Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada

ilustraciones, diagramas, tablas

Autores:
Vargas Correa, Raquel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81385
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81385
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Distribution (probability theory)
Distribución (Teoría de probabilidades)
Distribución de Paisson
Poisson distribution
Intensidad de falla en forma de bañera
Reparación imperfecta
Reparación mínima
Proceso de Poisson no homogéneo
Mantenimiento preventivo óptimo
Modelo proporcional de reducción de la edad
Bathtub-Shaped Failure Intensity
Imperfect Repair
Minimal Repair
Nonhomogeneous Poisson Process
Optimal Preventive Maintenance
Proportional Age-Reduction Model
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_48c299d31c347ceb6a9f1a7d3fc3677e
oai_identifier_str oai:repositorio.unal.edu.co:unal/81385
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
dc.title.translated.eng.fl_str_mv NHPP process and optimal policy of maintenance on repairable systems with fault intensity function log-normal Modified Weibull
title Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
spellingShingle Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Distribution (probability theory)
Distribución (Teoría de probabilidades)
Distribución de Paisson
Poisson distribution
Intensidad de falla en forma de bañera
Reparación imperfecta
Reparación mínima
Proceso de Poisson no homogéneo
Mantenimiento preventivo óptimo
Modelo proporcional de reducción de la edad
Bathtub-Shaped Failure Intensity
Imperfect Repair
Minimal Repair
Nonhomogeneous Poisson Process
Optimal Preventive Maintenance
Proportional Age-Reduction Model
title_short Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
title_full Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
title_fullStr Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
title_full_unstemmed Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
title_sort Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada
dc.creator.fl_str_mv Vargas Correa, Raquel
dc.contributor.advisor.none.fl_str_mv González Álvarez, Nelfi Gertrudis
dc.contributor.author.none.fl_str_mv Vargas Correa, Raquel
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Distribution (probability theory)
Distribución (Teoría de probabilidades)
Distribución de Paisson
Poisson distribution
Intensidad de falla en forma de bañera
Reparación imperfecta
Reparación mínima
Proceso de Poisson no homogéneo
Mantenimiento preventivo óptimo
Modelo proporcional de reducción de la edad
Bathtub-Shaped Failure Intensity
Imperfect Repair
Minimal Repair
Nonhomogeneous Poisson Process
Optimal Preventive Maintenance
Proportional Age-Reduction Model
dc.subject.lemb.none.fl_str_mv Distribution (probability theory)
Distribución (Teoría de probabilidades)
Distribución de Paisson
Poisson distribution
dc.subject.proposal.spa.fl_str_mv Intensidad de falla en forma de bañera
Reparación imperfecta
Reparación mínima
Proceso de Poisson no homogéneo
Mantenimiento preventivo óptimo
Modelo proporcional de reducción de la edad
dc.subject.proposal.eng.fl_str_mv Bathtub-Shaped Failure Intensity
Imperfect Repair
Minimal Repair
Nonhomogeneous Poisson Process
Optimal Preventive Maintenance
Proportional Age-Reduction Model
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-25T15:36:49Z
dc.date.available.none.fl_str_mv 2022-03-25T15:36:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81385
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81385
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Almalki, S. J. y Yuan, J. (2013). “A new modified Weibull distribution”. En: Reliability Engineering & System Safety 111, págs. 164-170.
Ascher, H. y Feingold, H. (1984). Repairable systems reliability: modeling, inference, misconceptions and their causes. M. Dekker New York.
Aven, T. (1983). “Optimal replacement under a minimal repair strategy : A general failure model”. En: Advances in Applied Probability 15(1), págs. 198-211.
Aven, T. y Jensen, U. (2000). “A general minimal repair model”. En: Journal of Applied Probability 37(1), págs. 187-197.
Bain, L. J. (1974). “Analysis for the linear failure-rate life-testing distribution”. En: Technometrics 16(4), págs. 551-559.
Barlow, R. y Hunter, L. (1960). “Optimum preventive maintenance policies”. En: Operations Research 8(1), págs. 90-100.
Block, H. W., Borges, W. D. S. y Savits, T. H. (1990). “A general age replacement model with minimal repair”. En: Naval Research Logistics (NRL) 35(5), págs. 365-372.
Block, H. W. y Savits, T. H. (1997). “Burn-in”. En: Statistical Science 12(1), págs. 1-19
Brent, R. P. (1973). “Algorithms for Minimization without Derivatives”. En: Prentice-Hall, Englewood Cliffs, New Jersey.
Brown, M. y Proschan, F. (1983). “Imperfect repair”. En: Journal of Applied Probability 20(4), págs. 851-859.
Chen, Z. (2000). “A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function”. En: Statistics & Probability Letters 49(2), págs. 155-161.
Chien, Y.-H. (2019). “The optimal preventive-maintenance policy for a NHPBP repairable system under free-repair warranty”. En: Reliability Engineering & System Safety 188, págs. 444-453.
Coetzee, J. L. (1996). “Reliability degradation and the equipment replacement problem”. En: Proceedings of the International Conference of Maintenance Societies.
Colosimo, E. A., Gilardoni, G. L., Santos, W. B. y Motta, S. B. (2010). “Optimal maintenance time for repairable systems under two types of failures”. En: Communications in Statistics Theory and Methods 39(7), págs. 1289-1298.
Coolen-Schrijner, P. y Coolen, F. P. (2007). “Nonparametric adaptive age replacement with a one-cycle criterion”. En: Reliability Engineering & System Safety 92(1), págs. 74-84.
De Carlo, F. y Arleo, M. A. (dic. de 2017). “Imperfect Maintenance Models, from Theory to Practice”. En: System Reliability. InTech. Cap. 18. DOI: 10.5772/intechopen.69286. URL: https://doi.org/10.5772/intechopen.69286.
Dijoux, Y. (2009). “A virtual age model based on a bathtub shaped initial intensity”. En: Reliability Engineering & System Safety 94(5), págs. 982-989
Doyen, L., Drouilhet, R. y Brenière, L. (2020). “A generic framework for generalized virtual age models”. En: IEEE Transactions on Reliability 69(2), págs. 816-832.
Ebrahimi, N. (1993). “Improvement and Deterioration of a Repairable System”. En: Sankhya: The Indian Journal of Statistics, Series A (1961-2002) 55(2), págs. 233-243. ISSN: 0581572X. URL: http://www.jstor.org/stable/25050930.
Finkelstein, M., Cha, J. H. y col. (2013). “Stochastic modeling for reliability”. En: Shocks, burn-in and heterogeneous populations. Springer Series in Reliability Engineering, London: Springer
Gámiz, M. L., Kulasekera, K. B., Limnios, N. y Lindqvist, B. H. (2011). Applied Nonparametric Statistics in Reliability. Springer-Verlag, London.
Gertsbakh, I. B. (1977). Models of Preventive Maintenance. Elsevier Publishing, Amsterdam.
Gilardoni, G. L. y Colosimo, E. A. (2007). “Optimal maintenance time for repairable systems”. En: Journal of Quality Technology 39(1), págs. 48-53.
Gilardoni, G. L., Guerra De Toledo, M. L., Freitas, M. A. y Colosimo, E. A. (2016). “Dynamics of an optimal maintenance policy for imperfect repair models”. En: European Journal of Operational Research 248(3), págs. 1104-1112
Guida, M. y Pulcini, G. (2009). “Reliability analysis of mechanical systems with bounded and bathtub shaped intensity function”. En: IEEE Transactions on Reliability 58(3), págs. 432-443.
Guo, H., Mettas, A., Sarakakis, G. y Niu, P. (2010). “Piecewise NHPP models with maximum likelihood estimation for repairable systems”. En: 2010 Proceedings-Annual Reliability and Maintainability Symposium (RAMS), San Jose, págs. 1-7. DOI: 10.1109/RAMS.2010. 5448029
Hashemi, M., Asadi, M. y Zarezadeh, S. (2020). “Optimal maintenance policies for coherent systems with multi-type components”. En: Reliability Engineering & System Safety 195, pág. 106674.
Jean, J. (1999). “Inference in nonhomogeneous Poisson process models, with applications to software reliability”. En: Ph.D. Thesis, University of Waterloo
Johnson, M. A., Lee, S. y Wilson, J. R. (1994). “Experimental evaluation of a procedure for estimating nonhomogeneous Poisson processes having cyclic behavior”. En: ORSA Journal on Computing 6(4), págs. 356-368.
Kazeminia, M. y Mehrjoo, M. (2013). “A new method for maximum likelihood parameter estimation of Gamma-Gamma distribution”. En: Journal of lightwave technology 31(9), págs. 1347-1353.
Kijima, M. (1989). “Some results for repairable systems with general repair”. En: Journal of Applied Probability 26(1), págs. 89-102. DOI: 10.2307/3214319.
Kijima, M. y Nakagawa, T. (1991). “A cumulative damage shock model with imperfect preventive maintenance”. En: Naval Research Logistics (NRL) 38(2), págs. 145-156.
Kijima, M. y Sumita, U. (1986). “A Useful Generalization of Renewal Theory: Counting Processes Governed by Non-Negative Markovian Increments”. En: Journal of Applied Probability 23(1), págs. 71-88. ISSN: 00219002. URL: http://www.jstor.org/stable/3214117.
Kim, M. J. y Makis, V. (2009). “Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair”. En: Computers & Industrial Engineering 57(1), págs. 298-303.
Krivtsov, V. V. (2007). “Practical extensions to NHPP application in repairable system reliability analysis”. En: Reliability Engineering & System Safety 92(5), págs. 560-562.
Kumar, U., Klefsjö, B. y Granholm, S. (1989). “Reliability investigation for a fleet of load haul dump machines in a Swedish mine”. En: Reliability Engineering & System Safety 26(4), págs. 341-361
Lai, C., Xie, M. y Murthy, D. (2003). “A modified Weibull distribution”. En: IEEE Transactions on Reliability 52(1), págs. 33-37.
Lai, C.-D. y Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media, New York, págs. 71-107
Lai, K., Leung, K. N. F., Tao, B. y Wang, S. Y. (2001). “A sequential method for preventive maintenance and replacement of a repairable single-unit system”. En: Journal of the Operational Research Society 52(11), págs. 1276-1283.
Lam, C. T. y Yeh, R. (1994). “Optimal maintenance-policies for deteriorating systems under various maintenance strategies”. En: IEEE Transactions on Reliability 43(3), págs. 423-430
Leemis, L. M. (1991). “Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process”. En: Management Science 37(7), págs. 886-900.
Lie, C. H. y Chun, Y. H. (1986). “An algorithm for preventive maintenance policy”. En: IEEE Transactions on Reliability 35(1), págs. 71-75.
Lindqvist, B. H. (2006). “On the statistical modeling and analysis of repairable systems”. En: Statistical Science 21(4), págs. 532-551.
Liu, J. y Wang, Y. (2013). “On Crevecoeur’s bathtub-shaped failure rate model”. En: Computational Statistics & Data Analysis 57(1), págs. 645-660.
Malik, M. A. K. (1979). “Reliable preventive maintenance scheduling”. En: AIIE transactions 11(3), págs. 221-228.
Mazzuchi, T. A. y Soyer, R. (1996). “A Bayesian perspective on some replacement strategies”. En: Reliability Engineering & System Safety 51(3), págs. 295-303.
Meeker, W. Q. y Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons, New York, págs. 393-426.
Mudholkar, G. S., Asubonteng, K. O. y Hutson, A. D. (2009). “Transformation of the bathtub failure rate data in reliability for using Weibull-model analysis”. En: Statistical Methodology 6(6), págs. 622-633.
Mun, B. M. y Bae, S. J. (2014). “Nonlinear Mixed-Effects Models for Multiple Repairable Systems”. En: Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Indonesia.
Mun, B. M., Bae, S. J. y Kvam, P. H. (2013). “A superposed log-linear failure intensity model for repairable artillery systems”. En: Journal of Quality Technology 45(1), págs. 100-115.
Musa, J. D. y Okumoto, K. (1984). “A logarithmic Poisson execution time model for software reliability measurement”. En: Proceedings of the 7th International Conference on Software Engineering. Citeseer, págs. 230-238
Nair, U., Sankaran, P. y Balakrishnan, N. (2018). Reliability modelling and analysis in discrete time. Academic Press, págs. 247-279.
Navarro, J., Arriaza, A. y Suárez-Llorens, A. (2019). “Minimal repair of failed components in coherent systems”. En: European Journal of Operational Research 279(3), págs. 951-964
Nelder, J. y Singer, S. (2009). “Nelder-Mead algorithm”. En: Scholarpedia 4(7), pág. 2928.
Park, D. H., Jung, G. M. y Yum, J. K. (2000). “Cost minimization for periodic maintenance policy of a system subject to slow degradation”. En: Reliability Engineering & System Safety 68(2), págs. 105-112.
Patrow, M. L. (1977). A comparison of two algorithms for the simulation of non-homogeneous Poisson processes with degree-two Exponential polynomial intensity function. Inf. téc. NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
Pham, H. y Wang, H. (1996). “Imperfect maintenance”. En: European Journal of Operational Research 94(3), págs. 425-438.
Pham, H. y Wang, H. (2006). Reliability and Optimal Maintenance. Springer-Verlag, London
Pulcini, G. (2001a). “A bounded intensity process for the reliability of repairable equipment”. En: Journal of Quality Technology 33(4), págs. 480-492.
Pulcini, G. (2001b). “Modeling the failure data of a repairable equipment with bathtub type failure intensity”. En: Reliability Engineering & System Safety 71(2), págs. 209-218.
R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.
Rigdon, S. E. y Basu, A. P. (2000). Statistical methods for the reliability of repairable systems. John Wiley & Sons New York.
Sarhan, A. M. y Zaindin, M. (2009). “Modified Weibull distribution.” En: Applied Sciences 11, págs. 123-136
Shakhatreh, M., Lemonte, A. y Moreno-Arenas, G. (2019). “The Log-normal modified Weibull distribution and it’s reliability implications”. En: Reliability Engineering & System Safety 188, págs. 6-22.
Sharma, A., Yadava, G. S. y Deshmukh, S. G. (2011). “A literature review and future perspectives on maintenance optimization”. En: Journal of Quality in Maintenance Engineering 17(1), págs. 5-25
Sherif, Y. y Smith, M. (1981). “Optimal maintenance models for systems subject to failure–a review”. En: Naval Research Logistics Quarterly 28(1), págs. 47-74
Sheu, S.-H., Tsai, H.-N., Sheu, U.-Y. y Zhang, Z. G. (2019). “Optimal replacement policies for a system based on a one-cycle criterion”. En: Reliability Engineering & System Safety 191, pág. 106527
Shin, I., Lim, T. y Lie, C. (1996). “Estimating parameters of intensity function and maintenance effect for repairable unit”. En: Reliability Engineering & System Safety 54(1), págs. 1-10.
Tsai, T.-R., Liu, P.-H. y Lio, Y. L. (2011). “Optimal maintenance time for imperfect maintenance actions on repairable product”. En: Computers & Industrial Engineering 60(4), págs. 744-749.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 84 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.department.spa.fl_str_mv Escuela de estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81385/3/1017232120.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81385/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81385/5/1017232120.2021.pdf.jpg
bitstream.checksum.fl_str_mv f693c18f4adee79a4c8baabf582a17ff
8153f7789df02f0a4c9e079953658ab2
8e7ffd351d22d3192f916383388f4786
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090002598985728
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Álvarez, Nelfi Gertrudis86e82e93e46d66537cc159764c3be3b4Vargas Correa, Raquel69cd298d0ef2671ff817bd4ae8be1e7a2022-03-25T15:36:49Z2022-03-25T15:36:49Z2021https://repositorio.unal.edu.co/handle/unal/81385Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl análisis de equipos reparables ha sido un tema con gran desarrollo en confiabilidad. Un acercamiento común al modelamiento de este tipo de sistemas es por medio procesos de conteo, entre ellos los procesos Poisson. Dentro de los procesos Poisson existen los homogéneos que tienen tasa constante y los no homogéneos donde la tasa de recurrencia depende del tiempo. En la literatura existen dos modelos de procesos Poisson no homogéneos (NHPP) que son ampliamente difundidos: el modelo ley potencia y el modelo log lineal, pero ambos modelos son incapaces de modelar tasas de recurrencia de procesos falla/reparo en forma de bañera, es decir una tasa de recurrencia caracterizada por tres periodos: “mortalidad infantil”, “vida útil” y “desgaste”. Existen alternativas para modelar tasas de recurrencia en forma de bañera, pero modelar tasas de falla en forma de bañera donde la parte de “vida útil” sea “plana” presenta dificultades. Este trabajo consiste en la adaptación de una distribución de vida con hazard flexible en un modelo NHPP que pueda modelar tasas de falla en forma de bañera con parte plana extendida, y adicional a esto, plantear un modelo de mantenimiento preventivo óptimo bajo el supuesto de reparación mínima con este nuevo modelo NHPP. (Texto tomado de la fuente)The analysis of repairable equipment has been a subject with great development in reliability. A common approach to modeling this type of system is through counting processes, including Poisson processes. Within the Poisson processes there are homogeneous ones that have a constant rate and non-homogeneous ones where the recurrence rate depends on time. In the literature 8 there are two models of non-homogeneous Poisson processes (NHPP) that are widely spread: the power law model and the linear log model, but both models are unable to model recurrence rates of failure/repair processes in the form of a bathtub, that is, say a recurrence rate characterized by three periods: “infant mortality”, “service life” and “attrition”. There are alternatives to modeling bathtub-shaped recurrence rates, but modeling bathtub-shaped failure rates where the “service life” part is “flat” presents difficulties. This work consists of the adaptation of a life distribution with flexible hazard in an NHPP model that can model failure rates in the form of a bathtub with an extended flat part, and in addition to this, propose an optimal preventive maintenance model under the minimum repair assumption with this new NHPP model.MaestríaMaestría en Ciencias - EstadísticaÁrea Curricular Estadística84 páginasapplication/pdfspa510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasDistribution (probability theory)Distribución (Teoría de probabilidades)Distribución de PaissonPoisson distributionIntensidad de falla en forma de bañeraReparación imperfectaReparación mínimaProceso de Poisson no homogéneoMantenimiento preventivo óptimoModelo proporcional de reducción de la edadBathtub-Shaped Failure IntensityImperfect RepairMinimal RepairNonhomogeneous Poisson ProcessOptimal Preventive MaintenanceProportional Age-Reduction ModelProceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificadaNHPP process and optimal policy of maintenance on repairable systems with fault intensity function log-normal Modified WeibullTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín - Ciencias - Maestría en Ciencias - EstadísticaEscuela de estadísticaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínAlmalki, S. J. y Yuan, J. (2013). “A new modified Weibull distribution”. En: Reliability Engineering & System Safety 111, págs. 164-170.Ascher, H. y Feingold, H. (1984). Repairable systems reliability: modeling, inference, misconceptions and their causes. M. Dekker New York.Aven, T. (1983). “Optimal replacement under a minimal repair strategy : A general failure model”. En: Advances in Applied Probability 15(1), págs. 198-211.Aven, T. y Jensen, U. (2000). “A general minimal repair model”. En: Journal of Applied Probability 37(1), págs. 187-197.Bain, L. J. (1974). “Analysis for the linear failure-rate life-testing distribution”. En: Technometrics 16(4), págs. 551-559.Barlow, R. y Hunter, L. (1960). “Optimum preventive maintenance policies”. En: Operations Research 8(1), págs. 90-100.Block, H. W., Borges, W. D. S. y Savits, T. H. (1990). “A general age replacement model with minimal repair”. En: Naval Research Logistics (NRL) 35(5), págs. 365-372.Block, H. W. y Savits, T. H. (1997). “Burn-in”. En: Statistical Science 12(1), págs. 1-19Brent, R. P. (1973). “Algorithms for Minimization without Derivatives”. En: Prentice-Hall, Englewood Cliffs, New Jersey.Brown, M. y Proschan, F. (1983). “Imperfect repair”. En: Journal of Applied Probability 20(4), págs. 851-859.Chen, Z. (2000). “A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function”. En: Statistics & Probability Letters 49(2), págs. 155-161.Chien, Y.-H. (2019). “The optimal preventive-maintenance policy for a NHPBP repairable system under free-repair warranty”. En: Reliability Engineering & System Safety 188, págs. 444-453.Coetzee, J. L. (1996). “Reliability degradation and the equipment replacement problem”. En: Proceedings of the International Conference of Maintenance Societies.Colosimo, E. A., Gilardoni, G. L., Santos, W. B. y Motta, S. B. (2010). “Optimal maintenance time for repairable systems under two types of failures”. En: Communications in Statistics Theory and Methods 39(7), págs. 1289-1298.Coolen-Schrijner, P. y Coolen, F. P. (2007). “Nonparametric adaptive age replacement with a one-cycle criterion”. En: Reliability Engineering & System Safety 92(1), págs. 74-84.De Carlo, F. y Arleo, M. A. (dic. de 2017). “Imperfect Maintenance Models, from Theory to Practice”. En: System Reliability. InTech. Cap. 18. DOI: 10.5772/intechopen.69286. URL: https://doi.org/10.5772/intechopen.69286.Dijoux, Y. (2009). “A virtual age model based on a bathtub shaped initial intensity”. En: Reliability Engineering & System Safety 94(5), págs. 982-989Doyen, L., Drouilhet, R. y Brenière, L. (2020). “A generic framework for generalized virtual age models”. En: IEEE Transactions on Reliability 69(2), págs. 816-832.Ebrahimi, N. (1993). “Improvement and Deterioration of a Repairable System”. En: Sankhya: The Indian Journal of Statistics, Series A (1961-2002) 55(2), págs. 233-243. ISSN: 0581572X. URL: http://www.jstor.org/stable/25050930.Finkelstein, M., Cha, J. H. y col. (2013). “Stochastic modeling for reliability”. En: Shocks, burn-in and heterogeneous populations. Springer Series in Reliability Engineering, London: SpringerGámiz, M. L., Kulasekera, K. B., Limnios, N. y Lindqvist, B. H. (2011). Applied Nonparametric Statistics in Reliability. Springer-Verlag, London.Gertsbakh, I. B. (1977). Models of Preventive Maintenance. Elsevier Publishing, Amsterdam.Gilardoni, G. L. y Colosimo, E. A. (2007). “Optimal maintenance time for repairable systems”. En: Journal of Quality Technology 39(1), págs. 48-53.Gilardoni, G. L., Guerra De Toledo, M. L., Freitas, M. A. y Colosimo, E. A. (2016). “Dynamics of an optimal maintenance policy for imperfect repair models”. En: European Journal of Operational Research 248(3), págs. 1104-1112Guida, M. y Pulcini, G. (2009). “Reliability analysis of mechanical systems with bounded and bathtub shaped intensity function”. En: IEEE Transactions on Reliability 58(3), págs. 432-443.Guo, H., Mettas, A., Sarakakis, G. y Niu, P. (2010). “Piecewise NHPP models with maximum likelihood estimation for repairable systems”. En: 2010 Proceedings-Annual Reliability and Maintainability Symposium (RAMS), San Jose, págs. 1-7. DOI: 10.1109/RAMS.2010. 5448029Hashemi, M., Asadi, M. y Zarezadeh, S. (2020). “Optimal maintenance policies for coherent systems with multi-type components”. En: Reliability Engineering & System Safety 195, pág. 106674.Jean, J. (1999). “Inference in nonhomogeneous Poisson process models, with applications to software reliability”. En: Ph.D. Thesis, University of WaterlooJohnson, M. A., Lee, S. y Wilson, J. R. (1994). “Experimental evaluation of a procedure for estimating nonhomogeneous Poisson processes having cyclic behavior”. En: ORSA Journal on Computing 6(4), págs. 356-368.Kazeminia, M. y Mehrjoo, M. (2013). “A new method for maximum likelihood parameter estimation of Gamma-Gamma distribution”. En: Journal of lightwave technology 31(9), págs. 1347-1353.Kijima, M. (1989). “Some results for repairable systems with general repair”. En: Journal of Applied Probability 26(1), págs. 89-102. DOI: 10.2307/3214319.Kijima, M. y Nakagawa, T. (1991). “A cumulative damage shock model with imperfect preventive maintenance”. En: Naval Research Logistics (NRL) 38(2), págs. 145-156.Kijima, M. y Sumita, U. (1986). “A Useful Generalization of Renewal Theory: Counting Processes Governed by Non-Negative Markovian Increments”. En: Journal of Applied Probability 23(1), págs. 71-88. ISSN: 00219002. URL: http://www.jstor.org/stable/3214117.Kim, M. J. y Makis, V. (2009). “Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair”. En: Computers & Industrial Engineering 57(1), págs. 298-303.Krivtsov, V. V. (2007). “Practical extensions to NHPP application in repairable system reliability analysis”. En: Reliability Engineering & System Safety 92(5), págs. 560-562.Kumar, U., Klefsjö, B. y Granholm, S. (1989). “Reliability investigation for a fleet of load haul dump machines in a Swedish mine”. En: Reliability Engineering & System Safety 26(4), págs. 341-361Lai, C., Xie, M. y Murthy, D. (2003). “A modified Weibull distribution”. En: IEEE Transactions on Reliability 52(1), págs. 33-37.Lai, C.-D. y Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media, New York, págs. 71-107Lai, K., Leung, K. N. F., Tao, B. y Wang, S. Y. (2001). “A sequential method for preventive maintenance and replacement of a repairable single-unit system”. En: Journal of the Operational Research Society 52(11), págs. 1276-1283.Lam, C. T. y Yeh, R. (1994). “Optimal maintenance-policies for deteriorating systems under various maintenance strategies”. En: IEEE Transactions on Reliability 43(3), págs. 423-430Leemis, L. M. (1991). “Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process”. En: Management Science 37(7), págs. 886-900.Lie, C. H. y Chun, Y. H. (1986). “An algorithm for preventive maintenance policy”. En: IEEE Transactions on Reliability 35(1), págs. 71-75.Lindqvist, B. H. (2006). “On the statistical modeling and analysis of repairable systems”. En: Statistical Science 21(4), págs. 532-551.Liu, J. y Wang, Y. (2013). “On Crevecoeur’s bathtub-shaped failure rate model”. En: Computational Statistics & Data Analysis 57(1), págs. 645-660.Malik, M. A. K. (1979). “Reliable preventive maintenance scheduling”. En: AIIE transactions 11(3), págs. 221-228.Mazzuchi, T. A. y Soyer, R. (1996). “A Bayesian perspective on some replacement strategies”. En: Reliability Engineering & System Safety 51(3), págs. 295-303.Meeker, W. Q. y Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons, New York, págs. 393-426.Mudholkar, G. S., Asubonteng, K. O. y Hutson, A. D. (2009). “Transformation of the bathtub failure rate data in reliability for using Weibull-model analysis”. En: Statistical Methodology 6(6), págs. 622-633.Mun, B. M. y Bae, S. J. (2014). “Nonlinear Mixed-Effects Models for Multiple Repairable Systems”. En: Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Indonesia.Mun, B. M., Bae, S. J. y Kvam, P. H. (2013). “A superposed log-linear failure intensity model for repairable artillery systems”. En: Journal of Quality Technology 45(1), págs. 100-115.Musa, J. D. y Okumoto, K. (1984). “A logarithmic Poisson execution time model for software reliability measurement”. En: Proceedings of the 7th International Conference on Software Engineering. Citeseer, págs. 230-238Nair, U., Sankaran, P. y Balakrishnan, N. (2018). Reliability modelling and analysis in discrete time. Academic Press, págs. 247-279.Navarro, J., Arriaza, A. y Suárez-Llorens, A. (2019). “Minimal repair of failed components in coherent systems”. En: European Journal of Operational Research 279(3), págs. 951-964Nelder, J. y Singer, S. (2009). “Nelder-Mead algorithm”. En: Scholarpedia 4(7), pág. 2928.Park, D. H., Jung, G. M. y Yum, J. K. (2000). “Cost minimization for periodic maintenance policy of a system subject to slow degradation”. En: Reliability Engineering & System Safety 68(2), págs. 105-112.Patrow, M. L. (1977). A comparison of two algorithms for the simulation of non-homogeneous Poisson processes with degree-two Exponential polynomial intensity function. Inf. téc. NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFPham, H. y Wang, H. (1996). “Imperfect maintenance”. En: European Journal of Operational Research 94(3), págs. 425-438.Pham, H. y Wang, H. (2006). Reliability and Optimal Maintenance. Springer-Verlag, LondonPulcini, G. (2001a). “A bounded intensity process for the reliability of repairable equipment”. En: Journal of Quality Technology 33(4), págs. 480-492.Pulcini, G. (2001b). “Modeling the failure data of a repairable equipment with bathtub type failure intensity”. En: Reliability Engineering & System Safety 71(2), págs. 209-218.R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.Rigdon, S. E. y Basu, A. P. (2000). Statistical methods for the reliability of repairable systems. John Wiley & Sons New York.Sarhan, A. M. y Zaindin, M. (2009). “Modified Weibull distribution.” En: Applied Sciences 11, págs. 123-136Shakhatreh, M., Lemonte, A. y Moreno-Arenas, G. (2019). “The Log-normal modified Weibull distribution and it’s reliability implications”. En: Reliability Engineering & System Safety 188, págs. 6-22.Sharma, A., Yadava, G. S. y Deshmukh, S. G. (2011). “A literature review and future perspectives on maintenance optimization”. En: Journal of Quality in Maintenance Engineering 17(1), págs. 5-25Sherif, Y. y Smith, M. (1981). “Optimal maintenance models for systems subject to failure–a review”. En: Naval Research Logistics Quarterly 28(1), págs. 47-74Sheu, S.-H., Tsai, H.-N., Sheu, U.-Y. y Zhang, Z. G. (2019). “Optimal replacement policies for a system based on a one-cycle criterion”. En: Reliability Engineering & System Safety 191, pág. 106527Shin, I., Lim, T. y Lie, C. (1996). “Estimating parameters of intensity function and maintenance effect for repairable unit”. En: Reliability Engineering & System Safety 54(1), págs. 1-10.Tsai, T.-R., Liu, P.-H. y Lio, Y. L. (2011). “Optimal maintenance time for imperfect maintenance actions on repairable product”. En: Computers & Industrial Engineering 60(4), págs. 744-749.EstudiantesInvestigadoresORIGINAL1017232120.2021.pdf1017232120.2021.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf737544https://repositorio.unal.edu.co/bitstream/unal/81385/3/1017232120.2021.pdff693c18f4adee79a4c8baabf582a17ffMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81385/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1017232120.2021.pdf.jpg1017232120.2021.pdf.jpgGenerated Thumbnailimage/jpeg5120https://repositorio.unal.edu.co/bitstream/unal/81385/5/1017232120.2021.pdf.jpg8e7ffd351d22d3192f916383388f4786MD55unal/81385oai:repositorio.unal.edu.co:unal/813852024-08-05 23:10:23.272Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK