Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documento
- Autores:
-
Cruz Ruiz, Sergio Andres
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81344
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
580 - Plantas
Phaseolus acutifolius
Tolerancia al calor
Frijol
Adaptación
Introgresión
P. acutifolius
GWAS
QTL
P. vulgaris
Resistencia a altas temperaturas
Introgresiones
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4898200ae304e8f3c28834ff8ae10572 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81344 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
dc.title.translated.eng.fl_str_mv |
Identification of QTLs associated with heat stress resistance using interspecific common bean populations derived from Phaseolus acutifolius. |
title |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
spellingShingle |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius 630 - Agricultura y tecnologías relacionadas 580 - Plantas Phaseolus acutifolius Tolerancia al calor Frijol Adaptación Introgresión P. acutifolius GWAS QTL P. vulgaris Resistencia a altas temperaturas Introgresiones |
title_short |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
title_full |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
title_fullStr |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
title_full_unstemmed |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
title_sort |
Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius |
dc.creator.fl_str_mv |
Cruz Ruiz, Sergio Andres |
dc.contributor.advisor.none.fl_str_mv |
Beebe, Steve |
dc.contributor.author.none.fl_str_mv |
Cruz Ruiz, Sergio Andres |
dc.contributor.educationalvalidator.none.fl_str_mv |
López Diana Carolina |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas 580 - Plantas |
topic |
630 - Agricultura y tecnologías relacionadas 580 - Plantas Phaseolus acutifolius Tolerancia al calor Frijol Adaptación Introgresión P. acutifolius GWAS QTL P. vulgaris Resistencia a altas temperaturas Introgresiones |
dc.subject.agrovoc.none.fl_str_mv |
Phaseolus acutifolius Tolerancia al calor Frijol Adaptación Introgresión |
dc.subject.proposal.eng.fl_str_mv |
P. acutifolius GWAS QTL P. vulgaris |
dc.subject.proposal.spa.fl_str_mv |
Resistencia a altas temperaturas Introgresiones |
description |
archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documento |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-23T21:34:35Z |
dc.date.available.none.fl_str_mv |
2022-03-23T21:34:35Z |
dc.date.issued.none.fl_str_mv |
2022-03-17 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81344 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81344 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013 Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1 Andrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.x Baird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203 Barrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTR Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457 Beebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035 Beebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5 Beebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change. Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Cajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. Chacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2 Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076 Coyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537. Debouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390 Debouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1 Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEX Doyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379 Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012 Faure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT. Feller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9). Fernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT. Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT. Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430 Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310 García-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-x Garvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153 Gaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017 Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931 Gepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT. Gepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5 Gil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanum Gross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173 Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0 Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154 Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034 Jones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13 Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01 Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 Lobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068 MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087 Martinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan. Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906 Mejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640 Moehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-y Moghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012 Mohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614 Murube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1 Nakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2). Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-z Omae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413 Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/terms Parker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.X Polania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation. Porch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras. Porch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512 Rainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23. Raj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350 Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4 Rawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121 Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253 Román-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4). Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057 Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260 Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008 Schoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56. Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6 Shonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005x Singh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina. Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2 Souter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851 Suárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4 Tavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86. Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275 Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077 Toro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution. Vargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859 Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907 Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011 Wray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3 Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96 Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
vii, 89 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Palmira |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81344/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81344/1/Tesis_Vulgaris_SAC.pdf https://repositorio.unal.edu.co/bitstream/unal/81344/3/Tesis_Vulgaris_SAC.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 45d25c2fa074770e0c571ef8f8caebb2 7d1ec3a2a5647fd30ae2790077d9220e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089783943626752 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Beebe, Stevea44baa141f8642459af59ce9a2136ac5Cruz Ruiz, Sergio Andres4b70c11e201acd401a90bd0444d8f18dLópez Diana Carolina2022-03-23T21:34:35Z2022-03-23T21:34:35Z2022-03-17https://repositorio.unal.edu.co/handle/unal/81344Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documentoIlustraciones, tablasVarios estudios han demostrado que Phaseolus acutifolius A. Gray es una fuente potencial de genes asociados a la tolerancia al calor que pueden ser utilizados para mejorar la adaptación del fríjol común (P. vulgaris L.) a las condiciones de alta temperatura, sin embargo, hasta ahora la base genética de esta resistencia es desconocida por ello se construyó una población de mapeo genético interespecífica entre P. acutifolius A. Gray y P. vulgaris L. con la cual se evaluaron componentes de rendimiento bajo condiciones controladas de alta temperatura (/25°C dia/noche, respectivamente). La población de mapeo genético se secuenció mediante el método de genotipado por secuenciación (Genotyping By sequencing, GBS), posteriormente se realizó un análisis de asociación genética con dos modelos de asociación genética para delimitar las regiones genómicas candidatas asociadas con la resistencia al estrés por calor encontrándose 31 asociaciones significativas para las variables: número de vainas, número de semillas por planta, peso promedio de semillas, índice de cosecha de vaina, número de vainas vanas por planta y rendimiento por planta. Se encontraron asociaciones que presentaron un efecto positivo y provinieron de los parentales silvestres de P. acutifolius A. Gray. Los genes presentes en las asociaciones significativas se relacionaron con la respuesta canónica al estrés por calor y a la señalización con fitohormonas como las auxinas y el etileno. (Texto tomado de la fuente)Several studies have shown that Phaseolus actifolius A. Gray is a potential source of genes associated with heat tolerance that can be used to improve the adaptation of common bean (P. vulgaris L.) to high temperature conditions, however, so far the genetic basis of this resistance is still unknown, therefore an interspecific genetic mapping population was constructed between P. acutifolius A. Gray and P. vulgaris L. to evaluate yield components under high temperature conditions. The genetic mapping population was sequenced using the Genotyping By sequencing (GBS) method, then a genetic association analysis was performed with the mixed linear models to delimit candidate genomic regions associated with resistance to heat stress, finding significant associations for the variables: number of pods and yield per plant that were associated with a positive effect came from the wild parents of P. acutifolius A. Gray. The genes present in the significant associations were related to the canonical response to heat stress and to the signaling that may be involved in the expression of these genes.Agencia Noruega para la Cooperación al Desarrollo (NORAD) que a través de la organización internacional Crop Trust financió este proyectoMaestríaMagíster en Ciencias AgrariasSe construyó una población de mapeo genético interespecífica en donde se incorporó P. vugaris y P. acutifolius mediante el uso de la línea puente VAP 1 (Barrera et al., 2018). Los fundadores de la población fueron: la línea puente VAP 1, dos accesiones silvestres de P. acutifolius A. Gray: G40056 y G40287 y cinco líneas comerciales de frijol común que se sabe a priori presentan algún grado de tolerancia a la sequía y con diferentes clases comerciales de grano: ICTA Ligero, SMC 214, SMR 155, SEF 10 y SEN 118 (Figura 2-1). El esquema de cruzamiento consistió en tomar polen de P. acutifolius y polinizar flores de VAP 1 vulgaris, su descendencia posteriormente fue cruzada una vez o dos veces con un parental P. vulgaris. Se realizaron catorce cruzamientos diferentes constituyendo la generación F1.2 compuesta por 50 semillas las cuales fueron sembradas en casa de malla y posteriormente incrementadas mediante selección individual hasta la generación F4.5 en campo. Los criterios de selección en campo fueron al azar para no favorecer un cierto tipo de genes en la población sin antes evaluarse en condiciones de calor. Se obtuvieron un total de 892 familias F4.5 que fueron evaluadas en un ensayo sin replicación en invernaderos climatizados donde se mantuvo la temperatura nocturna por encima de los 25°C. Con esta información se seleccionaron de forma individual 302 familias F5.6 muestreando de forma equitativa cada cruzamiento y garantizando la selección de familias contrastantes en cuanto a su desempeño en calorFitomejoramientovii, 89 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasPalmiraUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadas580 - PlantasPhaseolus acutifoliusTolerancia al calorFrijolAdaptaciónIntrogresiónP. acutifoliusGWASQTLP. vulgarisResistencia a altas temperaturasIntrogresionesIdentificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusIdentification of QTLs associated with heat stress resistance using interspecific common bean populations derived from Phaseolus acutifolius.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1Andrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.xBaird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203Barrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTRBarrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457Beebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035Beebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5Beebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change.Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Cajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina.Chacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076Coyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537.Debouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390Debouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEXDoyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15.Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012Faure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT.Feller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9).Fernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT.Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT.Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310García-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-xGarvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153Gaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931Gepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT.Gepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5Gil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanumGross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034Jones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444Lobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087Martinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan.Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906Mejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640Moehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-yMoghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012Mohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614Murube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1Nakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2).Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-zOmae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/termsParker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.XPolania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation.Porch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras.Porch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.xPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512Rainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23.Raj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4Rawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253Román-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4).Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008Schoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56.Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6Shonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005xSingh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina.Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2Souter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851Suárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4Tavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077Toro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution.Vargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011Wray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusCrop TrustInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81344/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINALTesis_Vulgaris_SAC.pdfTesis_Vulgaris_SAC.pdfapplication/pdf8519940https://repositorio.unal.edu.co/bitstream/unal/81344/1/Tesis_Vulgaris_SAC.pdf45d25c2fa074770e0c571ef8f8caebb2MD51THUMBNAILTesis_Vulgaris_SAC.pdf.jpgTesis_Vulgaris_SAC.pdf.jpgGenerated Thumbnailimage/jpeg5352https://repositorio.unal.edu.co/bitstream/unal/81344/3/Tesis_Vulgaris_SAC.pdf.jpg7d1ec3a2a5647fd30ae2790077d9220eMD53unal/81344oai:repositorio.unal.edu.co:unal/813442024-08-04 23:10:29.759Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |