Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
ilustraciones, fotografías, graficas, mapas
- Autores:
-
Díaz Guadarrama, Sergio
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81445
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Perfiles de suelo
SISLAC
Carbono orgánico del suelo
Variabilidad espacial
Depuración de datos
Segmentación
Soil profiles
Soil organic carbon
Spatial variability
Segmentation of soil profiles
Data validation
Datos geológicos
Procesamiento de datos
Geological data
Data processing
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_49ab5c778b16086164999d5f43ab8ac1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81445 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
dc.title.translated.eng.fl_str_mv |
Quantitative pedology algorithms for the Soil Information System of Latin America and the Caribbean, SISLAC |
title |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
spellingShingle |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Perfiles de suelo SISLAC Carbono orgánico del suelo Variabilidad espacial Depuración de datos Segmentación Soil profiles Soil organic carbon Spatial variability Segmentation of soil profiles Data validation Datos geológicos Procesamiento de datos Geological data Data processing |
title_short |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
title_full |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
title_fullStr |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
title_full_unstemmed |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
title_sort |
Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC |
dc.creator.fl_str_mv |
Díaz Guadarrama, Sergio |
dc.contributor.advisor.none.fl_str_mv |
Rubiano Sanabria, Yolanda Lizarazo Salcedo, Iván Alberto |
dc.contributor.author.none.fl_str_mv |
Díaz Guadarrama, Sergio |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Perfiles de suelo SISLAC Carbono orgánico del suelo Variabilidad espacial Depuración de datos Segmentación Soil profiles Soil organic carbon Spatial variability Segmentation of soil profiles Data validation Datos geológicos Procesamiento de datos Geological data Data processing |
dc.subject.proposal.spa.fl_str_mv |
Perfiles de suelo SISLAC Carbono orgánico del suelo Variabilidad espacial Depuración de datos Segmentación |
dc.subject.proposal.eng.fl_str_mv |
Soil profiles Soil organic carbon Spatial variability Segmentation of soil profiles Data validation |
dc.subject.unesco.spa.fl_str_mv |
Datos geológicos Procesamiento de datos |
dc.subject.unesco.eng.fl_str_mv |
Geological data Data processing |
description |
ilustraciones, fotografías, graficas, mapas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-05 |
dc.date.accessioned.none.fl_str_mv |
2022-04-07T13:01:57Z |
dc.date.available.none.fl_str_mv |
2022-04-07T13:01:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81445 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81445 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Amirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021 Angelini, M. (2018). Structural equation modelling for digital soil mapping. Wageningen University. Angelini, M., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031 Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. CATENA, 196, 104940. https://doi.org/https://doi.org/10.1016/j.catena.2020.104940 Armas, D., Guevara, M., Alcaraz-Segura, D., Vargas, R., Soriano-Luna, Á., Durante, P., & Oyonarte, C. (2017). Digital map of the organic carbon profile in the soils of Andalusia, Spain. Ecosistemas, 26(3), 80–88. https://doi.org/10.7818/ecos.2017.26-3.10 Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., … Zhang, G.-L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0 Arrouays, D., Leenaars, J. G. B., Richer-de-forges, A. C., Adhikari, K., Ballabio, C., Greve, M., … Rodriguez, D. (2017). Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14, 1–19. https://doi.org/10.1016/j.grj.2017.06.001 Barbosa, D. R., Pinheiro, H. S., & Soares, F. (2019). Seasonal Variability of Trace Elements by Soil Depth in a Protected Area. Floresta e Ambiente, 26(1), 1–8. Baritz, R., Erdogan, H., Fujji, K., Takata, Y., Nocita, M., Bussian, B., … Vargas, R. (2014). Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Global Soil Partnership (p. 18). Batjes, N. (1995). World inventory of soil emission potentials -WISE 2.1. Wageningen. Batjes, N., Ribeiro, E., & Van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data, 12(1), 299–320. https://doi.org/10.5194/essd-12-299-2020 Beaudette, D., & O’Geen, A. T. (2009). Soil-Web: An online soil survey for California, Arizona, and Nevada. Computers and Geosciences, 35(10), 2119–2128. https://doi.org/10.1016/j.cageo.2008.10.016 Beaudette, D., & O’Geen, A. T. (2016). Topographic and Geologic Controls on Soil Variability in California’s Sierra Nevada Foothill Region. Soil Science Society of America Journal, (July 2015), 341–354. https://doi.org/10.2136/sssaj2015.07.0251 Beaudette, D., Roudier, P., & Brown, A. (2019). Package “AQP”, Users manual. https://doi.org/10.1016/j.cageo.2012.10.020>. Beaudette, D., Roudier, P., & Geen, A. T. O. (2013). Algorithms for quantitative pedology : A toolkit for soil scientists. Computers and Geosciences, 52, 258–268. https://doi.org/10.1016/j.cageo.2012.10.020 Benning, R., Petzold, R., Danigel, J., Gemballa, R., & Andreae, H. (2016). Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Forest Ecology, Landscape Research and Nature Conservation, 16(November), 35–42. Bhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001 Bini, D., Santos, C. A. dos, Carmo, K. B. do, Kishino, N., Andrade, G., Zangaro, W., & Nogueira, M. A. (2013). Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55, 117–123. https://doi.org/10.1016/j.ejsobi.2012.12.010 Bishop, T. F. A., Mcbratney, A., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1), 27–45. https://doi.org/https://doi.org/10.1016/S0016-7061(99)00003-8 Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. Catena, 190(August 2019), 104539. https://doi.org/10.1016/j.catena.2020.104539 Brady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. Prentice Hall. Retrieved from https://books.google.com.co/books?id=8IdFAQAAIAAJ Dharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. Geoderma Regional, 10(April), 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005 Dorji, T., Odeh, I., Field, D. J., & Baillie, I. C. (2014). Forest Ecology and Management Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems , Eastern Himalayas. Forest Ecology and Management, 318(2014), 91–102. https://doi.org/10.1016/j.foreco.2014.01.003 Duan, L., Li, Z., Xie, H., Li, Z., Zhang, L., & Zhou, Q. (2020). Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena, 188(November 2019), 104350. https://doi.org/10.1016/j.catena.2019.104350 FAO. (2017a). Carbono orgánico del suelo: el potencial oculto. Roma, Italia. FAO. (2017b). FAO y los Objetivos de Desarrollo Sostenible. Roma. FAO. (2017c). Soil Organic Carbon, the hidden potential. (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). Roma, Italia: FAO. FAO. (2018). TALLER REGIONAL: “El uso de datos de suelos para la toma de decisiones y la planificación en Latinoamérica: presentación del sistema de información de suelos SISLAC.” Bogotá. FAO, & IIASA. (2009). Harmonized world soil database. Food and Agriculture Organization, 43. https://doi.org/3123 FAO, & ITPS. (2018a). Global Soil Organic Carbon Map (GSOCmap) Technical Report. Retrieved from http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimates FAO, & ITPS. (2018b). Mapa de carbono orgánico del suelo - GSOCmap. Rome. Garbanzo-Leon, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas. UNAM, 93, 22. Garg, P. K., Garg, R. D., Shukla, G., & Srivastava, H. S. (2020). Digital Mapping of Soil Landscape Parameters. Poland: Springer International Publishing. Gimond, M. (2019). Intro to GIS and Spatial Analysis. Retrieved from https://mgimond.github.io/Spatial/index.html Giraldo, R. (2002). Introducción a la geoestadística. Teoría y aplicación. Bogotá, Colombia: Universidad Nacional de Colombia. GlobalSoilMap. (2015). GlobalSoilMap Specifications. Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91. https://doi.org/10.1016/j.jafrearsci.2017.06.014 Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(January), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007 Greiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(September), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025 Gutierrez, J., Ordoñez, N., Bolivar, A., Bunning, S., Guevara, M., Medina, E., … Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia, 29(1), 1–10. Hartemink, A. E., Mcbratney, A., & Mendonça-Santos, M. de L. (2008). Digital Soil Mapping with Limited Data. Springer Environmental Science and Engineering. https://doi.org/10.1016/0040-6031(89)85434-6 Hendriks, C. M. J., Stoorvogel, J., Lutz, F., & Claessens, L. (2019). When can legacy soil data be used, and when should new data be collected instead? Geoderma, 348(May), 181–188. https://doi.org/10.1016/j.geoderma.2019.04.026 Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748 Hengl, T., & Macmillan, R. A. (2019). Predictive Soil Mapping with R. Herrera-Peña, W. R. (2017). Distribución espacial del carbono orgánico y su relación con la fertilidad y calidad de los suelos en el Valle de Sibundoy departamento del Putumayo. Universidad Militar Nueva Granada. Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Science. IDEAM. (2014). ZONIFICACIÓN HIDROGRÁFICA. Retrieved November 18, 2020, from http://www.ideam.gov.co/web/agua/zonificacion-hidrografica IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National GReenhouse Gas Inventories. (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, … S. Federici, Eds.), Agriculture, Forestryand Other Land Use (Vol. 4). Switzerland: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html ISO. (2013). Geographic Information – Quality Principles; first edition (ISO 19157:2013). Geneva, Switzerland.: International Organization for Standardization. Keskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339(November 2017), 40–58. https://doi.org/10.1016/j.geoderma.2018.12.037 Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6), 21. Krol, B. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data. In A. E. Hartemink, A. B. Mcbratney, & M. de L. Mendonça-Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 137–149). Springer International Publishing. https://doi.org/10.1007/978-1-4020-8592-5_11 Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031 Leenaars, J. G. B. (2013). Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. ISRIC Report 2013/03 (Vol. 03). Wangeningen, the Netherlands. https://doi.org/10.1201/b16500-13 Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia. Malone, B., Mcbratney, A., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007 Malone, B., Minasny, B., & Mcbratney, A. (2017). Progress in Soil Science, Using R for Digital Soil Mapping. (A. E. Hartemink & A. B. Mcbratney, Eds.) (Springer). Retrieved from http://www.springer.com/series/8746 Massawe, B. H. J., Winowiecki, L., Meliyo, J. L., Mbogoni, J. D. J., Msanya, B. M., Kimaro, D., … Jelinski, N. A. (2017). Assessing drivers of soil properties and classi fi cation in the West Usambara mountains , Tanzania. Geoderma Regional, 11(October), 141–154. https://doi.org/10.1016/j.geodrs.2017.10.002 Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246 Maynard, J. J., & Johnson, M. G. (2016). Uncoupling the complexity of forest soil variation: Influence of terrain indices, spectral indices, and spatial variability. Forest Ecology and Management, 369, 89–101. https://doi.org/10.1016/j.foreco.2016.03.018 Mcbratney, A., Gruijter, J. De, & Bryce, A. (2019). Pedometrics timeline. Geoderma, 338(November 2018), 568–575. https://doi.org/10.1016/j.geoderma.2018.11.048 Minasny, B., Malone, B., Stockmann, U., Odgers, N., & Mcbratney, A. (2014). Pedometrics. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09163-6 Minasny, B., Mcbratney, A., Malone, B., & Wheeler, I. (2013). Digital Mapping of Soil Carbon. Advances in Agronomy (Vol. 118). Elsevier. https://doi.org/10.1016/B978-0-12-405942-9.00001-3 Morford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 333–349. https://doi.org/10.1002/2015GB005283.Received Murillo, D., Ortega, I., Carrillo, J. D., Pardo, A., & Rendón, J. (2012). A comparison of interpolation methods for creating noise maps in urban environments. Dialnet, 3(1), 62–68. Nachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., … Wiberg, D. (2010). The harmonized world soil database. verson 1.0. 19th World Congress of Soil Science, Soil Solutions for a Changing World (Vol. Version 1.). Brisbane, Australia. Retrieved from http://library.wur.nl/WebQuery/wurpubs/fulltext/154132 Odgers, N., Libohova, Z., & Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189–190, 153–163. https://doi.org/10.1016/j.geoderma.2012.05.026 Olaya, V. (2014). Sistemas de Información Geográfica. Sistemas de Información Geográfica (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004 Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 15–32. Omuto, C., Nachtergaele, F., & Vargas, R. (2013). State of the Art Report on Global and Regional Soil Information: Where are we? Where to go? Rome. Retrieved from http://typo3.fao.org/fileadmin/templates/nr/kagera/Documents/Soil_information_Report.pdf Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. https://doi.org/10.1111/ejss.12499 Owusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. (2020). Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma, 360(October 2018). Pejović, M., Bajat, B., Gospavi, Z., Saljnikov, E., Kilibarda, M., & Dragan, Č. (2017). Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. Journal of Geochemical Exploration, 179(February 2016), 25–35. https://doi.org/10.1016/j.gexplo.2017.05.004 Pham, K., Kim, D., Yoon, Y., & Choi, H. (2019). Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma, 351(August 2018), 92–102. https://doi.org/10.1016/j.geoderma.2019.05.013 Piccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geostatistical methods : Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36, 301–314. https://doi.org/10.1016/j.ecolind.2013.08.009 Pinheiro, H. S., Chagas, C., Carvalho Junior, W., & dos Anjos, L. H. C. (2016). Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesquisa Agropecuaria Brasileira, 51(9), 1326–1338. https://doi.org/10.1590/S0100-204X2016000900032 Pinheiro, H. S., dos Anjos, L. H. C., Xavier, P. A. M., Chagas, C., & Carvalho Junior, W. (2018). Quantitative pedology to evaluate a soil profile collection from the Brazilian semi-arid region. South African Journal of Plant and Soil, 35(4), 269–279. https://doi.org/10.1080/02571862.2017.1419385 R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . Available online at https://www.R-project.org/. Vienna, Austria. Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158(February), 390–412. https://doi.org/10.1016/j.catena.2017.07.020 Rasmussen, C., Mcguire, L., Dhakal, P., & Pelletier, J. D. (2017). Coevolution of soil and topography across a semiarid cinder cone chronosequence. Catena, 156(August 2016), 338–352. https://doi.org/10.1016/j.catena.2017.04.025 Rial, M., Martínez Cortizas, A., & Rodríguez-Lado, L. (2017). Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609, 1411–1422. https://doi.org/10.1016/j.scitotenv.2017.08.012 Rodríguez, F. A., Camacho, J. H., & Rubiano, Y. (2016). Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Ciencia & Tecnología Agropecuaria, 17(2), 237–254. Rossiter, D. (1999). Bases De Datos Geográficos de Suelos y el Uso de Programas para su Construcción. In R. Vargas (Ed.), Notas de conferencia (p. 65). Enschede. Retrieved from http://www.css.cornell.edu/faculty/dgr2/teach/sis/SoilGeographicDataBases_E.pdf Rossiter, D. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(November 2014), 296–301. https://doi.org/10.1079/SUM2004258 Rossiter, D. (2012). A pedometric approach to valuing the soil resource. Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital Soil Mapping. https://doi.org/10.1201/b12728-7 Rossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma, 324(March), 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009 Rossiter, D., Zeng, R., & Zhang, G. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. https://doi.org/10.1016/j.geoderma.2017.01.012 Santra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72. https://doi.org/10.1016/j.geodrs.2017.03.003 Schloeder, C., Zimmermann, N., & Jacobs, M. (2001). Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65. https://doi.org/10.2136/sssaj2001.652470x Silatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367(September 2019), 13. https://doi.org/10.1016/j.geoderma.2020.114260 Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12(November 2017), 28–38. https://doi.org/10.1016/j.geodrs.2017.11.004 SISLAC. (2013). Sistema de Información de Suelos de Latinoamérica - SISLAC. Retrieved October 2, 2017, from http://www.sislac.org/# Soil Science Division Staff. (2017). Soil Survey Manual. (C. Ditzler, K. Scheffe, & H. . . Monger, Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C. https://doi.org/10.1097/00010694-195112000-00022 Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual. U.S. Department of Agriculture, Natural Resources Conservation Service. Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., … Lal, R. (2017). Matching policy and science: Rationale for the “4 per 1000 - soils for food security and climate” initiative. Soil and Tillage Research, (June), 13. https://doi.org/10.1016/j.still.2017.12.002 Sulaeman, Y., Minasny, B., Mcbratney, A., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192(1), 77–85. https://doi.org/10.1016/j.geoderma.2012.08.005 Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research, 195(January), 104410. https://doi.org/10.1016/j.still.2019.104410 Taghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003 USDA. (1995). Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas: Natural Soil Survey Center. Retrieved from http://soildatamart.nrcs.usda.gov USDA. (2014). Claves para la Taxonomía de Suelos. Soil Survey Staff. https://doi.org/10.1109/TIP.2005.854494 Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Statistics in Practice. (Wiley, Ed.), Ecological Engineering (Second Edi). https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.06.002 Willmott, C. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 Xin, Z., Qin, Y., & Yu, X. (2016). Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena, 137, 660–669. https://doi.org/10.1016/j.catena.2015.01.028 Yao, X., Yu, K., Deng, Y., Zeng, Q., Lai, Z., & Liu, J. (2019). Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena, 178(February), 189–198. https://doi.org/10.1016/j.catena.2019.03.004 Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (2018). Soil Organic Carbon Mapping Cookbook. FAO (2nd editio). Rome: FAO. https://doi.org/10.2307/j.ctt5hjqxd.7 Zhang, S. (2013). Comparison of statistical methods for digital soil mapping of sub-Saharan Africa. Zhang, Y., Zhen, Q., Li, P., Cui, Y., Xin, J., Yuan, Y., … Zhang, X. (2020). Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 12(6), 2259. https://doi.org/10.3390/su12062259 Zhang, Z., Zhou, Y., & Huang, X. (2020). Applicability of GIS-based spatial interpolation and simulation for estimating the soil organic carbon storage in karst regions. Global Ecology and Conservation, 21, e00849. https://doi.org/10.1016/j.gecco.2019.e00849 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 144 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81445/3/591583_2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81445/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81445/5/591583_2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
42d4d1286f8d0cee5acebb76b161bb3b 8153f7789df02f0a4c9e079953658ab2 c8e5f9e5dbb3e11aacb531fb44ef11d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089637016109056 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubiano Sanabria, Yolanda019716440377435f3ee30eb40d6935daLizarazo Salcedo, Iván Albertob7a911d83f30c19f50a8d2f7b4e94e02Díaz Guadarrama, Sergio1ac99c09739fc5361ab553d26d173c9c2022-04-07T13:01:57Z2022-04-07T13:01:57Z2021-05https://repositorio.unal.edu.co/handle/unal/81445Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, mapasLas bases de datos espaciales de suelos son una herramienta que ayuda en el modelamiento de diversos fenómenos en los que los suelos son determinantes, tales como el calentamiento global o la seguridad alimentaria. Sin embargo, existen problemas que dificultan su procesamiento, tales como la calidad de los datos y su alta dimensionalidad. El objetivo de esta investigación consistió en definir e implementar validaciones automatizadas para la depuración de los datos y mejorar la representación de los perfiles de suelo en función de la profundidad para así, mejorar la estimación de la variabilidad espacial del Carbono Orgánico del Suelo, COS. La zona de estudio comprendió la región sureste del departamento del Valle del Cauca, Colombia. Los datos utilizados fueron obtenidos del Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC. La metodología implementada consistió en: (i) depurar los datos de errores e inconsistencias, (ii) armonizar el conjunto de datos utilizando por una parte, la función de segmentación de la librería Algorithms for Quantitative Pedology y por otra, una función de segmentación adaptada que mejora la representación de los valores de COS mediante una función spline de áreas equivalentes y (iii) comprobar si con esta última, se mejora la estimación de la variabilidad vertical y horizontal del COS en la zona de estudio. Las profundidades de mapeo fueron las establecidas por el GlobalSoilMap para los primeros 30 cm de profundidad. Los resultados mostraron que al depurar los datos y mejorar la representación de los perfiles utilizando la función de segmentación adaptada se mejoran las estimaciones de la variabilidad espacial hasta en un 15% con respecto a los datos originales a información de referencia del proyecto soilgrids, las mejoras ocurren principalmente en las zonas más superficiales. Los procesos de validación y mejoras en la segmentación permitieron generar información de la distribución espacial del COS más representativa de la realidad al considerar el cambio gradual de esta propiedad en función de la profundidad. La metodología generada es reproducible y puede adaptarse para analizar otras propiedades continuas del suelo. (Texto tomado de la fuente)Soil spatial databases are tools that can help in the modeling of various phenomenon in which soils are determinants, such as global warming or food security. However, there are two problems that make processing difficult: the quality of the data and the high dimensionality. The objective of this research was to define and implement automated validations for data validation and improve the representation of soil profile as a function of depth in order to improve the estimation of the spatial variability of Soil Organic Carbon, SOC. The study area comprised the southeast region of the Valle del Cauca department, Colombia. The data used were obtained from the Soil Information System for Latin America and The Caribbean, SISLAC. The methodology implemented consisted of: (i) debugging the data for errors and inconsistencies; (ii) harmonize the data set using, on the one hand ; the segmentation function, Algorithms for Quantitative Pedology library, AQP; and on the other, an the adapted segmentation function that improves the representation of SOC values by a spline function of equal areas; (iii) check if this last function improves the estimation of the spatial variability of the SOC in the study area. The mapping depths were those established by the GlobalSoilMap project for the first 30 cm of depth. The results showed that by refining the data and improving the representation of the profiles using the adapted segmentation function, the estimates of spatial variability are improved by up to 15%, mainly in the most superficial areas. The validation processes and improvements in segmentation made it possible to generate information on the spatial distribution of the COS that is more representative of reality when considering the gradual change of this property as a function of depth. The generated methodology is reproducible and can be adapted to analyze other continuous soil properties.MaestríaMagíster en GeomáticaTecnologías GeoespacialesCiencias Agronómicasxviii, 144 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresPerfiles de sueloSISLACCarbono orgánico del sueloVariabilidad espacialDepuración de datosSegmentaciónSoil profilesSoil organic carbonSpatial variabilitySegmentation of soil profilesData validationDatos geológicosProcesamiento de datosGeological dataData processingAlgoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLACQuantitative pedology algorithms for the Soil Information System of Latin America and the Caribbean, SISLACTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021Angelini, M. (2018). Structural equation modelling for digital soil mapping. Wageningen University.Angelini, M., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. CATENA, 196, 104940. https://doi.org/https://doi.org/10.1016/j.catena.2020.104940Armas, D., Guevara, M., Alcaraz-Segura, D., Vargas, R., Soriano-Luna, Á., Durante, P., & Oyonarte, C. (2017). Digital map of the organic carbon profile in the soils of Andalusia, Spain. Ecosistemas, 26(3), 80–88. https://doi.org/10.7818/ecos.2017.26-3.10Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., … Zhang, G.-L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0Arrouays, D., Leenaars, J. G. B., Richer-de-forges, A. C., Adhikari, K., Ballabio, C., Greve, M., … Rodriguez, D. (2017). Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14, 1–19. https://doi.org/10.1016/j.grj.2017.06.001Barbosa, D. R., Pinheiro, H. S., & Soares, F. (2019). Seasonal Variability of Trace Elements by Soil Depth in a Protected Area. Floresta e Ambiente, 26(1), 1–8.Baritz, R., Erdogan, H., Fujji, K., Takata, Y., Nocita, M., Bussian, B., … Vargas, R. (2014). Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Global Soil Partnership (p. 18).Batjes, N. (1995). World inventory of soil emission potentials -WISE 2.1. Wageningen.Batjes, N., Ribeiro, E., & Van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data, 12(1), 299–320. https://doi.org/10.5194/essd-12-299-2020Beaudette, D., & O’Geen, A. T. (2009). Soil-Web: An online soil survey for California, Arizona, and Nevada. Computers and Geosciences, 35(10), 2119–2128. https://doi.org/10.1016/j.cageo.2008.10.016Beaudette, D., & O’Geen, A. T. (2016). Topographic and Geologic Controls on Soil Variability in California’s Sierra Nevada Foothill Region. Soil Science Society of America Journal, (July 2015), 341–354. https://doi.org/10.2136/sssaj2015.07.0251Beaudette, D., Roudier, P., & Brown, A. (2019). Package “AQP”, Users manual. https://doi.org/10.1016/j.cageo.2012.10.020>.Beaudette, D., Roudier, P., & Geen, A. T. O. (2013). Algorithms for quantitative pedology : A toolkit for soil scientists. Computers and Geosciences, 52, 258–268. https://doi.org/10.1016/j.cageo.2012.10.020Benning, R., Petzold, R., Danigel, J., Gemballa, R., & Andreae, H. (2016). Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Forest Ecology, Landscape Research and Nature Conservation, 16(November), 35–42.Bhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001Bini, D., Santos, C. A. dos, Carmo, K. B. do, Kishino, N., Andrade, G., Zangaro, W., & Nogueira, M. A. (2013). Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55, 117–123. https://doi.org/10.1016/j.ejsobi.2012.12.010Bishop, T. F. A., Mcbratney, A., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1), 27–45. https://doi.org/https://doi.org/10.1016/S0016-7061(99)00003-8Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. Catena, 190(August 2019), 104539. https://doi.org/10.1016/j.catena.2020.104539Brady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. Prentice Hall. Retrieved from https://books.google.com.co/books?id=8IdFAQAAIAAJDharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. Geoderma Regional, 10(April), 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005Dorji, T., Odeh, I., Field, D. J., & Baillie, I. C. (2014). Forest Ecology and Management Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems , Eastern Himalayas. Forest Ecology and Management, 318(2014), 91–102. https://doi.org/10.1016/j.foreco.2014.01.003Duan, L., Li, Z., Xie, H., Li, Z., Zhang, L., & Zhou, Q. (2020). Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena, 188(November 2019), 104350. https://doi.org/10.1016/j.catena.2019.104350FAO. (2017a). Carbono orgánico del suelo: el potencial oculto. Roma, Italia.FAO. (2017b). FAO y los Objetivos de Desarrollo Sostenible. Roma.FAO. (2017c). Soil Organic Carbon, the hidden potential. (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). Roma, Italia: FAO.FAO. (2018). TALLER REGIONAL: “El uso de datos de suelos para la toma de decisiones y la planificación en Latinoamérica: presentación del sistema de información de suelos SISLAC.” Bogotá.FAO, & IIASA. (2009). Harmonized world soil database. Food and Agriculture Organization, 43. https://doi.org/3123FAO, & ITPS. (2018a). Global Soil Organic Carbon Map (GSOCmap) Technical Report. Retrieved from http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimatesFAO, & ITPS. (2018b). Mapa de carbono orgánico del suelo - GSOCmap. Rome.Garbanzo-Leon, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas. UNAM, 93, 22.Garg, P. K., Garg, R. D., Shukla, G., & Srivastava, H. S. (2020). Digital Mapping of Soil Landscape Parameters. Poland: Springer International Publishing.Gimond, M. (2019). Intro to GIS and Spatial Analysis. Retrieved from https://mgimond.github.io/Spatial/index.htmlGiraldo, R. (2002). Introducción a la geoestadística. Teoría y aplicación. Bogotá, Colombia: Universidad Nacional de Colombia.GlobalSoilMap. (2015). GlobalSoilMap Specifications.Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91. https://doi.org/10.1016/j.jafrearsci.2017.06.014Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(January), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007Greiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(September), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025Gutierrez, J., Ordoñez, N., Bolivar, A., Bunning, S., Guevara, M., Medina, E., … Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia, 29(1), 1–10.Hartemink, A. E., Mcbratney, A., & Mendonça-Santos, M. de L. (2008). Digital Soil Mapping with Limited Data. Springer Environmental Science and Engineering. https://doi.org/10.1016/0040-6031(89)85434-6Hendriks, C. M. J., Stoorvogel, J., Lutz, F., & Claessens, L. (2019). When can legacy soil data be used, and when should new data be collected instead? Geoderma, 348(May), 181–188. https://doi.org/10.1016/j.geoderma.2019.04.026Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748Hengl, T., & Macmillan, R. A. (2019). Predictive Soil Mapping with R.Herrera-Peña, W. R. (2017). Distribución espacial del carbono orgánico y su relación con la fertilidad y calidad de los suelos en el Valle de Sibundoy departamento del Putumayo. Universidad Militar Nueva Granada.Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Science.IDEAM. (2014). ZONIFICACIÓN HIDROGRÁFICA. Retrieved November 18, 2020, from http://www.ideam.gov.co/web/agua/zonificacion-hidrograficaIPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National GReenhouse Gas Inventories. (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, … S. Federici, Eds.), Agriculture, Forestryand Other Land Use (Vol. 4). Switzerland: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.htmlISO. (2013). Geographic Information – Quality Principles; first edition (ISO 19157:2013). Geneva, Switzerland.: International Organization for Standardization.Keskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339(November 2017), 40–58. https://doi.org/10.1016/j.geoderma.2018.12.037Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6), 21.Krol, B. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data. In A. E. Hartemink, A. B. Mcbratney, & M. de L. Mendonça-Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 137–149). Springer International Publishing. https://doi.org/10.1007/978-1-4020-8592-5_11Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031Leenaars, J. G. B. (2013). Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. ISRIC Report 2013/03 (Vol. 03). Wangeningen, the Netherlands. https://doi.org/10.1201/b16500-13Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia.Malone, B., Mcbratney, A., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007Malone, B., Minasny, B., & Mcbratney, A. (2017). Progress in Soil Science, Using R for Digital Soil Mapping. (A. E. Hartemink & A. B. Mcbratney, Eds.) (Springer). Retrieved from http://www.springer.com/series/8746Massawe, B. H. J., Winowiecki, L., Meliyo, J. L., Mbogoni, J. D. J., Msanya, B. M., Kimaro, D., … Jelinski, N. A. (2017). Assessing drivers of soil properties and classi fi cation in the West Usambara mountains , Tanzania. Geoderma Regional, 11(October), 141–154. https://doi.org/10.1016/j.geodrs.2017.10.002Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246Maynard, J. J., & Johnson, M. G. (2016). Uncoupling the complexity of forest soil variation: Influence of terrain indices, spectral indices, and spatial variability. Forest Ecology and Management, 369, 89–101. https://doi.org/10.1016/j.foreco.2016.03.018Mcbratney, A., Gruijter, J. De, & Bryce, A. (2019). Pedometrics timeline. Geoderma, 338(November 2018), 568–575. https://doi.org/10.1016/j.geoderma.2018.11.048Minasny, B., Malone, B., Stockmann, U., Odgers, N., & Mcbratney, A. (2014). Pedometrics. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09163-6Minasny, B., Mcbratney, A., Malone, B., & Wheeler, I. (2013). Digital Mapping of Soil Carbon. Advances in Agronomy (Vol. 118). Elsevier. https://doi.org/10.1016/B978-0-12-405942-9.00001-3Morford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 333–349. https://doi.org/10.1002/2015GB005283.ReceivedMurillo, D., Ortega, I., Carrillo, J. D., Pardo, A., & Rendón, J. (2012). A comparison of interpolation methods for creating noise maps in urban environments. Dialnet, 3(1), 62–68.Nachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., … Wiberg, D. (2010). The harmonized world soil database. verson 1.0. 19th World Congress of Soil Science, Soil Solutions for a Changing World (Vol. Version 1.). Brisbane, Australia. Retrieved from http://library.wur.nl/WebQuery/wurpubs/fulltext/154132Odgers, N., Libohova, Z., & Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189–190, 153–163. https://doi.org/10.1016/j.geoderma.2012.05.026Olaya, V. (2014). Sistemas de Información Geográfica. Sistemas de Información Geográfica (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 15–32.Omuto, C., Nachtergaele, F., & Vargas, R. (2013). State of the Art Report on Global and Regional Soil Information: Where are we? Where to go? Rome. Retrieved from http://typo3.fao.org/fileadmin/templates/nr/kagera/Documents/Soil_information_Report.pdfOrgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. https://doi.org/10.1111/ejss.12499Owusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. (2020). Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma, 360(October 2018).Pejović, M., Bajat, B., Gospavi, Z., Saljnikov, E., Kilibarda, M., & Dragan, Č. (2017). Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. Journal of Geochemical Exploration, 179(February 2016), 25–35. https://doi.org/10.1016/j.gexplo.2017.05.004Pham, K., Kim, D., Yoon, Y., & Choi, H. (2019). Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma, 351(August 2018), 92–102. https://doi.org/10.1016/j.geoderma.2019.05.013Piccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geostatistical methods : Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36, 301–314. https://doi.org/10.1016/j.ecolind.2013.08.009Pinheiro, H. S., Chagas, C., Carvalho Junior, W., & dos Anjos, L. H. C. (2016). Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesquisa Agropecuaria Brasileira, 51(9), 1326–1338. https://doi.org/10.1590/S0100-204X2016000900032Pinheiro, H. S., dos Anjos, L. H. C., Xavier, P. A. M., Chagas, C., & Carvalho Junior, W. (2018). Quantitative pedology to evaluate a soil profile collection from the Brazilian semi-arid region. South African Journal of Plant and Soil, 35(4), 269–279. https://doi.org/10.1080/02571862.2017.1419385R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . Available online at https://www.R-project.org/. Vienna, Austria.Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158(February), 390–412. https://doi.org/10.1016/j.catena.2017.07.020Rasmussen, C., Mcguire, L., Dhakal, P., & Pelletier, J. D. (2017). Coevolution of soil and topography across a semiarid cinder cone chronosequence. Catena, 156(August 2016), 338–352. https://doi.org/10.1016/j.catena.2017.04.025Rial, M., Martínez Cortizas, A., & Rodríguez-Lado, L. (2017). Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609, 1411–1422. https://doi.org/10.1016/j.scitotenv.2017.08.012Rodríguez, F. A., Camacho, J. H., & Rubiano, Y. (2016). Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Ciencia & Tecnología Agropecuaria, 17(2), 237–254.Rossiter, D. (1999). Bases De Datos Geográficos de Suelos y el Uso de Programas para su Construcción. In R. Vargas (Ed.), Notas de conferencia (p. 65). Enschede. Retrieved from http://www.css.cornell.edu/faculty/dgr2/teach/sis/SoilGeographicDataBases_E.pdfRossiter, D. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(November 2014), 296–301. https://doi.org/10.1079/SUM2004258Rossiter, D. (2012). A pedometric approach to valuing the soil resource. Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital Soil Mapping. https://doi.org/10.1201/b12728-7Rossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma, 324(March), 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009Rossiter, D., Zeng, R., & Zhang, G. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. https://doi.org/10.1016/j.geoderma.2017.01.012Santra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72. https://doi.org/10.1016/j.geodrs.2017.03.003Schloeder, C., Zimmermann, N., & Jacobs, M. (2001). Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65. https://doi.org/10.2136/sssaj2001.652470xSilatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367(September 2019), 13. https://doi.org/10.1016/j.geoderma.2020.114260Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12(November 2017), 28–38. https://doi.org/10.1016/j.geodrs.2017.11.004SISLAC. (2013). Sistema de Información de Suelos de Latinoamérica - SISLAC. Retrieved October 2, 2017, from http://www.sislac.org/#Soil Science Division Staff. (2017). Soil Survey Manual. (C. Ditzler, K. Scheffe, & H. . . Monger, Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C. https://doi.org/10.1097/00010694-195112000-00022Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual. U.S. Department of Agriculture, Natural Resources Conservation Service.Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., … Lal, R. (2017). Matching policy and science: Rationale for the “4 per 1000 - soils for food security and climate” initiative. Soil and Tillage Research, (June), 13. https://doi.org/10.1016/j.still.2017.12.002Sulaeman, Y., Minasny, B., Mcbratney, A., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192(1), 77–85. https://doi.org/10.1016/j.geoderma.2012.08.005Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research, 195(January), 104410. https://doi.org/10.1016/j.still.2019.104410Taghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003USDA. (1995). Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas: Natural Soil Survey Center. Retrieved from http://soildatamart.nrcs.usda.govUSDA. (2014). Claves para la Taxonomía de Suelos. Soil Survey Staff. https://doi.org/10.1109/TIP.2005.854494Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Statistics in Practice. (Wiley, Ed.), Ecological Engineering (Second Edi). https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.06.002Willmott, C. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2Xin, Z., Qin, Y., & Yu, X. (2016). Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena, 137, 660–669. https://doi.org/10.1016/j.catena.2015.01.028Yao, X., Yu, K., Deng, Y., Zeng, Q., Lai, Z., & Liu, J. (2019). Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena, 178(February), 189–198. https://doi.org/10.1016/j.catena.2019.03.004Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (2018). Soil Organic Carbon Mapping Cookbook. FAO (2nd editio). Rome: FAO. https://doi.org/10.2307/j.ctt5hjqxd.7Zhang, S. (2013). Comparison of statistical methods for digital soil mapping of sub-Saharan Africa.Zhang, Y., Zhen, Q., Li, P., Cui, Y., Xin, J., Yuan, Y., … Zhang, X. (2020). Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 12(6), 2259. https://doi.org/10.3390/su12062259Zhang, Z., Zhou, Y., & Huang, X. (2020). Applicability of GIS-based spatial interpolation and simulation for estimating the soil organic carbon storage in karst regions. Global Ecology and Conservation, 21, e00849. https://doi.org/10.1016/j.gecco.2019.e00849AdministradoresBibliotecariosInvestigadoresPúblico generalORIGINAL591583_2021.pdf591583_2021.pdfTesis de Maestría en Geomáticaapplication/pdf6187610https://repositorio.unal.edu.co/bitstream/unal/81445/3/591583_2021.pdf42d4d1286f8d0cee5acebb76b161bb3bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81445/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL591583_2021.pdf.jpg591583_2021.pdf.jpgGenerated Thumbnailimage/jpeg5377https://repositorio.unal.edu.co/bitstream/unal/81445/5/591583_2021.pdf.jpgc8e5f9e5dbb3e11aacb531fb44ef11d5MD55unal/81445oai:repositorio.unal.edu.co:unal/814452023-08-02 23:03:51.193Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |