Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC

ilustraciones, fotografías, graficas, mapas

Autores:
Díaz Guadarrama, Sergio
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81445
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81445
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Perfiles de suelo
SISLAC
Carbono orgánico del suelo
Variabilidad espacial
Depuración de datos
Segmentación
Soil profiles
Soil organic carbon
Spatial variability
Segmentation of soil profiles
Data validation
Datos geológicos
Procesamiento de datos
Geological data
Data processing
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_49ab5c778b16086164999d5f43ab8ac1
oai_identifier_str oai:repositorio.unal.edu.co:unal/81445
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
dc.title.translated.eng.fl_str_mv Quantitative pedology algorithms for the Soil Information System of Latin America and the Caribbean, SISLAC
title Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
spellingShingle Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Perfiles de suelo
SISLAC
Carbono orgánico del suelo
Variabilidad espacial
Depuración de datos
Segmentación
Soil profiles
Soil organic carbon
Spatial variability
Segmentation of soil profiles
Data validation
Datos geológicos
Procesamiento de datos
Geological data
Data processing
title_short Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
title_full Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
title_fullStr Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
title_full_unstemmed Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
title_sort Algoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC
dc.creator.fl_str_mv Díaz Guadarrama, Sergio
dc.contributor.advisor.none.fl_str_mv Rubiano Sanabria, Yolanda
Lizarazo Salcedo, Iván Alberto
dc.contributor.author.none.fl_str_mv Díaz Guadarrama, Sergio
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Perfiles de suelo
SISLAC
Carbono orgánico del suelo
Variabilidad espacial
Depuración de datos
Segmentación
Soil profiles
Soil organic carbon
Spatial variability
Segmentation of soil profiles
Data validation
Datos geológicos
Procesamiento de datos
Geological data
Data processing
dc.subject.proposal.spa.fl_str_mv Perfiles de suelo
SISLAC
Carbono orgánico del suelo
Variabilidad espacial
Depuración de datos
Segmentación
dc.subject.proposal.eng.fl_str_mv Soil profiles
Soil organic carbon
Spatial variability
Segmentation of soil profiles
Data validation
dc.subject.unesco.spa.fl_str_mv Datos geológicos
Procesamiento de datos
dc.subject.unesco.eng.fl_str_mv Geological data
Data processing
description ilustraciones, fotografías, graficas, mapas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-05
dc.date.accessioned.none.fl_str_mv 2022-04-07T13:01:57Z
dc.date.available.none.fl_str_mv 2022-04-07T13:01:57Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81445
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81445
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Amirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021
Angelini, M. (2018). Structural equation modelling for digital soil mapping. Wageningen University.
Angelini, M., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031
Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. CATENA, 196, 104940. https://doi.org/https://doi.org/10.1016/j.catena.2020.104940
Armas, D., Guevara, M., Alcaraz-Segura, D., Vargas, R., Soriano-Luna, Á., Durante, P., & Oyonarte, C. (2017). Digital map of the organic carbon profile in the soils of Andalusia, Spain. Ecosistemas, 26(3), 80–88. https://doi.org/10.7818/ecos.2017.26-3.10
Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., … Zhang, G.-L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0
Arrouays, D., Leenaars, J. G. B., Richer-de-forges, A. C., Adhikari, K., Ballabio, C., Greve, M., … Rodriguez, D. (2017). Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14, 1–19. https://doi.org/10.1016/j.grj.2017.06.001
Barbosa, D. R., Pinheiro, H. S., & Soares, F. (2019). Seasonal Variability of Trace Elements by Soil Depth in a Protected Area. Floresta e Ambiente, 26(1), 1–8.
Baritz, R., Erdogan, H., Fujji, K., Takata, Y., Nocita, M., Bussian, B., … Vargas, R. (2014). Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Global Soil Partnership (p. 18).
Batjes, N. (1995). World inventory of soil emission potentials -WISE 2.1. Wageningen.
Batjes, N., Ribeiro, E., & Van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data, 12(1), 299–320. https://doi.org/10.5194/essd-12-299-2020
Beaudette, D., & O’Geen, A. T. (2009). Soil-Web: An online soil survey for California, Arizona, and Nevada. Computers and Geosciences, 35(10), 2119–2128. https://doi.org/10.1016/j.cageo.2008.10.016
Beaudette, D., & O’Geen, A. T. (2016). Topographic and Geologic Controls on Soil Variability in California’s Sierra Nevada Foothill Region. Soil Science Society of America Journal, (July 2015), 341–354. https://doi.org/10.2136/sssaj2015.07.0251
Beaudette, D., Roudier, P., & Brown, A. (2019). Package “AQP”, Users manual. https://doi.org/10.1016/j.cageo.2012.10.020>.
Beaudette, D., Roudier, P., & Geen, A. T. O. (2013). Algorithms for quantitative pedology : A toolkit for soil scientists. Computers and Geosciences, 52, 258–268. https://doi.org/10.1016/j.cageo.2012.10.020
Benning, R., Petzold, R., Danigel, J., Gemballa, R., & Andreae, H. (2016). Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Forest Ecology, Landscape Research and Nature Conservation, 16(November), 35–42.
Bhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001
Bini, D., Santos, C. A. dos, Carmo, K. B. do, Kishino, N., Andrade, G., Zangaro, W., & Nogueira, M. A. (2013). Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55, 117–123. https://doi.org/10.1016/j.ejsobi.2012.12.010
Bishop, T. F. A., Mcbratney, A., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1), 27–45. https://doi.org/https://doi.org/10.1016/S0016-7061(99)00003-8
Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. Catena, 190(August 2019), 104539. https://doi.org/10.1016/j.catena.2020.104539
Brady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. Prentice Hall. Retrieved from https://books.google.com.co/books?id=8IdFAQAAIAAJ
Dharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. Geoderma Regional, 10(April), 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005
Dorji, T., Odeh, I., Field, D. J., & Baillie, I. C. (2014). Forest Ecology and Management Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems , Eastern Himalayas. Forest Ecology and Management, 318(2014), 91–102. https://doi.org/10.1016/j.foreco.2014.01.003
Duan, L., Li, Z., Xie, H., Li, Z., Zhang, L., & Zhou, Q. (2020). Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena, 188(November 2019), 104350. https://doi.org/10.1016/j.catena.2019.104350
FAO. (2017a). Carbono orgánico del suelo: el potencial oculto. Roma, Italia.
FAO. (2017b). FAO y los Objetivos de Desarrollo Sostenible. Roma.
FAO. (2017c). Soil Organic Carbon, the hidden potential. (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). Roma, Italia: FAO.
FAO. (2018). TALLER REGIONAL: “El uso de datos de suelos para la toma de decisiones y la planificación en Latinoamérica: presentación del sistema de información de suelos SISLAC.” Bogotá.
FAO, & IIASA. (2009). Harmonized world soil database. Food and Agriculture Organization, 43. https://doi.org/3123
FAO, & ITPS. (2018a). Global Soil Organic Carbon Map (GSOCmap) Technical Report. Retrieved from http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimates
FAO, & ITPS. (2018b). Mapa de carbono orgánico del suelo - GSOCmap. Rome.
Garbanzo-Leon, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas. UNAM, 93, 22.
Garg, P. K., Garg, R. D., Shukla, G., & Srivastava, H. S. (2020). Digital Mapping of Soil Landscape Parameters. Poland: Springer International Publishing.
Gimond, M. (2019). Intro to GIS and Spatial Analysis. Retrieved from https://mgimond.github.io/Spatial/index.html
Giraldo, R. (2002). Introducción a la geoestadística. Teoría y aplicación. Bogotá, Colombia: Universidad Nacional de Colombia.
GlobalSoilMap. (2015). GlobalSoilMap Specifications.
Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91. https://doi.org/10.1016/j.jafrearsci.2017.06.014
Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(January), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007
Greiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(September), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025
Gutierrez, J., Ordoñez, N., Bolivar, A., Bunning, S., Guevara, M., Medina, E., … Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia, 29(1), 1–10.
Hartemink, A. E., Mcbratney, A., & Mendonça-Santos, M. de L. (2008). Digital Soil Mapping with Limited Data. Springer Environmental Science and Engineering. https://doi.org/10.1016/0040-6031(89)85434-6
Hendriks, C. M. J., Stoorvogel, J., Lutz, F., & Claessens, L. (2019). When can legacy soil data be used, and when should new data be collected instead? Geoderma, 348(May), 181–188. https://doi.org/10.1016/j.geoderma.2019.04.026
Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748
Hengl, T., & Macmillan, R. A. (2019). Predictive Soil Mapping with R.
Herrera-Peña, W. R. (2017). Distribución espacial del carbono orgánico y su relación con la fertilidad y calidad de los suelos en el Valle de Sibundoy departamento del Putumayo. Universidad Militar Nueva Granada.
Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Science.
IDEAM. (2014). ZONIFICACIÓN HIDROGRÁFICA. Retrieved November 18, 2020, from http://www.ideam.gov.co/web/agua/zonificacion-hidrografica
IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National GReenhouse Gas Inventories. (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, … S. Federici, Eds.), Agriculture, Forestryand Other Land Use (Vol. 4). Switzerland: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html
ISO. (2013). Geographic Information – Quality Principles; first edition (ISO 19157:2013). Geneva, Switzerland.: International Organization for Standardization.
Keskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339(November 2017), 40–58. https://doi.org/10.1016/j.geoderma.2018.12.037
Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6), 21.
Krol, B. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data. In A. E. Hartemink, A. B. Mcbratney, & M. de L. Mendonça-Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 137–149). Springer International Publishing. https://doi.org/10.1007/978-1-4020-8592-5_11
Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031
Leenaars, J. G. B. (2013). Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. ISRIC Report 2013/03 (Vol. 03). Wangeningen, the Netherlands. https://doi.org/10.1201/b16500-13
Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia.
Malone, B., Mcbratney, A., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007
Malone, B., Minasny, B., & Mcbratney, A. (2017). Progress in Soil Science, Using R for Digital Soil Mapping. (A. E. Hartemink & A. B. Mcbratney, Eds.) (Springer). Retrieved from http://www.springer.com/series/8746
Massawe, B. H. J., Winowiecki, L., Meliyo, J. L., Mbogoni, J. D. J., Msanya, B. M., Kimaro, D., … Jelinski, N. A. (2017). Assessing drivers of soil properties and classi fi cation in the West Usambara mountains , Tanzania. Geoderma Regional, 11(October), 141–154. https://doi.org/10.1016/j.geodrs.2017.10.002
Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
Maynard, J. J., & Johnson, M. G. (2016). Uncoupling the complexity of forest soil variation: Influence of terrain indices, spectral indices, and spatial variability. Forest Ecology and Management, 369, 89–101. https://doi.org/10.1016/j.foreco.2016.03.018
Mcbratney, A., Gruijter, J. De, & Bryce, A. (2019). Pedometrics timeline. Geoderma, 338(November 2018), 568–575. https://doi.org/10.1016/j.geoderma.2018.11.048
Minasny, B., Malone, B., Stockmann, U., Odgers, N., & Mcbratney, A. (2014). Pedometrics. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09163-6
Minasny, B., Mcbratney, A., Malone, B., & Wheeler, I. (2013). Digital Mapping of Soil Carbon. Advances in Agronomy (Vol. 118). Elsevier. https://doi.org/10.1016/B978-0-12-405942-9.00001-3
Morford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 333–349. https://doi.org/10.1002/2015GB005283.Received
Murillo, D., Ortega, I., Carrillo, J. D., Pardo, A., & Rendón, J. (2012). A comparison of interpolation methods for creating noise maps in urban environments. Dialnet, 3(1), 62–68.
Nachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., … Wiberg, D. (2010). The harmonized world soil database. verson 1.0. 19th World Congress of Soil Science, Soil Solutions for a Changing World (Vol. Version 1.). Brisbane, Australia. Retrieved from http://library.wur.nl/WebQuery/wurpubs/fulltext/154132
Odgers, N., Libohova, Z., & Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189–190, 153–163. https://doi.org/10.1016/j.geoderma.2012.05.026
Olaya, V. (2014). Sistemas de Información Geográfica. Sistemas de Información Geográfica (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004
Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 15–32.
Omuto, C., Nachtergaele, F., & Vargas, R. (2013). State of the Art Report on Global and Regional Soil Information: Where are we? Where to go? Rome. Retrieved from http://typo3.fao.org/fileadmin/templates/nr/kagera/Documents/Soil_information_Report.pdf
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. https://doi.org/10.1111/ejss.12499
Owusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. (2020). Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma, 360(October 2018).
Pejović, M., Bajat, B., Gospavi, Z., Saljnikov, E., Kilibarda, M., & Dragan, Č. (2017). Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. Journal of Geochemical Exploration, 179(February 2016), 25–35. https://doi.org/10.1016/j.gexplo.2017.05.004
Pham, K., Kim, D., Yoon, Y., & Choi, H. (2019). Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma, 351(August 2018), 92–102. https://doi.org/10.1016/j.geoderma.2019.05.013
Piccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geostatistical methods : Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36, 301–314. https://doi.org/10.1016/j.ecolind.2013.08.009
Pinheiro, H. S., Chagas, C., Carvalho Junior, W., & dos Anjos, L. H. C. (2016). Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesquisa Agropecuaria Brasileira, 51(9), 1326–1338. https://doi.org/10.1590/S0100-204X2016000900032
Pinheiro, H. S., dos Anjos, L. H. C., Xavier, P. A. M., Chagas, C., & Carvalho Junior, W. (2018). Quantitative pedology to evaluate a soil profile collection from the Brazilian semi-arid region. South African Journal of Plant and Soil, 35(4), 269–279. https://doi.org/10.1080/02571862.2017.1419385
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . Available online at https://www.R-project.org/. Vienna, Austria.
Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158(February), 390–412. https://doi.org/10.1016/j.catena.2017.07.020
Rasmussen, C., Mcguire, L., Dhakal, P., & Pelletier, J. D. (2017). Coevolution of soil and topography across a semiarid cinder cone chronosequence. Catena, 156(August 2016), 338–352. https://doi.org/10.1016/j.catena.2017.04.025
Rial, M., Martínez Cortizas, A., & Rodríguez-Lado, L. (2017). Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609, 1411–1422. https://doi.org/10.1016/j.scitotenv.2017.08.012
Rodríguez, F. A., Camacho, J. H., & Rubiano, Y. (2016). Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Ciencia & Tecnología Agropecuaria, 17(2), 237–254.
Rossiter, D. (1999). Bases De Datos Geográficos de Suelos y el Uso de Programas para su Construcción. In R. Vargas (Ed.), Notas de conferencia (p. 65). Enschede. Retrieved from http://www.css.cornell.edu/faculty/dgr2/teach/sis/SoilGeographicDataBases_E.pdf
Rossiter, D. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(November 2014), 296–301. https://doi.org/10.1079/SUM2004258
Rossiter, D. (2012). A pedometric approach to valuing the soil resource. Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital Soil Mapping. https://doi.org/10.1201/b12728-7
Rossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma, 324(March), 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009
Rossiter, D., Zeng, R., & Zhang, G. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. https://doi.org/10.1016/j.geoderma.2017.01.012
Santra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72. https://doi.org/10.1016/j.geodrs.2017.03.003
Schloeder, C., Zimmermann, N., & Jacobs, M. (2001). Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65. https://doi.org/10.2136/sssaj2001.652470x
Silatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367(September 2019), 13. https://doi.org/10.1016/j.geoderma.2020.114260
Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12(November 2017), 28–38. https://doi.org/10.1016/j.geodrs.2017.11.004
SISLAC. (2013). Sistema de Información de Suelos de Latinoamérica - SISLAC. Retrieved October 2, 2017, from http://www.sislac.org/#
Soil Science Division Staff. (2017). Soil Survey Manual. (C. Ditzler, K. Scheffe, & H. . . Monger, Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C. https://doi.org/10.1097/00010694-195112000-00022
Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual. U.S. Department of Agriculture, Natural Resources Conservation Service.
Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., … Lal, R. (2017). Matching policy and science: Rationale for the “4 per 1000 - soils for food security and climate” initiative. Soil and Tillage Research, (June), 13. https://doi.org/10.1016/j.still.2017.12.002
Sulaeman, Y., Minasny, B., Mcbratney, A., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192(1), 77–85. https://doi.org/10.1016/j.geoderma.2012.08.005
Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research, 195(January), 104410. https://doi.org/10.1016/j.still.2019.104410
Taghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003
USDA. (1995). Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas: Natural Soil Survey Center. Retrieved from http://soildatamart.nrcs.usda.gov
USDA. (2014). Claves para la Taxonomía de Suelos. Soil Survey Staff. https://doi.org/10.1109/TIP.2005.854494
Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Statistics in Practice. (Wiley, Ed.), Ecological Engineering (Second Edi). https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.06.002
Willmott, C. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
Xin, Z., Qin, Y., & Yu, X. (2016). Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena, 137, 660–669. https://doi.org/10.1016/j.catena.2015.01.028
Yao, X., Yu, K., Deng, Y., Zeng, Q., Lai, Z., & Liu, J. (2019). Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena, 178(February), 189–198. https://doi.org/10.1016/j.catena.2019.03.004
Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (2018). Soil Organic Carbon Mapping Cookbook. FAO (2nd editio). Rome: FAO. https://doi.org/10.2307/j.ctt5hjqxd.7
Zhang, S. (2013). Comparison of statistical methods for digital soil mapping of sub-Saharan Africa.
Zhang, Y., Zhen, Q., Li, P., Cui, Y., Xin, J., Yuan, Y., … Zhang, X. (2020). Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 12(6), 2259. https://doi.org/10.3390/su12062259
Zhang, Z., Zhou, Y., & Huang, X. (2020). Applicability of GIS-based spatial interpolation and simulation for estimating the soil organic carbon storage in karst regions. Global Ecology and Conservation, 21, e00849. https://doi.org/10.1016/j.gecco.2019.e00849
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 144 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81445/3/591583_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81445/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81445/5/591583_2021.pdf.jpg
bitstream.checksum.fl_str_mv 42d4d1286f8d0cee5acebb76b161bb3b
8153f7789df02f0a4c9e079953658ab2
c8e5f9e5dbb3e11aacb531fb44ef11d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089637016109056
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubiano Sanabria, Yolanda019716440377435f3ee30eb40d6935daLizarazo Salcedo, Iván Albertob7a911d83f30c19f50a8d2f7b4e94e02Díaz Guadarrama, Sergio1ac99c09739fc5361ab553d26d173c9c2022-04-07T13:01:57Z2022-04-07T13:01:57Z2021-05https://repositorio.unal.edu.co/handle/unal/81445Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, mapasLas bases de datos espaciales de suelos son una herramienta que ayuda en el modelamiento de diversos fenómenos en los que los suelos son determinantes, tales como el calentamiento global o la seguridad alimentaria. Sin embargo, existen problemas que dificultan su procesamiento, tales como la calidad de los datos y su alta dimensionalidad. El objetivo de esta investigación consistió en definir e implementar validaciones automatizadas para la depuración de los datos y mejorar la representación de los perfiles de suelo en función de la profundidad para así, mejorar la estimación de la variabilidad espacial del Carbono Orgánico del Suelo, COS. La zona de estudio comprendió la región sureste del departamento del Valle del Cauca, Colombia. Los datos utilizados fueron obtenidos del Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLAC. La metodología implementada consistió en: (i) depurar los datos de errores e inconsistencias, (ii) armonizar el conjunto de datos utilizando por una parte, la función de segmentación de la librería Algorithms for Quantitative Pedology y por otra, una función de segmentación adaptada que mejora la representación de los valores de COS mediante una función spline de áreas equivalentes y (iii) comprobar si con esta última, se mejora la estimación de la variabilidad vertical y horizontal del COS en la zona de estudio. Las profundidades de mapeo fueron las establecidas por el GlobalSoilMap para los primeros 30 cm de profundidad. Los resultados mostraron que al depurar los datos y mejorar la representación de los perfiles utilizando la función de segmentación adaptada se mejoran las estimaciones de la variabilidad espacial hasta en un 15% con respecto a los datos originales a información de referencia del proyecto soilgrids, las mejoras ocurren principalmente en las zonas más superficiales. Los procesos de validación y mejoras en la segmentación permitieron generar información de la distribución espacial del COS más representativa de la realidad al considerar el cambio gradual de esta propiedad en función de la profundidad. La metodología generada es reproducible y puede adaptarse para analizar otras propiedades continuas del suelo. (Texto tomado de la fuente)Soil spatial databases are tools that can help in the modeling of various phenomenon in which soils are determinants, such as global warming or food security. However, there are two problems that make processing difficult: the quality of the data and the high dimensionality. The objective of this research was to define and implement automated validations for data validation and improve the representation of soil profile as a function of depth in order to improve the estimation of the spatial variability of Soil Organic Carbon, SOC. The study area comprised the southeast region of the Valle del Cauca department, Colombia. The data used were obtained from the Soil Information System for Latin America and The Caribbean, SISLAC. The methodology implemented consisted of: (i) debugging the data for errors and inconsistencies; (ii) harmonize the data set using, on the one hand ; the segmentation function, Algorithms for Quantitative Pedology library, AQP; and on the other, an the adapted segmentation function that improves the representation of SOC values by a spline function of equal areas; (iii) check if this last function improves the estimation of the spatial variability of the SOC in the study area. The mapping depths were those established by the GlobalSoilMap project for the first 30 cm of depth. The results showed that by refining the data and improving the representation of the profiles using the adapted segmentation function, the estimates of spatial variability are improved by up to 15%, mainly in the most superficial areas. The validation processes and improvements in segmentation made it possible to generate information on the spatial distribution of the COS that is more representative of reality when considering the gradual change of this property as a function of depth. The generated methodology is reproducible and can be adapted to analyze other continuous soil properties.MaestríaMagíster en GeomáticaTecnologías GeoespacialesCiencias Agronómicasxviii, 144 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresPerfiles de sueloSISLACCarbono orgánico del sueloVariabilidad espacialDepuración de datosSegmentaciónSoil profilesSoil organic carbonSpatial variabilitySegmentation of soil profilesData validationDatos geológicosProcesamiento de datosGeological dataData processingAlgoritmos de pedología cuantitativa para el Sistema de Información de Suelos de Latinoamérica y el Caribe, SISLACQuantitative pedology algorithms for the Soil Information System of Latin America and the Caribbean, SISLACTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021Angelini, M. (2018). Structural equation modelling for digital soil mapping. Wageningen University.Angelini, M., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118. https://doi.org/10.1016/j.geoderma.2016.06.031Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. CATENA, 196, 104940. https://doi.org/https://doi.org/10.1016/j.catena.2020.104940Armas, D., Guevara, M., Alcaraz-Segura, D., Vargas, R., Soriano-Luna, Á., Durante, P., & Oyonarte, C. (2017). Digital map of the organic carbon profile in the soils of Andalusia, Spain. Ecosistemas, 26(3), 80–88. https://doi.org/10.7818/ecos.2017.26-3.10Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., … Zhang, G.-L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0Arrouays, D., Leenaars, J. G. B., Richer-de-forges, A. C., Adhikari, K., Ballabio, C., Greve, M., … Rodriguez, D. (2017). Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 14, 1–19. https://doi.org/10.1016/j.grj.2017.06.001Barbosa, D. R., Pinheiro, H. S., & Soares, F. (2019). Seasonal Variability of Trace Elements by Soil Depth in a Protected Area. Floresta e Ambiente, 26(1), 1–8.Baritz, R., Erdogan, H., Fujji, K., Takata, Y., Nocita, M., Bussian, B., … Vargas, R. (2014). Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Global Soil Partnership (p. 18).Batjes, N. (1995). World inventory of soil emission potentials -WISE 2.1. Wageningen.Batjes, N., Ribeiro, E., & Van Oostrum, A. (2020). Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth System Science Data, 12(1), 299–320. https://doi.org/10.5194/essd-12-299-2020Beaudette, D., & O’Geen, A. T. (2009). Soil-Web: An online soil survey for California, Arizona, and Nevada. Computers and Geosciences, 35(10), 2119–2128. https://doi.org/10.1016/j.cageo.2008.10.016Beaudette, D., & O’Geen, A. T. (2016). Topographic and Geologic Controls on Soil Variability in California’s Sierra Nevada Foothill Region. Soil Science Society of America Journal, (July 2015), 341–354. https://doi.org/10.2136/sssaj2015.07.0251Beaudette, D., Roudier, P., & Brown, A. (2019). Package “AQP”, Users manual. https://doi.org/10.1016/j.cageo.2012.10.020>.Beaudette, D., Roudier, P., & Geen, A. T. O. (2013). Algorithms for quantitative pedology : A toolkit for soil scientists. Computers and Geosciences, 52, 258–268. https://doi.org/10.1016/j.cageo.2012.10.020Benning, R., Petzold, R., Danigel, J., Gemballa, R., & Andreae, H. (2016). Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Forest Ecology, Landscape Research and Nature Conservation, 16(November), 35–42.Bhunia, G. S., Shit, P. K., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. https://doi.org/10.1016/j.jssas.2016.02.001Bini, D., Santos, C. A. dos, Carmo, K. B. do, Kishino, N., Andrade, G., Zangaro, W., & Nogueira, M. A. (2013). Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55, 117–123. https://doi.org/10.1016/j.ejsobi.2012.12.010Bishop, T. F. A., Mcbratney, A., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1), 27–45. https://doi.org/https://doi.org/10.1016/S0016-7061(99)00003-8Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. Catena, 190(August 2019), 104539. https://doi.org/10.1016/j.catena.2020.104539Brady, N. C., & Weil, R. R. (1999). The Nature and Properties of Soils. Prentice Hall. Retrieved from https://books.google.com.co/books?id=8IdFAQAAIAAJDharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques - A case study in semi-arid tropics of South India. Geoderma Regional, 10(April), 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005Dorji, T., Odeh, I., Field, D. J., & Baillie, I. C. (2014). Forest Ecology and Management Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems , Eastern Himalayas. Forest Ecology and Management, 318(2014), 91–102. https://doi.org/10.1016/j.foreco.2014.01.003Duan, L., Li, Z., Xie, H., Li, Z., Zhang, L., & Zhou, Q. (2020). Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena, 188(November 2019), 104350. https://doi.org/10.1016/j.catena.2019.104350FAO. (2017a). Carbono orgánico del suelo: el potencial oculto. Roma, Italia.FAO. (2017b). FAO y los Objetivos de Desarrollo Sostenible. Roma.FAO. (2017c). Soil Organic Carbon, the hidden potential. (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). Roma, Italia: FAO.FAO. (2018). TALLER REGIONAL: “El uso de datos de suelos para la toma de decisiones y la planificación en Latinoamérica: presentación del sistema de información de suelos SISLAC.” Bogotá.FAO, & IIASA. (2009). Harmonized world soil database. Food and Agriculture Organization, 43. https://doi.org/3123FAO, & ITPS. (2018a). Global Soil Organic Carbon Map (GSOCmap) Technical Report. Retrieved from http://esdac.jrc.ec.europa.eu/content/global-soil-organic-carbon-estimatesFAO, & ITPS. (2018b). Mapa de carbono orgánico del suelo - GSOCmap. Rome.Garbanzo-Leon, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geográficas. UNAM, 93, 22.Garg, P. K., Garg, R. D., Shukla, G., & Srivastava, H. S. (2020). Digital Mapping of Soil Landscape Parameters. Poland: Springer International Publishing.Gimond, M. (2019). Intro to GIS and Spatial Analysis. Retrieved from https://mgimond.github.io/Spatial/index.htmlGiraldo, R. (2002). Introducción a la geoestadística. Teoría y aplicación. Bogotá, Colombia: Universidad Nacional de Colombia.GlobalSoilMap. (2015). GlobalSoilMap Specifications.Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91. https://doi.org/10.1016/j.jafrearsci.2017.06.014Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(January), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007Greiner, L., Keller, A., Grêt-Regamey, A., & Papritz, A. (2017). Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(September), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025Gutierrez, J., Ordoñez, N., Bolivar, A., Bunning, S., Guevara, M., Medina, E., … Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia, 29(1), 1–10.Hartemink, A. E., Mcbratney, A., & Mendonça-Santos, M. de L. (2008). Digital Soil Mapping with Limited Data. Springer Environmental Science and Engineering. https://doi.org/10.1016/0040-6031(89)85434-6Hendriks, C. M. J., Stoorvogel, J., Lutz, F., & Claessens, L. (2019). When can legacy soil data be used, and when should new data be collected instead? Geoderma, 348(May), 181–188. https://doi.org/10.1016/j.geoderma.2019.04.026Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748Hengl, T., & Macmillan, R. A. (2019). Predictive Soil Mapping with R.Herrera-Peña, W. R. (2017). Distribución espacial del carbono orgánico y su relación con la fertilidad y calidad de los suelos en el Valle de Sibundoy departamento del Putumayo. Universidad Militar Nueva Granada.Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Science.IDEAM. (2014). ZONIFICACIÓN HIDROGRÁFICA. Retrieved November 18, 2020, from http://www.ideam.gov.co/web/agua/zonificacion-hidrograficaIPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National GReenhouse Gas Inventories. (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, … S. Federici, Eds.), Agriculture, Forestryand Other Land Use (Vol. 4). Switzerland: Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.htmlISO. (2013). Geographic Information – Quality Principles; first edition (ISO 19157:2013). Geneva, Switzerland.: International Organization for Standardization.Keskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339(November 2017), 40–58. https://doi.org/10.1016/j.geoderma.2018.12.037Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52(6), 21.Krol, B. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data. In A. E. Hartemink, A. B. Mcbratney, & M. de L. Mendonça-Santos (Eds.), Digital Soil Mapping with Limited Data (pp. 137–149). Springer International Publishing. https://doi.org/10.1007/978-1-4020-8592-5_11Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031Leenaars, J. G. B. (2013). Africa Soil Profiles Database, Version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. ISRIC Report 2013/03 (Vol. 03). Wangeningen, the Netherlands. https://doi.org/10.1201/b16500-13Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Canberra, Australia: Geoscience Australia.Malone, B., Mcbratney, A., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007Malone, B., Minasny, B., & Mcbratney, A. (2017). Progress in Soil Science, Using R for Digital Soil Mapping. (A. E. Hartemink & A. B. Mcbratney, Eds.) (Springer). Retrieved from http://www.springer.com/series/8746Massawe, B. H. J., Winowiecki, L., Meliyo, J. L., Mbogoni, J. D. J., Msanya, B. M., Kimaro, D., … Jelinski, N. A. (2017). Assessing drivers of soil properties and classi fi cation in the West Usambara mountains , Tanzania. Geoderma Regional, 11(October), 141–154. https://doi.org/10.1016/j.geodrs.2017.10.002Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246Maynard, J. J., & Johnson, M. G. (2016). Uncoupling the complexity of forest soil variation: Influence of terrain indices, spectral indices, and spatial variability. Forest Ecology and Management, 369, 89–101. https://doi.org/10.1016/j.foreco.2016.03.018Mcbratney, A., Gruijter, J. De, & Bryce, A. (2019). Pedometrics timeline. Geoderma, 338(November 2018), 568–575. https://doi.org/10.1016/j.geoderma.2018.11.048Minasny, B., Malone, B., Stockmann, U., Odgers, N., & Mcbratney, A. (2014). Pedometrics. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.09163-6Minasny, B., Mcbratney, A., Malone, B., & Wheeler, I. (2013). Digital Mapping of Soil Carbon. Advances in Agronomy (Vol. 118). Elsevier. https://doi.org/10.1016/B978-0-12-405942-9.00001-3Morford, S. L., Houlton, B. Z., & Dahlgren, R. A. (2016). Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems. Global Biogeochemical Cycles, 333–349. https://doi.org/10.1002/2015GB005283.ReceivedMurillo, D., Ortega, I., Carrillo, J. D., Pardo, A., & Rendón, J. (2012). A comparison of interpolation methods for creating noise maps in urban environments. Dialnet, 3(1), 62–68.Nachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., … Wiberg, D. (2010). The harmonized world soil database. verson 1.0. 19th World Congress of Soil Science, Soil Solutions for a Changing World (Vol. Version 1.). Brisbane, Australia. Retrieved from http://library.wur.nl/WebQuery/wurpubs/fulltext/154132Odgers, N., Libohova, Z., & Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189–190, 153–163. https://doi.org/10.1016/j.geoderma.2012.05.026Olaya, V. (2014). Sistemas de Información Geográfica. Sistemas de Información Geográfica (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 15–32.Omuto, C., Nachtergaele, F., & Vargas, R. (2013). State of the Art Report on Global and Regional Soil Information: Where are we? Where to go? Rome. Retrieved from http://typo3.fao.org/fileadmin/templates/nr/kagera/Documents/Soil_information_Report.pdfOrgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. https://doi.org/10.1111/ejss.12499Owusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. (2020). Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma, 360(October 2018).Pejović, M., Bajat, B., Gospavi, Z., Saljnikov, E., Kilibarda, M., & Dragan, Č. (2017). Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. Journal of Geochemical Exploration, 179(February 2016), 25–35. https://doi.org/10.1016/j.gexplo.2017.05.004Pham, K., Kim, D., Yoon, Y., & Choi, H. (2019). Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma, 351(August 2018), 92–102. https://doi.org/10.1016/j.geoderma.2019.05.013Piccini, C., Marchetti, A., & Francaviglia, R. (2014). Estimation of soil organic matter by geostatistical methods : Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36, 301–314. https://doi.org/10.1016/j.ecolind.2013.08.009Pinheiro, H. S., Chagas, C., Carvalho Junior, W., & dos Anjos, L. H. C. (2016). Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesquisa Agropecuaria Brasileira, 51(9), 1326–1338. https://doi.org/10.1590/S0100-204X2016000900032Pinheiro, H. S., dos Anjos, L. H. C., Xavier, P. A. M., Chagas, C., & Carvalho Junior, W. (2018). Quantitative pedology to evaluate a soil profile collection from the Brazilian semi-arid region. South African Journal of Plant and Soil, 35(4), 269–279. https://doi.org/10.1080/02571862.2017.1419385R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . Available online at https://www.R-project.org/. Vienna, Austria.Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158(February), 390–412. https://doi.org/10.1016/j.catena.2017.07.020Rasmussen, C., Mcguire, L., Dhakal, P., & Pelletier, J. D. (2017). Coevolution of soil and topography across a semiarid cinder cone chronosequence. Catena, 156(August 2016), 338–352. https://doi.org/10.1016/j.catena.2017.04.025Rial, M., Martínez Cortizas, A., & Rodríguez-Lado, L. (2017). Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609, 1411–1422. https://doi.org/10.1016/j.scitotenv.2017.08.012Rodríguez, F. A., Camacho, J. H., & Rubiano, Y. (2016). Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Ciencia & Tecnología Agropecuaria, 17(2), 237–254.Rossiter, D. (1999). Bases De Datos Geográficos de Suelos y el Uso de Programas para su Construcción. In R. Vargas (Ed.), Notas de conferencia (p. 65). Enschede. Retrieved from http://www.css.cornell.edu/faculty/dgr2/teach/sis/SoilGeographicDataBases_E.pdfRossiter, D. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(November 2014), 296–301. https://doi.org/10.1079/SUM2004258Rossiter, D. (2012). A pedometric approach to valuing the soil resource. Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital Soil Mapping. https://doi.org/10.1201/b12728-7Rossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma, 324(March), 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009Rossiter, D., Zeng, R., & Zhang, G. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. https://doi.org/10.1016/j.geoderma.2017.01.012Santra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72. https://doi.org/10.1016/j.geodrs.2017.03.003Schloeder, C., Zimmermann, N., & Jacobs, M. (2001). Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65. https://doi.org/10.2136/sssaj2001.652470xSilatsa, F. B. T., Yemefack, M., Tabi, F. O., Heuvelink, G. B. M., & Leenaars, J. G. B. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367(September 2019), 13. https://doi.org/10.1016/j.geoderma.2020.114260Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12(November 2017), 28–38. https://doi.org/10.1016/j.geodrs.2017.11.004SISLAC. (2013). Sistema de Información de Suelos de Latinoamérica - SISLAC. Retrieved October 2, 2017, from http://www.sislac.org/#Soil Science Division Staff. (2017). Soil Survey Manual. (C. Ditzler, K. Scheffe, & H. . . Monger, Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C. https://doi.org/10.1097/00010694-195112000-00022Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual. U.S. Department of Agriculture, Natural Resources Conservation Service.Soussana, J. F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., … Lal, R. (2017). Matching policy and science: Rationale for the “4 per 1000 - soils for food security and climate” initiative. Soil and Tillage Research, (June), 13. https://doi.org/10.1016/j.still.2017.12.002Sulaeman, Y., Minasny, B., Mcbratney, A., Sarwani, M., & Sutandi, A. (2013). Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192(1), 77–85. https://doi.org/10.1016/j.geoderma.2012.08.005Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage Research, 195(January), 104410. https://doi.org/10.1016/j.still.2019.104410Taghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110. https://doi.org/10.1016/j.geoderma.2015.12.003USDA. (1995). Soil Survey Geographic (SSURGO) Database. Fort Worth, Texas: Natural Soil Survey Center. Retrieved from http://soildatamart.nrcs.usda.govUSDA. (2014). Claves para la Taxonomía de Suelos. Soil Survey Staff. https://doi.org/10.1109/TIP.2005.854494Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Statistics in Practice. (Wiley, Ed.), Ecological Engineering (Second Edi). https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.06.002Willmott, C. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2Xin, Z., Qin, Y., & Yu, X. (2016). Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena, 137, 660–669. https://doi.org/10.1016/j.catena.2015.01.028Yao, X., Yu, K., Deng, Y., Zeng, Q., Lai, Z., & Liu, J. (2019). Spatial distribution of soil organic carbon stocks in Masson pine (Pinus massoniana) forests in subtropical China. Catena, 178(February), 189–198. https://doi.org/10.1016/j.catena.2019.03.004Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. (2018). Soil Organic Carbon Mapping Cookbook. FAO (2nd editio). Rome: FAO. https://doi.org/10.2307/j.ctt5hjqxd.7Zhang, S. (2013). Comparison of statistical methods for digital soil mapping of sub-Saharan Africa.Zhang, Y., Zhen, Q., Li, P., Cui, Y., Xin, J., Yuan, Y., … Zhang, X. (2020). Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 12(6), 2259. https://doi.org/10.3390/su12062259Zhang, Z., Zhou, Y., & Huang, X. (2020). Applicability of GIS-based spatial interpolation and simulation for estimating the soil organic carbon storage in karst regions. Global Ecology and Conservation, 21, e00849. https://doi.org/10.1016/j.gecco.2019.e00849AdministradoresBibliotecariosInvestigadoresPúblico generalORIGINAL591583_2021.pdf591583_2021.pdfTesis de Maestría en Geomáticaapplication/pdf6187610https://repositorio.unal.edu.co/bitstream/unal/81445/3/591583_2021.pdf42d4d1286f8d0cee5acebb76b161bb3bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81445/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL591583_2021.pdf.jpg591583_2021.pdf.jpgGenerated Thumbnailimage/jpeg5377https://repositorio.unal.edu.co/bitstream/unal/81445/5/591583_2021.pdf.jpgc8e5f9e5dbb3e11aacb531fb44ef11d5MD55unal/81445oai:repositorio.unal.edu.co:unal/814452023-08-02 23:03:51.193Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK