicle Wireless Charging Coupling Coil’, Journal of Physics: Conference Series, 2125(1). Available at: https://doi.org/10.1088/1742-6596/2125/1/012035.Xiong, M. et al. (2021) ‘Design and effect analysis of wireless energy transmission device for electric vehicle’, Proceedings - 2021 International Conference on Information Control, Electrical Engineering and Rail Transit, ICEERT 2021, pp. 91–94. Available at: https://doi.org/10.1109/ICEERT53919.2021.00027.Yang, Y., Cui, J. and Cui, X. (2020) ‘Design and analysis of magnetic coils for optimizing the coupling coefficient in an electric vehicle wireless power transfer system’, Energies, 13(6). Available at: https://doi.org/10.3390/en13164143.Zhang, X., Zhu, C. and Song, H. (2011) Wireless power transfer technologies for electric vehicles, SAE Technical Papers. Available at: https://doi.org/10.1149/10701.18697ecst.Zhu, H. et al. (2011) ‘Design of auto air pressure balance system for fire control and numerical simulation of pressure balance effect’, Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on, pp. 2503–2507. Available at: https://doi.org/10.1109/FSKD.2011.6019963.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83902/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032453485.2023.pdf1032453485.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Electrónicaapplication/pdf3183868https://repositorio.unal.edu.co/bitstream/unal/83902/2/1032453485.2023.pdf3157e389b078094aa9417b719f571375MD52THUMBNAIL1032453485.2023.pdf.jpg1032453485.2023.pdf.jpgGenerated Thumbnailimage/jpeg5372https://repositorio.unal.edu.co/bitstream/unal/83902/3/1032453485.2023.pdf.jpgab4496c371317712275af2e7811a43e6MD53unal/83902oai:repositorio.unal.edu.co:unal/839022023-08-07 23:03:59.957Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=