Characterization of postures to analyze people’s emotions using Kinect technology

This article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in techn...

Full description

Autores:
Monsalve-Pulido, Julián Alberto
Parra-Rodríguez, Carlos Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/68524
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/68524
http://bdigital.unal.edu.co/69557/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
análisis de emociones
reconocimiento de posturas
software libre
Kinect
KNN
analysis of emotions
recognition of postures
free software
Kinect
KNN
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_491d0161bd3fc25f8e8c99f80dca6cb6
oai_identifier_str oai:repositorio.unal.edu.co:unal/68524
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Monsalve-Pulido, Julián Alberto0181eb73-d1f1-46cf-8f2a-97e8c97c828c300Parra-Rodríguez, Carlos Albertob57ce869-6755-4929-9c94-a14554d870523002019-07-03T07:01:39Z2019-07-03T07:01:39Z2018-04-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/68524http://bdigital.unal.edu.co/69557/This article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in technological appropriation and a model that classified people’s emotions (in standing position) using the Kinect Skeletal Tracking algorithm, which is a free software. We proposed a feature vector for pattern recognition using classification techniques such as SVM, KNN, and Bayesian Networks for 17,882 pieces of data that were obtained in a 14-person training sample. As a result, we found that that the KNN algorithm has a maximum effectiveness of 89.0466%, which surpasses the other selected algorithms.El presente artículo sintetiza la investigación realizada en el uso de técnicas de clasificación para un proceso de caracterización de posturas de personas que tiene como objetivo la identificación de emociones (Asombro, Enfado, Felicidad y Tristeza). En este proyecto de investigación fue necesario utilizar una metodología de investigación exploratoria en tres fases donde el resultado es una apropiación tecnológica y un modelo de clasificación de emociones en personas en posición de pie, usando el algoritmo de Skeletal Tracking de Kinect basado en software libre. Se propuso un vector de características para el reconocimiento de patrones usando técnicas de clasificación como SVM, KNN y Redes Bayesianas en 17.882 datos obtenidos en una muestra de entrenamiento de 14 personas. Como resultado se evidenció que el algoritmo KNN tiene una efectividad máxima del 89.0466% superando a los demás algoritmos seleccionados.application/pdfspaUniversidad Nacional de Colombia - Sede Medellín - Facultad de Minashttps://revistas.unal.edu.co/index.php/dyna/article/view/69470Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaMonsalve-Pulido, Julián Alberto and Parra-Rodríguez, Carlos Alberto (2018) Characterization of postures to analyze people’s emotions using Kinect technology. DYNA, 85 (205). pp. 256-263. ISSN 2346-218362 Ingeniería y operaciones afines / Engineeringanálisis de emocionesreconocimiento de posturassoftware libreKinectKNNanalysis of emotionsrecognition of posturesfree softwareKinectKNNCharacterization of postures to analyze people’s emotions using Kinect technologyArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL69470-385300-1-PB.pdfapplication/pdf859463https://repositorio.unal.edu.co/bitstream/unal/68524/1/69470-385300-1-PB.pdffa5bf91e2104a31cba51f8791ad3242dMD51THUMBNAIL69470-385300-1-PB.pdf.jpg69470-385300-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9589https://repositorio.unal.edu.co/bitstream/unal/68524/2/69470-385300-1-PB.pdf.jpg5318c03cb66a4daddbbe2cbf9c7f2ab5MD52unal/68524oai:repositorio.unal.edu.co:unal/685242024-05-27 23:09:27.164Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Characterization of postures to analyze people’s emotions using Kinect technology
title Characterization of postures to analyze people’s emotions using Kinect technology
spellingShingle Characterization of postures to analyze people’s emotions using Kinect technology
62 Ingeniería y operaciones afines / Engineering
análisis de emociones
reconocimiento de posturas
software libre
Kinect
KNN
analysis of emotions
recognition of postures
free software
Kinect
KNN
title_short Characterization of postures to analyze people’s emotions using Kinect technology
title_full Characterization of postures to analyze people’s emotions using Kinect technology
title_fullStr Characterization of postures to analyze people’s emotions using Kinect technology
title_full_unstemmed Characterization of postures to analyze people’s emotions using Kinect technology
title_sort Characterization of postures to analyze people’s emotions using Kinect technology
dc.creator.fl_str_mv Monsalve-Pulido, Julián Alberto
Parra-Rodríguez, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Monsalve-Pulido, Julián Alberto
Parra-Rodríguez, Carlos Alberto
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
análisis de emociones
reconocimiento de posturas
software libre
Kinect
KNN
analysis of emotions
recognition of postures
free software
Kinect
KNN
dc.subject.proposal.spa.fl_str_mv análisis de emociones
reconocimiento de posturas
software libre
Kinect
KNN
analysis of emotions
recognition of postures
free software
Kinect
KNN
description This article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in technological appropriation and a model that classified people’s emotions (in standing position) using the Kinect Skeletal Tracking algorithm, which is a free software. We proposed a feature vector for pattern recognition using classification techniques such as SVM, KNN, and Bayesian Networks for 17,882 pieces of data that were obtained in a 14-person training sample. As a result, we found that that the KNN algorithm has a maximum effectiveness of 89.0466%, which surpasses the other selected algorithms.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-04-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T07:01:39Z
dc.date.available.spa.fl_str_mv 2019-07-03T07:01:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/68524
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/69557/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/68524
http://bdigital.unal.edu.co/69557/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/69470
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Monsalve-Pulido, Julián Alberto and Parra-Rodríguez, Carlos Alberto (2018) Characterization of postures to analyze people’s emotions using Kinect technology. DYNA, 85 (205). pp. 256-263. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín - Facultad de Minas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/68524/1/69470-385300-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/68524/2/69470-385300-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv fa5bf91e2104a31cba51f8791ad3242d
5318c03cb66a4daddbbe2cbf9c7f2ab5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089483073617920