Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral
ilustraciones, diagramas, tablas
- Autores:
-
Atehortua Carmona, Juan Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82496
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
610 - Medicina y salud
Método de elementos finitos
Biomecánica
Personas amputadas
Método de los Elementos Finitos
Amputación Transfemoral
Tejido Blando Multicapa
Finite Element Method
Transfemoral Amputation
Multilayer Soft Tissue
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_4934b9485e76a550b5d972885d542497 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82496 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
dc.title.translated.eng.fl_str_mv |
Effect of pelvic bone over the stress state at the residual limb – socket interface of transfemoral amputees |
title |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
spellingShingle |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 610 - Medicina y salud Método de elementos finitos Biomecánica Personas amputadas Método de los Elementos Finitos Amputación Transfemoral Tejido Blando Multicapa Finite Element Method Transfemoral Amputation Multilayer Soft Tissue |
title_short |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
title_full |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
title_fullStr |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
title_full_unstemmed |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
title_sort |
Efecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoral |
dc.creator.fl_str_mv |
Atehortua Carmona, Juan Fernando |
dc.contributor.advisor.none.fl_str_mv |
Ramirez Patiño, Juan Fernando |
dc.contributor.author.none.fl_str_mv |
Atehortua Carmona, Juan Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 610 - Medicina y salud |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 610 - Medicina y salud Método de elementos finitos Biomecánica Personas amputadas Método de los Elementos Finitos Amputación Transfemoral Tejido Blando Multicapa Finite Element Method Transfemoral Amputation Multilayer Soft Tissue |
dc.subject.lemb.none.fl_str_mv |
Método de elementos finitos Biomecánica Personas amputadas |
dc.subject.proposal.spa.fl_str_mv |
Método de los Elementos Finitos Amputación Transfemoral Tejido Blando Multicapa |
dc.subject.proposal.eng.fl_str_mv |
Finite Element Method Transfemoral Amputation Multilayer Soft Tissue |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-26T15:11:32Z |
dc.date.available.none.fl_str_mv |
2022-10-26T15:11:32Z |
dc.date.issued.none.fl_str_mv |
2022-09 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82496 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82496 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] J. F. Ramírez-Patiño, D. F. Gutiérrez-Rôa, and A. A. Correa-Espinal, “Valoración de la percepción de confort en personas con amputación transfemoral,” DYNA, vol. 82, no. 191, pp. 194–202, 2015, doi: 10.15446/dyna.v82n191.44700. [2] D. Lacroix and J. F. Ramírez Patiño, “Finite element analysis of donning procedure of a prosthetic transfemoral socket,” Ann. Biomed. Eng., vol. 39, no. 12, pp. 2972–2983, 2011, doi: 10.1007/s10439-011-0389-z. [3] A. van Heesewijk, A. Crocombe, S. Cirovic, M. Taylor, and W. Xu, “Evaluating the effect of changes in bone geometry on the trans-femoral socket-residual limb interface using finite element analysis,” IFMBE Proceedings, vol. 68, no. 2. pp. 587–591, 2018, doi: 10.1007/978-981-10-9038-7_109. [4] S. C. Henao, C. Orozco, and J. Ramírez, “Influence of Gait Cycle Loads on Stress Distribution at The Residual Limb/Socket Interface of Transfemoral Amputees: A Finite Element Analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-61915-1. [5] X. Jia, M. Zhang, and W. C. C. Lee, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb - Dynamic effects,” J. Biomech., vol. 37, no. 9, pp. 1371–1377, 2004, doi: 10.1016/j.jbiomech.2003.12.024. [6] L. Zhang, M. Zhu, L. Shen, and F. Zheng, “Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1270–1273, 2013, doi: 10.1109/EMBC.2013.6609739. [7] M. Zhang, A. F. T. Mak, V. C. Roberts, and V. . (1998). Zhang, M., Mak, A. F. ., & Roberts, “Finite element modelling of a residual lower-limb in a prosthetic socket: A survey of the development in the first decade,” Med. Eng. Phys., vol. 20, no. 5, pp. 360–373, 1998, doi: 10.1016/S1350-4533(98)00027-7. [8] J. F. Ramírez and J. A. Vélez, “Incidence of the boundary condition between bone and soft tissue in a finite element model of a transfemoral amputee,” Prosthet. Orthot. Int., vol. 36, no. 4, pp. 405–414, 2012, doi: 10.1177/0309364612436409. [9] A. S. Dickinson, J. W. Steer, and P. R. Worsley, “Finite element analysis of the amputated lower limb: A systematic review and recommendations,” Med. Eng. Phys., vol. 43, pp. 1–18, 2017, doi: 10.1016/j.medengphy.2017.02.008. [10] S. Portnoy, I. Siev-Ner, Z. Yizhar, A. Kristal, N. Shabshin, and A. Gefen, “Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum,” Ann. Biomed. Eng., vol. 37, no. 12, pp. 2583–2605, 2009, doi: 10.1007/s10439-009-9801-3. [11] V. Restrepo, J. Villarraga, and J. P. Palacio, “Stress reduction in the residual limb of a transfemoral amputee varying the coefficient of friction,” J. Prosthetics Orthot., vol. 26, no. 4, pp. 205–211, 2014, doi: 10.1097/JPO.0000000000000044. [12] J. Vélez, L. Bustamante, and J. Villarraga, “Relación Entre La Longitud Del Miembro Residual Y Amputados Transfemorales Relation Between Residual Limb Length and Stress Distribution Over Stump for Transfemoral Amputees,” Esc. Ing. Antioquia., vol. 12, no. 23, pp. 107–115, 2016. [13] M. Zhang and A. F. T. Mak, “A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket - Roles of interface friction and distal-end boundary conditions,” IEEE Trans. Rehabil. Eng., vol. 4, no. 4, pp. 337–346, 1996, doi: 10.1109/86.547935. [14] C. Mejía-Blandón, L. Bustamante-Goez, and J. Villarraga-Ossa, “Influencia de las condiciones de carga en la generación de úlceras por presión internas en amputados transfemorales,” Rev. UIS Ing., vol. 13, no. 1, pp. 223–232, 2018, doi: 10.18273/revuin.v17n1-2018022. [15] Schünke, Schulte, Schumacher, Voll, and Wesker, “Prometheus Tomo I Anat. General y Aparato Locomotor 1ED.pdf.” 2005. [16] Frank H. Netter, Atlas de Anatomía Humana, vol. 66. 2012. [17] Werner Ploatzer, Atlas de Anatomía para estudiantes y médicos. 1995. [18] A. W. M. Richard L Drake, A Wayne Vogl, Anatomíade Gray para estudiantes, 2nd ed. Elsevier, 2010. [19] D. M. C. U. de Navarra, “Definición, Amputación.” https://www.cun.es/diccionario-medico/terminos/amputacion (accessed Dec. 05, 2020). [20] R. A. N. de M. de España, “Definición Amputación,” 2020. http://dtme.ranm.es/buscador.aspx?NIVEL_BUS=3&LEMA_BUS=amputación (accessed Dec. 05, 2020). [21] James N Parker MD; Philip M Parker PhD, Amputation. 2003. [22] F. Salinas et al., Guía de práctica clínica para el diagnóstico y tratamiento preoperatorio, intraoperatorio y posoperatorio de la persona amputada, la prescripción de la prótesis y la rehabilitación integral, vol. 29, no. 4-S2. 2016. [23] V. María José Espinoza and S. Daniela García, “Niveles de amputación en extremidades inferiores: repercusión en el futuro del paciente,” Rev. Médica Clínica Las Condes, vol. 25, no. 2, pp. 276–280, 2014, doi: 10.1016/s0716-8640(14)70038-0. [24] S. H. Aguirre, “Design of a Transfemoral Socket for Colombian Amputees,” 2019. [25] A. C. MD, Lower Limb Amputation. 2006. [26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541. [26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541. [27] R. C. Hibbeller, Mecánica de Materiales, Octava. Mexico, 2011. [28] R. L. Norton, Diseño de máquinas. Un enfoque integrado, Cuarta. Mexico, 2011. [29] Raúl Goncalvez, Introducción al Análisis de Esfeurzos, Segunda Ed. Caracas Venezuela, 2002. [30] T A Stolarski, Tribology in Machine Design. Bston, 2000. [31] M. F. Ashby, “Materials Selection, Second Edititon,” 1999. [32] I. G. ErdoganMadenci, The Finite Element Method and Applications in Engineering using ANSYS, Second., vol. 53, no. 9. Arizona, 2015. [33] A. D. B. Tirupathi R Chandrupatla, Introduction to finite elements in engineering, Third., vol. 3. New Jersey, 2002. [34] R. Safari, “Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction,” Prosthet. Orthot. Int., vol. 44, no. 6, pp. 384–401, 2020, doi: 10.1177/0309364620969226. [35] E. Ramasamy et al., “An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models,” Front. Bioeng. Biotechnol., vol. 6, no. SEP, pp. 1–17, Sep. 2018, doi: 10.3389/fbioe.2018.00126. [36] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005. [37] J. W. Steer, P. R. Worsley, M. Browne, and A. Dickinson, “Key considerations for finite element modelling of the residuum–prosthetic socket interface,” Prosthet. Orthot. Int., 2020, doi: 10.1177/0309364620967781. [38] R. Dumas, L. Cheze, and L. Frossard, “Loading applied on prosthetic knee of transfemoral amputee: Comparison of inverse dynamics and direct measurements,” Gait Posture, vol. 30, no. 4, pp. 560–562, Nov. 2009, doi: 10.1016/j.gaitpost.2009.07.126. [39] M. Schwarze, C. Hurschler, F. Seehaus, S. Oehler, and B. Welke, “Loads on the prosthesis-socket interface of above-knee amputees during normal gait: Validation of a multi-body simulation,” J. Biomech., vol. 46, no. 6, pp. 1201–1206, Apr. 2013, doi: 10.1016/j.jbiomech.2013.02.005. [40] P. O. Bolcos et al., “Comparison between kinetic and kinetic-kinematic driven knee joint finite element models,” Sci. Rep., vol. 8, no. 1, pp. 1–11, Dec. 2018, doi: 10.1038/s41598-018-35628-5. [41] A. L. Lenz and T. R. Bush, “Evaluating shear and normal force with the use of an instrumented transtibial socket: A case study,” Med. Eng. Phys., vol. 71, no. xxxx, pp. 102–107, 2019, doi: 10.1016/j.medengphy.2019.07.002. [42] A. H. A. Al-dabbagh and R. Ronsse, “A review of terrain detection systems for applications in locomotion assistance,” Rob. Auton. Syst., vol. 133, no. 731931, p. 103628, 2020, doi: 10.1016/j.robot.2020.103628. [43] M. Zhang, M. Lord, A. R. Turner-Smith, and V. C. Roberts, “Development of a non-linear finite element modelling of the below-knee prosthetic socket interface,” Med. Eng. Phys., vol. 17, no. 8, pp. 559–566, Dec. 1995, doi: 10.1016/1350-4533(95)00002-5. [44] S. G. Zachariah and J. E. Sanders, “Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact,” J. Biomech., vol. 33, no. 7, pp. 895–899, 2000, doi: 10.1016/S0021-9290(00)00022-1. [45] C. L. Wu, C. H. Chang, A. T. Hsu, C. C. Lin, S. I. Chen, and G. L. Chang, “A proposal for the pre-evaluation protocol of below-knee socket design - integration pain tolerance with finite element analysis,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-kuo K. Ch’eng Hsuch K’an, vol. 26, no. 6, pp. 853–860, 2003, doi: 10.1080/02533839.2003.9670840. [46] C. C. Lin, C. H. Chang, C. L. Wu, K. C. Chung, and I. C. Liao, “Effects of liner stiffness for trans-tibial prosthesis: A finite element contact model,” Med. Eng. Phys., vol. 26, no. 1, pp. 1–9, Jan. 2004, doi: 10.1016/S1350-4533(03)00127-9. [47] W. C. C. Lee, M. Zhang, X. Jia, and J. T. M. Cheung, “Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,” Med. Eng. Phys., vol. 26, no. 8, pp. 655–662, 2004, doi: 10.1016/j.medengphy.2004.04.010. [48] S. Portnoy et al., “Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee,” J. Biomech., vol. 41, no. 9, pp. 1897–1909, 2008, doi: 10.1016/j.jbiomech.2008.03.035. [49] I. Mariaka Florez and I. Mariaka Flórez, “Efecto del uso de exoprotesis sobre la distribucion de esfuerzos del cartilago articular de la cadera,” p. 83, 2015, [Online]. Available: http://www.bdigital.unal.edu.co/47990/. [50] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405. [51] Z. Meng, D. W. C. Wong, M. Zhang, and A. K. L. Leung, “Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method,” Med. Eng. Phys., vol. 83, no. xxxx, pp. 123–129, 2020, doi: 10.1016/j.medengphy.2020.05.007. [52] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013. [53] W. C. C. Lee et al., “FE stress analysis of the interface between the bone and an osseointegrated implant for amputees - Implications to refine the rehabilitation program,” Clin. Biomech., vol. 23, no. 10, pp. 1243–1250, 2008, doi: 10.1016/j.clinbiomech.2008.06.012. [54] W. Xu and K. Robinson, “X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study,” Ann. Biomed. Eng., vol. 36, no. 3, pp. 435–443, 2008, doi: 10.1007/s10439-007-9430-7. [55] K. Ahmed et al., “Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy,” Ann. Biomed. Eng., vol. 48, no. 4, pp. 1382–1395, 2020, doi: 10.1007/s10439-020-02456-6. [56] S. J. Abass, J. N. Jaffar, and M. M. Ghazi, “The Effects of Body Mass Index BMI on Human Gait Analysis,” Int. J. Eng. Sci., vol. 6, no. 10, pp. 46–54, 2017, doi: 10.9790/1813-0610034654. [57] W. Xu, D. H. Xu, and A. D. Crocombe, “Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 220, no. 6, pp. 661–670, 2006, doi: 10.1243/09544119JEIM84. [58] V. V. Xu, A. D. Crocombe, and S. C. Hughes, “Finite element analysis of bone stress and strain around a distal osseointegrated implant for prosthetic limb attachment,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 214, no. 6, pp. 595–602, 2000, doi: 10.1243/0954411001535624. [59] I. Mariaka and J. Ramírez, “Primer acercamiento a la mecánica de contacto en amputados transfemorales unilaterales,” DYNA, vol. 84, no. 202, pp. 207–214, 2017, doi: 10.15446/dyna.v84n202.58595. [60] AO Foundation, “Chapter 10, Amputations,” Manag. limb Inj. Dur. disasters conflicts, 2010. [61] World Health Organization, “Discapacidad y salud, Datos y cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health (accessed Dec. 06, 2020). [62] World Health Organization, “Diabetes - Datos y Cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed Dec. 06, 2020). [63] A. contra M.-O. del A. C. para la Paz, “Registro de información de afectación por MAP y MUSE e intervención,” 2020. http://www.accioncontraminas.gov.co/Estadisticas (accessed Dec. 06, 2020). [64] L. Paternò, M. Ibrahimi, E. Gruppioni, A. Menciassi, and L. Ricotti, “Sockets for limb prostheses: A review of existing technologies and open challenges,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 1996–2010, Sep. 2018, doi: 10.1109/TBME.2017.2775100. [65] R. Klotz, B. Colobert, M. Botino, and I. Permentiers, “Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee,” Ann. Phys. Rehabil. Med., vol. 54, no. 7, pp. 399–410, 2011, doi: 10.1016/j.rehab.2011.08.001. [66] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005. [67] I. Mariaka Flórez, “Efecto del uso de exoprótesis sobre la distribución de esfuerzos del cartílago articular de la cadera,” p. 83, 2015. [68] A. Ballit, I. Mougharbel, H. Ghaziri, and T. T. Dao, “Fast Soft Tissue Deformation and Stump-Socket Interaction Toward a Computer-Aided Design System for Lower Limb Prostheses,” Irbm, vol. 41, no. 5, pp. 276–285, 2020, doi: 10.1016/j.irbm.2020.02.003. [69] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405. [70] Linda Kautz Osterkamp, “Current perspective on assessment of human body proportions of relevance to amputees,” J. Am. Diet. Assoc., 1995. [71] A. Mozumdar and S. K. Roy, “Method for estimating body weight in persons with lower-limb amputation and its implication for their nutritional assessment,” Am. J. Clin. Nutr., vol. 80, no. 4, pp. 868–875, 2004, doi: 10.1093/ajcn/80.4.868. [72] B. J. Fregly et al., “Grand challenge competition to predict in vivo knee loads,” J. Orthop. Res., vol. 30, no. 4, pp. 503–513, 2012, doi: 10.1002/jor.22023. [73] A. D. Koelewijn and A. J. van den Bogert, “Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations,” Gait Posture, vol. 49, pp. 219–225, Sep. 2016, doi: 10.1016/j.gaitpost.2016.07.007. [74] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp, “Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait,” IEEE Trans. Biomed. Eng., vol. 63, no. 10, pp. 2068–2079, 2016, doi: 10.1109/TBME.2016.2586891. [75] M. T. Karimi et al., “Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot,” Gait Posture, vol. 58, no. October 2016, pp. 246–251, 2017, doi: 10.1016/j.gaitpost.2017.08.007. [76] J. F. García-Vázquez, A. Skiadopoulos, B. Caro-Puértolas, and K. Gianikellis, “Three-dimensional kinematic gait analysis in patients with spastic diplegia,” Rehabilitacion, vol. 52, no. 1, pp. 10–20, 2018, doi: 10.1016/j.rh.2017.09.004. [77] J. Ramírez, “Nivel de Confort y Distribución de Esfuerzos en la Interfaz Socket – Muñón en Amputados Transfemorales,” 2011. [78] J. Perry, GAIT Pathological Function. 1992. [79] E. J. Muñoz, “Modelo Cinemático Simplificado Para La Predicción De Las Fuerzas Y Los Momentos Reactivos En El Socket De Amputados Transfemorales,” p. 160, 2016. [80] J. L. Hicks, T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp, “Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement,” J. Biomech. Eng., vol. 137, no. 2, 2015, doi: 10.1115/1.4029304. [81] Morgan Snageux, “Biomechanics of the Hip During Gait,” Pediatr. Adolesc. Hip, 2019, doi: 10.1007/978-3-030-12003-0. [82] L. Duchemin et al., “Prediction of mechanical properties of cortical bone by quantitative computed tomography,” Med. Eng. Phys., vol. 30, no. 3, pp. 321–328, 2008, doi: 10.1016/j.medengphy.2007.04.008. [83] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Redesign and validation of a handheld tribometer to determine the coefficient of friction between the prosthesis and the residual limb of people with a transfemoral amputation,” Biotribology, vol. 21, no. August 2019, p. 100118, 2020, doi: 10.1016/j.biotri.2020.100118. [84] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Coefficient of Friction Measurements on Transfemoral Amputees,” Biotribology, vol. 22, no. April, p. 100126, 2020, doi: 10.1016/j.biotri.2020.100126. [85] H. V. Tran, F. Charleux, M. Rachik, A. Ehrlacher, and M. C. Ho Ba Tho, “In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques,” Comput. Methods Biomech. Biomed. Engin., vol. 10, no. 6, pp. 401–407, 2007, doi: 10.1080/10255840701550287. [86] M. Geerligs, Skin layer mechanics, no. 2010. 2010. [87] S. Avril, L. Bouten, L. Dubuis, S. Drapier, and J. F. Pouget, “Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression,” J. Biomech. Eng., vol. 132, no. 3, 2010, doi: 10.1115/1.4000967. [88] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013, [Online]. Available: http://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf%5Cnhttp://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf. [89] J. S. Affagard, P. Feissel, and S. F. Bensamoun, “Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement,” J. Biomech., vol. 48, no. 15, pp. 4081–4086, 2015, doi: 10.1016/j.jbiomech.2015.10.007. [90] Simulia, “Getting Started with Abaqus: Interactive Edition,” Get. Started with Abaqus Interact. Ed., pp. 4.50-4.54, 2012, [Online]. Available: http://www.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/pdf_books/GET_STARTED.pdf. [91] P. A. Fuentes, M. Toro, J. A. Isaza, and J. F. Ramirez, “Influencia de la rugosidad sobre el coeficiente de fricción entre el muñón y la superficie del socket,” Pan Am. Heal. Care Exch. PAHCE, vol. 25, no. 22, p. 6257, 2013, doi: 10.1109/PAHCE.2013.6568223. [92] Y. Benjamini and H. Braun, “John W. Tukey’s contributions to multiple comparisons,” Ann. Stat., vol. 30, no. 6, pp. 1576–1594, 2002, doi: 10.1214/aos/1043351247. [93] B. Kim et al., “A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber,” Int. J. Precis. Eng. Manuf., vol. 13, no. 5, pp. 759–764, 2012, doi: 10.1007/s12541-012-0099-y. [94] T. J. Pence and K. Gou, “On compressible versions of the incompressible neo-Hookean material,” Math. Mech. Solids, vol. 20, no. 2, pp. 157–182, 2015, doi: 10.1177/1081286514544258. [95] L. J. A. Isaza, D. Lacroix, and J. Ramírez, “Influence of indentation test factors on the mechanical response of the skin,” Univ. Sci., vol. 24, no. 1, pp. 49–72, 2019, doi: 10.11144/JAVERIANA.SC24-1.IOIT. [96] J. Isaza, I. Mariaka, and J. Ramírez, “Caracterización de propiedades mecánicas mediante análisis inverso del método de los elementos finitos combinado con ensayo de indentación,” DYNA, vol. 80, no. 179, pp. 126–133, 2013. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 128 páginas + 1 Anexo en PDF |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería Mecánica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82496/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82496/2/1040046403.2022-1.pdf https://repositorio.unal.edu.co/bitstream/unal/82496/3/1040046403.2022-2.pdf https://repositorio.unal.edu.co/bitstream/unal/82496/4/1040046403.2022-1.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/82496/5/1040046403.2022-2.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 69f0b4915c7e5ba472ab020614134671 c17b8e8b9f0726ba4e6f231af9ab8622 f3864cace0fcc9e8e34d8ca1811beb55 893a7daccbc337c895b1359f1f144636 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089628269936640 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez Patiño, Juan Fernando790f88ceaf0e3846db231fa38fcccec5600Atehortua Carmona, Juan Fernando162ee880acb863f1cbd257b43483b79a600Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir)2022-10-26T15:11:32Z2022-10-26T15:11:32Z2022-09https://repositorio.unal.edu.co/handle/unal/82496Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasSe desarrollaron 3 tipos de modelos numéricos de 15 personas con amputación transfemoral que permiten analizar el estado de esfuerzos en el miembro residual debido a la interacción con el socket durante la postura y el ciclo de marcha en una condición de máxima solicitación. Un primer modelo que sólo incluye el hueso del fémur y una porción del miembro residual que no incluye la zona glútea, un segundo que solo incluye el hueso del fémur y una porción del miembro residual que incluye la zona glútea y un tercer modelo que incluye le hueso del fémur, el hueso de la pelvis y una porción del miembro residual que incluye la zona glútea. También, se determinó la posibilidad de desarrollar un modelo numérico de personas con amputación transfemoral multicapa. Finalmente se encontró que el hueso de la pelvis no tiene incidencia en el estado de esfuerzos en la interacción del socket con el miembro residual, pero que incluir una porción del miembro residual en este tipo de modelos tiene incidencia en la distribución del estado de esfuerzos en la interacción del miembro residual con el socket, y se logró desarrollar un modelo numérico multicapa para personas con amputación transfemoral realista. (Texto tomado de la fuente)Three types of numerical models of 15 transfemoral amputees were developed to analyze the stress state of the residual limb due to interaction with the socket during stance and gait cycle in a maximum stress condition. A first model that only includes the femur bone and a portion of the residual limb that does not include the gluteal region, a second one that only includes the femur bone and a portion of the residual limb that includes the gluteal region and a third model that includes the femur bone, the pelvis bone and a portion of the residual limb that includes the gluteal region. Also, the possibility of developing a numerical model of multilayer transfemoral amputees was determined. Finally, it was found that the pelvis bone has no incidence in the stress state in the interaction of the socket with the residual limb, but that including a portion of the residual limb in this type of models has incidence in the distribution of the stress state in the interaction of the residual limb with the socket, and it was possible to develop a multilayer numerical model for people with realistic transfemoral amputation.MaestríaMagister en Ingeniería MecánicaBiomecánicaÁrea Curricular de Ingeniería Mecánicaxxi, 128 páginas + 1 Anexo en PDFapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaDepartamento de Ingeniería MecánicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería610 - Medicina y saludMétodo de elementos finitosBiomecánicaPersonas amputadasMétodo de los Elementos FinitosAmputación TransfemoralTejido Blando MulticapaFinite Element MethodTransfemoral AmputationMultilayer Soft TissueEfecto del hueso de la pelvis en el estado de esfuerzos del miembro residual en la interacción con el socket de un amputado transfemoralEffect of pelvic bone over the stress state at the residual limb – socket interface of transfemoral amputeesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] J. F. Ramírez-Patiño, D. F. Gutiérrez-Rôa, and A. A. Correa-Espinal, “Valoración de la percepción de confort en personas con amputación transfemoral,” DYNA, vol. 82, no. 191, pp. 194–202, 2015, doi: 10.15446/dyna.v82n191.44700.[2] D. Lacroix and J. F. Ramírez Patiño, “Finite element analysis of donning procedure of a prosthetic transfemoral socket,” Ann. Biomed. Eng., vol. 39, no. 12, pp. 2972–2983, 2011, doi: 10.1007/s10439-011-0389-z.[3] A. van Heesewijk, A. Crocombe, S. Cirovic, M. Taylor, and W. Xu, “Evaluating the effect of changes in bone geometry on the trans-femoral socket-residual limb interface using finite element analysis,” IFMBE Proceedings, vol. 68, no. 2. pp. 587–591, 2018, doi: 10.1007/978-981-10-9038-7_109.[4] S. C. Henao, C. Orozco, and J. Ramírez, “Influence of Gait Cycle Loads on Stress Distribution at The Residual Limb/Socket Interface of Transfemoral Amputees: A Finite Element Analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-61915-1.[5] X. Jia, M. Zhang, and W. C. C. Lee, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb - Dynamic effects,” J. Biomech., vol. 37, no. 9, pp. 1371–1377, 2004, doi: 10.1016/j.jbiomech.2003.12.024.[6] L. Zhang, M. Zhu, L. Shen, and F. Zheng, “Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1270–1273, 2013, doi: 10.1109/EMBC.2013.6609739.[7] M. Zhang, A. F. T. Mak, V. C. Roberts, and V. . (1998). Zhang, M., Mak, A. F. ., & Roberts, “Finite element modelling of a residual lower-limb in a prosthetic socket: A survey of the development in the first decade,” Med. Eng. Phys., vol. 20, no. 5, pp. 360–373, 1998, doi: 10.1016/S1350-4533(98)00027-7.[8] J. F. Ramírez and J. A. Vélez, “Incidence of the boundary condition between bone and soft tissue in a finite element model of a transfemoral amputee,” Prosthet. Orthot. Int., vol. 36, no. 4, pp. 405–414, 2012, doi: 10.1177/0309364612436409.[9] A. S. Dickinson, J. W. Steer, and P. R. Worsley, “Finite element analysis of the amputated lower limb: A systematic review and recommendations,” Med. Eng. Phys., vol. 43, pp. 1–18, 2017, doi: 10.1016/j.medengphy.2017.02.008.[10] S. Portnoy, I. Siev-Ner, Z. Yizhar, A. Kristal, N. Shabshin, and A. Gefen, “Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum,” Ann. Biomed. Eng., vol. 37, no. 12, pp. 2583–2605, 2009, doi: 10.1007/s10439-009-9801-3.[11] V. Restrepo, J. Villarraga, and J. P. Palacio, “Stress reduction in the residual limb of a transfemoral amputee varying the coefficient of friction,” J. Prosthetics Orthot., vol. 26, no. 4, pp. 205–211, 2014, doi: 10.1097/JPO.0000000000000044.[12] J. Vélez, L. Bustamante, and J. Villarraga, “Relación Entre La Longitud Del Miembro Residual Y Amputados Transfemorales Relation Between Residual Limb Length and Stress Distribution Over Stump for Transfemoral Amputees,” Esc. Ing. Antioquia., vol. 12, no. 23, pp. 107–115, 2016.[13] M. Zhang and A. F. T. Mak, “A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket - Roles of interface friction and distal-end boundary conditions,” IEEE Trans. Rehabil. Eng., vol. 4, no. 4, pp. 337–346, 1996, doi: 10.1109/86.547935.[14] C. Mejía-Blandón, L. Bustamante-Goez, and J. Villarraga-Ossa, “Influencia de las condiciones de carga en la generación de úlceras por presión internas en amputados transfemorales,” Rev. UIS Ing., vol. 13, no. 1, pp. 223–232, 2018, doi: 10.18273/revuin.v17n1-2018022.[15] Schünke, Schulte, Schumacher, Voll, and Wesker, “Prometheus Tomo I Anat. General y Aparato Locomotor 1ED.pdf.” 2005.[16] Frank H. Netter, Atlas de Anatomía Humana, vol. 66. 2012.[17] Werner Ploatzer, Atlas de Anatomía para estudiantes y médicos. 1995.[18] A. W. M. Richard L Drake, A Wayne Vogl, Anatomíade Gray para estudiantes, 2nd ed. Elsevier, 2010.[19] D. M. C. U. de Navarra, “Definición, Amputación.” https://www.cun.es/diccionario-medico/terminos/amputacion (accessed Dec. 05, 2020).[20] R. A. N. de M. de España, “Definición Amputación,” 2020. http://dtme.ranm.es/buscador.aspx?NIVEL_BUS=3&LEMA_BUS=amputación (accessed Dec. 05, 2020).[21] James N Parker MD; Philip M Parker PhD, Amputation. 2003.[22] F. Salinas et al., Guía de práctica clínica para el diagnóstico y tratamiento preoperatorio, intraoperatorio y posoperatorio de la persona amputada, la prescripción de la prótesis y la rehabilitación integral, vol. 29, no. 4-S2. 2016.[23] V. María José Espinoza and S. Daniela García, “Niveles de amputación en extremidades inferiores: repercusión en el futuro del paciente,” Rev. Médica Clínica Las Condes, vol. 25, no. 2, pp. 276–280, 2014, doi: 10.1016/s0716-8640(14)70038-0.[24] S. H. Aguirre, “Design of a Transfemoral Socket for Colombian Amputees,” 2019.[25] A. C. MD, Lower Limb Amputation. 2006.[26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541.[26] ángel G. Oscar Fernández, “Amputación, desarticulación: Definición, indicadores y niveles de amputaciíon de miembro superior e inferior,” vol. 0, 2016, doi: 10.1109/ICDSP.2016.7868541.[27] R. C. Hibbeller, Mecánica de Materiales, Octava. Mexico, 2011.[28] R. L. Norton, Diseño de máquinas. Un enfoque integrado, Cuarta. Mexico, 2011.[29] Raúl Goncalvez, Introducción al Análisis de Esfeurzos, Segunda Ed. Caracas Venezuela, 2002.[30] T A Stolarski, Tribology in Machine Design. Bston, 2000.[31] M. F. Ashby, “Materials Selection, Second Edititon,” 1999.[32] I. G. ErdoganMadenci, The Finite Element Method and Applications in Engineering using ANSYS, Second., vol. 53, no. 9. Arizona, 2015.[33] A. D. B. Tirupathi R Chandrupatla, Introduction to finite elements in engineering, Third., vol. 3. New Jersey, 2002.[34] R. Safari, “Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction,” Prosthet. Orthot. Int., vol. 44, no. 6, pp. 384–401, 2020, doi: 10.1177/0309364620969226.[35] E. Ramasamy et al., “An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models,” Front. Bioeng. Biotechnol., vol. 6, no. SEP, pp. 1–17, Sep. 2018, doi: 10.3389/fbioe.2018.00126.[36] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005.[37] J. W. Steer, P. R. Worsley, M. Browne, and A. Dickinson, “Key considerations for finite element modelling of the residuum–prosthetic socket interface,” Prosthet. Orthot. Int., 2020, doi: 10.1177/0309364620967781.[38] R. Dumas, L. Cheze, and L. Frossard, “Loading applied on prosthetic knee of transfemoral amputee: Comparison of inverse dynamics and direct measurements,” Gait Posture, vol. 30, no. 4, pp. 560–562, Nov. 2009, doi: 10.1016/j.gaitpost.2009.07.126.[39] M. Schwarze, C. Hurschler, F. Seehaus, S. Oehler, and B. Welke, “Loads on the prosthesis-socket interface of above-knee amputees during normal gait: Validation of a multi-body simulation,” J. Biomech., vol. 46, no. 6, pp. 1201–1206, Apr. 2013, doi: 10.1016/j.jbiomech.2013.02.005.[40] P. O. Bolcos et al., “Comparison between kinetic and kinetic-kinematic driven knee joint finite element models,” Sci. Rep., vol. 8, no. 1, pp. 1–11, Dec. 2018, doi: 10.1038/s41598-018-35628-5.[41] A. L. Lenz and T. R. Bush, “Evaluating shear and normal force with the use of an instrumented transtibial socket: A case study,” Med. Eng. Phys., vol. 71, no. xxxx, pp. 102–107, 2019, doi: 10.1016/j.medengphy.2019.07.002.[42] A. H. A. Al-dabbagh and R. Ronsse, “A review of terrain detection systems for applications in locomotion assistance,” Rob. Auton. Syst., vol. 133, no. 731931, p. 103628, 2020, doi: 10.1016/j.robot.2020.103628.[43] M. Zhang, M. Lord, A. R. Turner-Smith, and V. C. Roberts, “Development of a non-linear finite element modelling of the below-knee prosthetic socket interface,” Med. Eng. Phys., vol. 17, no. 8, pp. 559–566, Dec. 1995, doi: 10.1016/1350-4533(95)00002-5.[44] S. G. Zachariah and J. E. Sanders, “Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact,” J. Biomech., vol. 33, no. 7, pp. 895–899, 2000, doi: 10.1016/S0021-9290(00)00022-1.[45] C. L. Wu, C. H. Chang, A. T. Hsu, C. C. Lin, S. I. Chen, and G. L. Chang, “A proposal for the pre-evaluation protocol of below-knee socket design - integration pain tolerance with finite element analysis,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-kuo K. Ch’eng Hsuch K’an, vol. 26, no. 6, pp. 853–860, 2003, doi: 10.1080/02533839.2003.9670840.[46] C. C. Lin, C. H. Chang, C. L. Wu, K. C. Chung, and I. C. Liao, “Effects of liner stiffness for trans-tibial prosthesis: A finite element contact model,” Med. Eng. Phys., vol. 26, no. 1, pp. 1–9, Jan. 2004, doi: 10.1016/S1350-4533(03)00127-9.[47] W. C. C. Lee, M. Zhang, X. Jia, and J. T. M. Cheung, “Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,” Med. Eng. Phys., vol. 26, no. 8, pp. 655–662, 2004, doi: 10.1016/j.medengphy.2004.04.010.[48] S. Portnoy et al., “Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee,” J. Biomech., vol. 41, no. 9, pp. 1897–1909, 2008, doi: 10.1016/j.jbiomech.2008.03.035.[49] I. Mariaka Florez and I. Mariaka Flórez, “Efecto del uso de exoprotesis sobre la distribucion de esfuerzos del cartilago articular de la cadera,” p. 83, 2015, [Online]. Available: http://www.bdigital.unal.edu.co/47990/.[50] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405.[51] Z. Meng, D. W. C. Wong, M. Zhang, and A. K. L. Leung, “Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method,” Med. Eng. Phys., vol. 83, no. xxxx, pp. 123–129, 2020, doi: 10.1016/j.medengphy.2020.05.007.[52] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013.[53] W. C. C. Lee et al., “FE stress analysis of the interface between the bone and an osseointegrated implant for amputees - Implications to refine the rehabilitation program,” Clin. Biomech., vol. 23, no. 10, pp. 1243–1250, 2008, doi: 10.1016/j.clinbiomech.2008.06.012.[54] W. Xu and K. Robinson, “X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study,” Ann. Biomed. Eng., vol. 36, no. 3, pp. 435–443, 2008, doi: 10.1007/s10439-007-9430-7.[55] K. Ahmed et al., “Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy,” Ann. Biomed. Eng., vol. 48, no. 4, pp. 1382–1395, 2020, doi: 10.1007/s10439-020-02456-6.[56] S. J. Abass, J. N. Jaffar, and M. M. Ghazi, “The Effects of Body Mass Index BMI on Human Gait Analysis,” Int. J. Eng. Sci., vol. 6, no. 10, pp. 46–54, 2017, doi: 10.9790/1813-0610034654.[57] W. Xu, D. H. Xu, and A. D. Crocombe, “Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 220, no. 6, pp. 661–670, 2006, doi: 10.1243/09544119JEIM84.[58] V. V. Xu, A. D. Crocombe, and S. C. Hughes, “Finite element analysis of bone stress and strain around a distal osseointegrated implant for prosthetic limb attachment,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 214, no. 6, pp. 595–602, 2000, doi: 10.1243/0954411001535624.[59] I. Mariaka and J. Ramírez, “Primer acercamiento a la mecánica de contacto en amputados transfemorales unilaterales,” DYNA, vol. 84, no. 202, pp. 207–214, 2017, doi: 10.15446/dyna.v84n202.58595.[60] AO Foundation, “Chapter 10, Amputations,” Manag. limb Inj. Dur. disasters conflicts, 2010.[61] World Health Organization, “Discapacidad y salud, Datos y cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health (accessed Dec. 06, 2020).[62] World Health Organization, “Diabetes - Datos y Cifras,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed Dec. 06, 2020).[63] A. contra M.-O. del A. C. para la Paz, “Registro de información de afectación por MAP y MUSE e intervención,” 2020. http://www.accioncontraminas.gov.co/Estadisticas (accessed Dec. 06, 2020).[64] L. Paternò, M. Ibrahimi, E. Gruppioni, A. Menciassi, and L. Ricotti, “Sockets for limb prostheses: A review of existing technologies and open challenges,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 1996–2010, Sep. 2018, doi: 10.1109/TBME.2017.2775100.[65] R. Klotz, B. Colobert, M. Botino, and I. Permentiers, “Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee,” Ann. Phys. Rehabil. Med., vol. 54, no. 7, pp. 399–410, 2011, doi: 10.1016/j.rehab.2011.08.001.[66] W. C. Lee, M. Zhang, and A. F. Mak, “Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material,” Arch. Phys. Med. Rehabil., vol. 86, no. 4, pp. 641–649, 2005, doi: 10.1016/j.apmr.2004.08.005.[67] I. Mariaka Flórez, “Efecto del uso de exoprótesis sobre la distribución de esfuerzos del cartílago articular de la cadera,” p. 83, 2015.[68] A. Ballit, I. Mougharbel, H. Ghaziri, and T. T. Dao, “Fast Soft Tissue Deformation and Stump-Socket Interaction Toward a Computer-Aided Design System for Lower Limb Prostheses,” Irbm, vol. 41, no. 5, pp. 276–285, 2020, doi: 10.1016/j.irbm.2020.02.003.[69] F. Mo, H. Zhang, S. Zhao, Z. Xiao, and T. Liu, “Coupling Musculoskeletal Dynamics and Subject-Specific Finite Element Analysis of Femoral Cortical Bone Failure after Endoprosthetic Knee Replacement,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4650405.[70] Linda Kautz Osterkamp, “Current perspective on assessment of human body proportions of relevance to amputees,” J. Am. Diet. Assoc., 1995.[71] A. Mozumdar and S. K. Roy, “Method for estimating body weight in persons with lower-limb amputation and its implication for their nutritional assessment,” Am. J. Clin. Nutr., vol. 80, no. 4, pp. 868–875, 2004, doi: 10.1093/ajcn/80.4.868.[72] B. J. Fregly et al., “Grand challenge competition to predict in vivo knee loads,” J. Orthop. Res., vol. 30, no. 4, pp. 503–513, 2012, doi: 10.1002/jor.22023.[73] A. D. Koelewijn and A. J. van den Bogert, “Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations,” Gait Posture, vol. 49, pp. 219–225, Sep. 2016, doi: 10.1016/j.gaitpost.2016.07.007.[74] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp, “Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait,” IEEE Trans. Biomed. Eng., vol. 63, no. 10, pp. 2068–2079, 2016, doi: 10.1109/TBME.2016.2586891.[75] M. T. Karimi et al., “Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot,” Gait Posture, vol. 58, no. October 2016, pp. 246–251, 2017, doi: 10.1016/j.gaitpost.2017.08.007.[76] J. F. García-Vázquez, A. Skiadopoulos, B. Caro-Puértolas, and K. Gianikellis, “Three-dimensional kinematic gait analysis in patients with spastic diplegia,” Rehabilitacion, vol. 52, no. 1, pp. 10–20, 2018, doi: 10.1016/j.rh.2017.09.004.[77] J. Ramírez, “Nivel de Confort y Distribución de Esfuerzos en la Interfaz Socket – Muñón en Amputados Transfemorales,” 2011.[78] J. Perry, GAIT Pathological Function. 1992.[79] E. J. Muñoz, “Modelo Cinemático Simplificado Para La Predicción De Las Fuerzas Y Los Momentos Reactivos En El Socket De Amputados Transfemorales,” p. 160, 2016.[80] J. L. Hicks, T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp, “Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement,” J. Biomech. Eng., vol. 137, no. 2, 2015, doi: 10.1115/1.4029304.[81] Morgan Snageux, “Biomechanics of the Hip During Gait,” Pediatr. Adolesc. Hip, 2019, doi: 10.1007/978-3-030-12003-0.[82] L. Duchemin et al., “Prediction of mechanical properties of cortical bone by quantitative computed tomography,” Med. Eng. Phys., vol. 30, no. 3, pp. 321–328, 2008, doi: 10.1016/j.medengphy.2007.04.008.[83] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Redesign and validation of a handheld tribometer to determine the coefficient of friction between the prosthesis and the residual limb of people with a transfemoral amputation,” Biotribology, vol. 21, no. August 2019, p. 100118, 2020, doi: 10.1016/j.biotri.2020.100118.[84] S. C. Henao, S. Cuartas-Escobar, and J. Ramírez, “Coefficient of Friction Measurements on Transfemoral Amputees,” Biotribology, vol. 22, no. April, p. 100126, 2020, doi: 10.1016/j.biotri.2020.100126.[85] H. V. Tran, F. Charleux, M. Rachik, A. Ehrlacher, and M. C. Ho Ba Tho, “In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques,” Comput. Methods Biomech. Biomed. Engin., vol. 10, no. 6, pp. 401–407, 2007, doi: 10.1080/10255840701550287.[86] M. Geerligs, Skin layer mechanics, no. 2010. 2010.[87] S. Avril, L. Bouten, L. Dubuis, S. Drapier, and J. F. Pouget, “Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression,” J. Biomech. Eng., vol. 132, no. 3, 2010, doi: 10.1115/1.4000967.[88] J. A. Isaza López and J. F. Ramírez Patiño, “Comportamiento mecánico de tejidos blandos tipo multicapa,” p. 118, 2013, [Online]. Available: http://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf%5Cnhttp://www.bdigital.unal.edu.co/11637/%5Cnhttp://www.bdigital.unal.edu.co/11637/1/1017155483.2014.pdf.[89] J. S. Affagard, P. Feissel, and S. F. Bensamoun, “Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement,” J. Biomech., vol. 48, no. 15, pp. 4081–4086, 2015, doi: 10.1016/j.jbiomech.2015.10.007.[90] Simulia, “Getting Started with Abaqus: Interactive Edition,” Get. Started with Abaqus Interact. Ed., pp. 4.50-4.54, 2012, [Online]. Available: http://www.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/pdf_books/GET_STARTED.pdf.[91] P. A. Fuentes, M. Toro, J. A. Isaza, and J. F. Ramirez, “Influencia de la rugosidad sobre el coeficiente de fricción entre el muñón y la superficie del socket,” Pan Am. Heal. Care Exch. PAHCE, vol. 25, no. 22, p. 6257, 2013, doi: 10.1109/PAHCE.2013.6568223.[92] Y. Benjamini and H. Braun, “John W. Tukey’s contributions to multiple comparisons,” Ann. Stat., vol. 30, no. 6, pp. 1576–1594, 2002, doi: 10.1214/aos/1043351247.[93] B. Kim et al., “A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber,” Int. J. Precis. Eng. Manuf., vol. 13, no. 5, pp. 759–764, 2012, doi: 10.1007/s12541-012-0099-y.[94] T. J. Pence and K. Gou, “On compressible versions of the incompressible neo-Hookean material,” Math. Mech. Solids, vol. 20, no. 2, pp. 157–182, 2015, doi: 10.1177/1081286514544258.[95] L. J. A. Isaza, D. Lacroix, and J. Ramírez, “Influence of indentation test factors on the mechanical response of the skin,” Univ. Sci., vol. 24, no. 1, pp. 49–72, 2019, doi: 10.11144/JAVERIANA.SC24-1.IOIT.[96] J. Isaza, I. Mariaka, and J. Ramírez, “Caracterización de propiedades mecánicas mediante análisis inverso del método de los elementos finitos combinado con ensayo de indentación,” DYNA, vol. 80, no. 179, pp. 126–133, 2013.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82496/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1040046403.2022-1.pdf1040046403.2022-1.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf9719143https://repositorio.unal.edu.co/bitstream/unal/82496/2/1040046403.2022-1.pdf69f0b4915c7e5ba472ab020614134671MD521040046403.2022-2.pdf1040046403.2022-2.pdfTesis de Maestría en Ingeniería Mecánica - Anexosapplication/pdf18828010https://repositorio.unal.edu.co/bitstream/unal/82496/3/1040046403.2022-2.pdfc17b8e8b9f0726ba4e6f231af9ab8622MD53THUMBNAIL1040046403.2022-1.pdf.jpg1040046403.2022-1.pdf.jpgGenerated Thumbnailimage/jpeg5081https://repositorio.unal.edu.co/bitstream/unal/82496/4/1040046403.2022-1.pdf.jpgf3864cace0fcc9e8e34d8ca1811beb55MD541040046403.2022-2.pdf.jpg1040046403.2022-2.pdf.jpgGenerated Thumbnailimage/jpeg5020https://repositorio.unal.edu.co/bitstream/unal/82496/5/1040046403.2022-2.pdf.jpg893a7daccbc337c895b1359f1f144636MD55unal/82496oai:repositorio.unal.edu.co:unal/824962023-11-01 11:48:47.858Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |