Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius

archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documento

Autores:
Cruz Ruiz, Sergio Andres
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81344
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81344
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
580 - Plantas
Phaseolus acutifolius
Tolerancia al calor
Frijol
Adaptación
Introgresión
P. acutifolius
GWAS
QTL
P. vulgaris
Resistencia a altas temperaturas
Introgresiones
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4898200ae304e8f3c28834ff8ae10572
oai_identifier_str oai:repositorio.unal.edu.co:unal/81344
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
dc.title.translated.eng.fl_str_mv Identification of QTLs associated with heat stress resistance using interspecific common bean populations derived from Phaseolus acutifolius.
title Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
spellingShingle Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
630 - Agricultura y tecnologías relacionadas
580 - Plantas
Phaseolus acutifolius
Tolerancia al calor
Frijol
Adaptación
Introgresión
P. acutifolius
GWAS
QTL
P. vulgaris
Resistencia a altas temperaturas
Introgresiones
title_short Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
title_full Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
title_fullStr Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
title_full_unstemmed Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
title_sort Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
dc.creator.fl_str_mv Cruz Ruiz, Sergio Andres
dc.contributor.advisor.none.fl_str_mv Beebe, Steve
dc.contributor.author.none.fl_str_mv Cruz Ruiz, Sergio Andres
dc.contributor.educationalvalidator.none.fl_str_mv López Diana Carolina
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
580 - Plantas
topic 630 - Agricultura y tecnologías relacionadas
580 - Plantas
Phaseolus acutifolius
Tolerancia al calor
Frijol
Adaptación
Introgresión
P. acutifolius
GWAS
QTL
P. vulgaris
Resistencia a altas temperaturas
Introgresiones
dc.subject.agrovoc.none.fl_str_mv Phaseolus acutifolius
Tolerancia al calor
Frijol
Adaptación
Introgresión
dc.subject.proposal.eng.fl_str_mv P. acutifolius
GWAS
QTL
P. vulgaris
dc.subject.proposal.spa.fl_str_mv Resistencia a altas temperaturas
Introgresiones
description archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documento
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-23T21:34:35Z
dc.date.available.none.fl_str_mv 2022-03-23T21:34:35Z
dc.date.issued.none.fl_str_mv 2022-03-17
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81344
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81344
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013
Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1
Andrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.x
Baird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203
Barrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTR
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457
Beebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035
Beebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5
Beebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change.
Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Cajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina.
Chacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
Coyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537.
Debouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390
Debouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1
Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEX
Doyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379
Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012
Faure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT.
Feller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9).
Fernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT.
Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT.
Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430
Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310
García-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-x
Garvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153
Gaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017
Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931
Gepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT.
Gepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5
Gil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanum
Gross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173
Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0
Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154
Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034
Jones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13
Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01
Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444
Lobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068
MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087
Martinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan.
Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906
Mejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640
Moehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-y
Moghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012
Mohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614
Murube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1
Nakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2).
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-z
Omae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413
Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/terms
Parker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.X
Polania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation.
Porch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras.
Porch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x
Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512
Rainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23.
Raj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350
Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4
Rawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121
Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253
Román-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4).
Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057
Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260
Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008
Schoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56.
Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6
Shonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005x
Singh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina.
Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2
Souter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851
Suárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4
Tavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.
Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275
Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077
Toro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution.
Vargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859
Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
Wray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3
Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96
Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vii, 89 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Palmira
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81344/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81344/1/Tesis_Vulgaris_SAC.pdf
https://repositorio.unal.edu.co/bitstream/unal/81344/3/Tesis_Vulgaris_SAC.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
45d25c2fa074770e0c571ef8f8caebb2
7d1ec3a2a5647fd30ae2790077d9220e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089783943626752
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Beebe, Stevea44baa141f8642459af59ce9a2136ac5Cruz Ruiz, Sergio Andres4b70c11e201acd401a90bd0444d8f18dLópez Diana Carolina2022-03-23T21:34:35Z2022-03-23T21:34:35Z2022-03-17https://repositorio.unal.edu.co/handle/unal/81344Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/archivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documentoIlustraciones, tablasVarios estudios han demostrado que Phaseolus acutifolius A. Gray es una fuente potencial de genes asociados a la tolerancia al calor que pueden ser utilizados para mejorar la adaptación del fríjol común (P. vulgaris L.) a las condiciones de alta temperatura, sin embargo, hasta ahora la base genética de esta resistencia es desconocida por ello se construyó una población de mapeo genético interespecífica entre P. acutifolius A. Gray y P. vulgaris L. con la cual se evaluaron componentes de rendimiento bajo condiciones controladas de alta temperatura (/25°C dia/noche, respectivamente). La población de mapeo genético se secuenció mediante el método de genotipado por secuenciación (Genotyping By sequencing, GBS), posteriormente se realizó un análisis de asociación genética con dos modelos de asociación genética para delimitar las regiones genómicas candidatas asociadas con la resistencia al estrés por calor encontrándose 31 asociaciones significativas para las variables: número de vainas, número de semillas por planta, peso promedio de semillas, índice de cosecha de vaina, número de vainas vanas por planta y rendimiento por planta. Se encontraron asociaciones que presentaron un efecto positivo y provinieron de los parentales silvestres de P. acutifolius A. Gray. Los genes presentes en las asociaciones significativas se relacionaron con la respuesta canónica al estrés por calor y a la señalización con fitohormonas como las auxinas y el etileno. (Texto tomado de la fuente)Several studies have shown that Phaseolus actifolius A. Gray is a potential source of genes associated with heat tolerance that can be used to improve the adaptation of common bean (P. vulgaris L.) to high temperature conditions, however, so far the genetic basis of this resistance is still unknown, therefore an interspecific genetic mapping population was constructed between P. acutifolius A. Gray and P. vulgaris L. to evaluate yield components under high temperature conditions. The genetic mapping population was sequenced using the Genotyping By sequencing (GBS) method, then a genetic association analysis was performed with the mixed linear models to delimit candidate genomic regions associated with resistance to heat stress, finding significant associations for the variables: number of pods and yield per plant that were associated with a positive effect came from the wild parents of P. acutifolius A. Gray. The genes present in the significant associations were related to the canonical response to heat stress and to the signaling that may be involved in the expression of these genes.Agencia Noruega para la Cooperación al Desarrollo (NORAD) que a través de la organización internacional Crop Trust financió este proyectoMaestríaMagíster en Ciencias AgrariasSe construyó una población de mapeo genético interespecífica en donde se incorporó P. vugaris y P. acutifolius mediante el uso de la línea puente VAP 1 (Barrera et al., 2018). Los fundadores de la población fueron: la línea puente VAP 1, dos accesiones silvestres de P. acutifolius A. Gray: G40056 y G40287 y cinco líneas comerciales de frijol común que se sabe a priori presentan algún grado de tolerancia a la sequía y con diferentes clases comerciales de grano: ICTA Ligero, SMC 214, SMR 155, SEF 10 y SEN 118 (Figura 2-1). El esquema de cruzamiento consistió en tomar polen de P. acutifolius y polinizar flores de VAP 1 vulgaris, su descendencia posteriormente fue cruzada una vez o dos veces con un parental P. vulgaris. Se realizaron catorce cruzamientos diferentes constituyendo la generación F1.2 compuesta por 50 semillas las cuales fueron sembradas en casa de malla y posteriormente incrementadas mediante selección individual hasta la generación F4.5 en campo. Los criterios de selección en campo fueron al azar para no favorecer un cierto tipo de genes en la población sin antes evaluarse en condiciones de calor. Se obtuvieron un total de 892 familias F4.5 que fueron evaluadas en un ensayo sin replicación en invernaderos climatizados donde se mantuvo la temperatura nocturna por encima de los 25°C. Con esta información se seleccionaron de forma individual 302 familias F5.6 muestreando de forma equitativa cada cruzamiento y garantizando la selección de familias contrastantes en cuanto a su desempeño en calorFitomejoramientovii, 89 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasPalmiraUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadas580 - PlantasPhaseolus acutifoliusTolerancia al calorFrijolAdaptaciónIntrogresiónP. acutifoliusGWASQTLP. vulgarisResistencia a altas temperaturasIntrogresionesIdentificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusIdentification of QTLs associated with heat stress resistance using interspecific common bean populations derived from Phaseolus acutifolius.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1Andrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.xBaird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203Barrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTRBarrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457Beebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035Beebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5Beebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change.Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Cajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina.Chacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076Coyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537.Debouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390Debouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEXDoyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15.Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012Faure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT.Feller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9).Fernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT.Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT.Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310García-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-xGarvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153Gaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931Gepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT.Gepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5Gil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanumGross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034Jones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444Lobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087Martinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan.Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906Mejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640Moehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-yMoghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012Mohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614Murube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1Nakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2).Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-zOmae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/termsParker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.XPolania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation.Porch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras.Porch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.xPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512Rainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23.Raj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4Rawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253Román-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4).Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008Schoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56.Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6Shonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005xSingh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina.Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2Souter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851Suárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4Tavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077Toro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution.Vargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011Wray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusCrop TrustInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81344/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINALTesis_Vulgaris_SAC.pdfTesis_Vulgaris_SAC.pdfapplication/pdf8519940https://repositorio.unal.edu.co/bitstream/unal/81344/1/Tesis_Vulgaris_SAC.pdf45d25c2fa074770e0c571ef8f8caebb2MD51THUMBNAILTesis_Vulgaris_SAC.pdf.jpgTesis_Vulgaris_SAC.pdf.jpgGenerated Thumbnailimage/jpeg5352https://repositorio.unal.edu.co/bitstream/unal/81344/3/Tesis_Vulgaris_SAC.pdf.jpg7d1ec3a2a5647fd30ae2790077d9220eMD53unal/81344oai:repositorio.unal.edu.co:unal/813442024-08-04 23:10:29.759Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK