Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.

La salud de la tilapia es un tema primordial para conseguir buenos resultados productivos y el ambiente donde residen los peces influye sustancialmente en ello. El RAS (sistema de recirculación acuícola) y BFT (tecnología biofloc) son dos sistemas de producción intensiva y biotecnológicos por benefi...

Full description

Autores:
Gutiérrez Arboleda, Jesed
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80579
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80579
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Aquaculture
Bacterias
Acuicultura
Tilapia roja (Oreochromis spp.)
Microbioma intestina
Parámetros zootécnicos
Sanidad piscícola
Aquaculture
Red tilapia (Oreochromis spp.
Intestinal microbiome
Zootechnical parameters
Fish health
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_48261437da4b679dd615a4aa6b35fccc
oai_identifier_str oai:repositorio.unal.edu.co:unal/80579
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
dc.title.translated.eng.fl_str_mv Evaluation of the intestinal microbiota, productive and health parameters of tilapia Oreochromis spp. cultured in biofloc and recirculation aquaculture systems
title Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
spellingShingle Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
630 - Agricultura y tecnologías relacionadas
Aquaculture
Bacterias
Acuicultura
Tilapia roja (Oreochromis spp.)
Microbioma intestina
Parámetros zootécnicos
Sanidad piscícola
Aquaculture
Red tilapia (Oreochromis spp.
Intestinal microbiome
Zootechnical parameters
Fish health
title_short Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
title_full Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
title_fullStr Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
title_full_unstemmed Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
title_sort Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.
dc.creator.fl_str_mv Gutiérrez Arboleda, Jesed
dc.contributor.advisor.none.fl_str_mv Barato Gómez, Paola Andrea
Pardo Carrasco, Sandra Clemencia
dc.contributor.author.none.fl_str_mv Gutiérrez Arboleda, Jesed
dc.contributor.researchgroup.spa.fl_str_mv Biodiversidad y Génetica Molecular \'BIOGEM\'
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Aquaculture
Bacterias
Acuicultura
Tilapia roja (Oreochromis spp.)
Microbioma intestina
Parámetros zootécnicos
Sanidad piscícola
Aquaculture
Red tilapia (Oreochromis spp.
Intestinal microbiome
Zootechnical parameters
Fish health
dc.subject.lemb.eng.fl_str_mv Aquaculture
dc.subject.lemb.spa.fl_str_mv Bacterias
dc.subject.proposal.spa.fl_str_mv Acuicultura
Tilapia roja (Oreochromis spp.)
Microbioma intestina
Parámetros zootécnicos
Sanidad piscícola
dc.subject.proposal.eng.fl_str_mv Aquaculture
Red tilapia (Oreochromis spp.
Intestinal microbiome
Zootechnical parameters
Fish health
description La salud de la tilapia es un tema primordial para conseguir buenos resultados productivos y el ambiente donde residen los peces influye sustancialmente en ello. El RAS (sistema de recirculación acuícola) y BFT (tecnología biofloc) son dos sistemas de producción intensiva y biotecnológicos por beneficiarse de microorganismos para su buen funcionamiento, pero esta microbiota puede estar en contacto con los peces (especialmente en el BFT) produciendo cierta incertidumbre en cuanto a la bioseguridad. Por eso el objetivo de esta investigación fue evaluar el efecto de los sistemas de producción RAS y BFT sobre parámetros productivos y sanitarios (recuento leucocitario y evaluación histológica de branquias e intestino) y la microbiota intestinal en tilapia roja Oreochromis spp. Para ejecutarlo se realizó un diseño completamente al azar en el laboratorio LAMA de la Universidad Nacional de Colombia, Sede Medellín, con seis tanques de 500 L (tres por tratamiento), donde fueron distribuidos 360 juveniles de tilapia roja (12,4 ± 1,2 g), que fueron muestreados los días de recepción, 15, 30, 45 y 60 del experimento. La biomasa fue mayor (P<0,05) en BFT y el factor de conversión alimenticia fue 40 % menor en el BFT con respecto al RAS. Los monocitos fueron mayores (P<0,05) en BFT sin salir del rango normal. Fue mejor la salud branquial en el BFT y no hubo diferencia significativa en el microbioma intestinal entre tratamientos. En conclusión, la tilapia mostró mejores parámetros zootécnicos y condiciones sanitarias aceptables para su producción en el BFT. (Texto tomado de la fuente)
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-10-19T18:48:25Z
dc.date.available.none.fl_str_mv 2021-10-19T18:48:25Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80579
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80579
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adeoye, A. A., Yomla, R., Merrifield, D. L., Jaramillo-Torres, A., Rodiles, A., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiom. Aquaculture, 463, 61-70. doi:http://dx.doi.org/10.1016/j.aquaculture.2016.05.028
Aguilera, E., Yany, G., & Romero, J. (2013). Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin american journal of aquatic research, 41 (3), 395-403. doi: 103856/vol41-issue3-fulltext-3
Ahmad, Verma, Babitha, Rathore, Saharan, & Gora. (20 de Abril de 2016). Growth, nonspecific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61-67. doi:10.1016/j.aquaculture.2016.02.011
Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235.
Avnimelech, Y., De-Shryver, P., Emmerenciano, M., Dave, K., Andrew, R., & Nyan, T. (2015). Biofloc Technology - A Practical Guidebook (Vol. 3rd Edition). Louisiana, United States: The World Aquaculture Society.
Bailone, Bailone, R., ML Martins, J. M., Vieira, F., Pedrotti, F., Nunes, G., & Silva, B. (2010). Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Arch Med Vet, 42, 221- 227.
Bebak-Williams, J., & Noble, A. (2009). Manejo Sanitario de Peces. En M. Timmons, J. Ebeling, & R. Piedrahita, acuicultura en sistemas de recirculación. Cayuga Aqua Ventures, Llc, 640-688.
Birg, A., Ritz, N. L., & Lin, H. C. (2019). Chapter 20 - The Unknown Effect of AntibioticInduced Dysbiosis on the Gut Microbiota. En J. Faintuch, & S. Faintuch, Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications (págs. 195-200). Academic Press.
Boutin, S., Bernatchez, L., Audet, C., & Derôme, N. (2013). Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLOS ONE, 8(12), e84772. doi:https://doi.org/10.1371/journal.pone.0084772
Bryan Wilson & Bret, D. &. (April de 2008). The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua. Microbial Ecology, 55(3), 425–434. doi: 10.1007/s00248-007-9288-0
Campisano, A., Ometto, L., Compant, S., Pancher, M., Antonielli, L., Yousa, S., . . . RotaStabelli, O. ( 2014). Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Molecular biology and evolution, 31(5), 1059-1065. doi:10.1093/molbev/msu075
Cavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. C., Oshiro, E., Natori, M. M., . . . Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17(100343). doi:https://doi.org/10.1016/j.aqrep.2020.100343
Claesson, M. J., Cusack, S., O'Sullivan, O., Greene-Diniz, R., Weerd, H. d., Flannery, E., . . . O', K. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of sciences, 108 (1), 4586-4591. doi:https://doi.org/10.1073/pnas.1000097107
Dawood, M. A., Zommara, M., Eweedah, N. M., & Helal, A. I. (2020). The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture, 515(15), 734571. doi:https://doi.org/10.1016/j.aquaculture.2019.734571
Eichmiller, J. J., Hamilton, M. J., Staley, C., Sadowsky, M. J., & Sorensen, P. W. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4(44), 1- 13. doi: 10.1186/s40168-016-0190-1
Elsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., Farrag, F., Decamp, O., . . . Eltholth, M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24, 1613-1622. doi:https://doi.org/10.1111/anu.12797 24:6 1613-1622
Espinosa, & Bermúdez. (2011). La acuicultura y su impacto al medio ambiente. México. Fan, L., Chen, J., Meng, S., Song, C., Qiu, L., Hu, G., & Xu, P. (2015). Characterization of microbial communities in intensive GIFT tilapia (Oreochromis niloticus) pond systems during the peak period of breeding. Aquaculture Research, 1-14. doi:10.1111/are.12894
FranciscoVargas-Albores, Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Coelho-Emerenciano, M., Lago-Leston, A., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi:https://doi.org/10.1016/j.aquaculture.2018.10.005
Gaikwad, S. S., Shouche, Y. S., & Gade, W. N. (2017). Deep Sequencing Reveals Highly Variable Gut Microbial Composition of Invasive Fish Mossambicus Tilapia (Oreochromis mossambicus) Collected from Two Different Habitats. Indian Journal of Microbiology, 57, 235–240. doi:https://doiorg.ezproxy.unal.edu.co/10.1007/s12088-017-0641-9
Giatsis, C., Abernathy, J., Sipkema, D., Ramiro-Garcia, J., Bacanu, G. M., Verreth, J., . . . Verdegem, M. (2016). Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific RepoRts, 6:33965, 1-11. doi: 10.1038/srep33965
Gibson, L., Woodworth, J., & George, A. (1998). Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture, 169 (1–2), 111-120. doi:https://doi.org/10.1016/S0044-8486(98)00369-X
Gomez, D., Sunye, O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:https://doi.org/10.1016/j.fsi.2013.09.032
Gunanti, M., Wulansari, P., & Kinzella, K. (2019). The erythrocyte and leucocyte profile of saline tilapia (Oreochromis Niloticus) in a cultivation system with nanobubbles. OP Conf. Series: Earth and Environmental Science 236 012089, 1-7. doi:10.1088/1755- 1315/236/1/012089I
Hahn-von-Hessberg, C., Quiroz-Bucheli, A., & Grajales-Quintero, A. (2014). Caracteres hematológicos en individuos de tilapia nilótica (Oreochromis niloticus, trewavas 1983) con pesos entre 50-150 g y 150-250 g, estación piscícola, Universidad de Caldas, Colombia. 18(1), 142-157.
Han, S., Liu, Y., Zhou, Z., He, S., Cao, Y., Shi, P., . . . Ringø, E. (2010). Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquaculture Research, 42(1), 47-56. doi: https://doi.org/10.1111/j.1365- 2109.2010.02543.x
Haridas, H., Verma, A. K., Rathore, G., Prakash, C., Sawant, P. B., & Rani, A. M. (Agosto de 2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research, 48(8), 4346–4355. doi:10.1111/are.13256
gerslev, H., Jørgensen, L. v., Strube, M. L., Larsen, N., Dalsgaard, I., M.Boye, & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424-425, 24-34. doi: http://dx.doi.org/10.1016/j.aquaculture.2013.12.032
Jiménez, A., Rey, A., Penagos, L., Ariza, M., Figueroa, J., & CA, I. (2007). Streptococcus agalactiae: up to date the only pathogenous Streptococcus of cultured tilapias in Colombia. Rev. Med. Vet. Zoo, 54, 285-294. Obtenido de http://bdigital.unal.edu.co/15896/1/10628- 38445-1-PB.pdf
Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C., & Vorholt, J. A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal, 4(6), 719-728. doi: 10.1038/ismej.2010.9
Larsen, A. M., Mohammed, H. H., & Arias., C. R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol, 116(6), 1396-1404. doi: 10.1111/jam.12475
Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers Mycrobiology, 5 (207). doi: 10.3389/fmicb.2014.00207
challenge with Aeromonas salmonicida ssp. Salmonicida. Aquaculture Research, 32(12), 935-945. doi:https://doi.org/10.1046/j.1365-2109.2001.00621.xLoh, J.-Y. (20 de March de 2017). The Role of Probiotics and Their Mechanisms of Action: An Aquaculture Perspective. WORLD AQUACULTURE, 19-23.
Lowrey, L., Woodhams, D. C., Tacchi, L., & Salinas, I. (2015). Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Applied and Environmental Microbiology, 81(19), 6915-6925. doi: 10.1128/AEM.01826-15
Makarenkov, V., & Lapointe, F.-J. (2004). A weighted least-squares approach for inferring phylogenies from incomplete distance matrices. Bioinformatics, 20(13), 2113-2121. doi.org/10.1093/bioinformatics/bth211
Martin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L., Jamet, A., Ledue, F., Blottière, H. M., & Lapaque., N. (2018). Butyrate produced by gut commensal bacteria activates TGFbeta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Scientific Reports, 8(9742). doi: https://doi.org/10.1038/s41598-018-28048-y
Melo-Bolívar, J., Pardo, R., Hume, N., Nisbet, D., Rodriguez-Villamizar, F., Alzate, J., . . . Diaz, L. (2019). Establishment and characterization of a competitive exclusion bacterial culture derived from Nile tilapia (Oreochromis niloticus) gut microbiomes showing antibacterial activity against pathogenic Streptococcus agalactiae. PloS one, 14(5), 215375. doi:https://doi.org/10.1371/journal.pone.0215375
Mu, L., Yin, X., Bian, X., Wu, L., Yang, Y., Wei, X., & Ye, Z. G. (2018). Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Molecular Immunology, 103, 21-34. doi:https://doi.org/10.1016/j.molimm.2018.08.012
Muiswinkel, W. V., & Nakao, M. (2014). A short history of research on immunity to infectious diseases in fish. Developmental and Comparative Immunology, 43, 130–150. doi:http://dx.doi.org/10.1016/j.dci.2013.08.016
Nutsch, K., & Hsieh, C.-S. (2012). T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology, 24, 385–391. doi:http://dx.doi.org/10.1016/j.coi.2012.04.009
Ottman, N., Smidt, H., Vos, W. M., & Belzer, C. (2012). The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, 104. doi: https://doi.org/10.3389/fcimb.2012.00104
Rawls, S. G. (March de 2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596-4601. doi:DOI:10.1073/pnas.0400706101
Rhodes, L., Johnson, R., & Myers, M. (2016). Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 464, 683-691. doi: http://dx.doi.org/10.1016/j.aquaculture.2016.05.010
Rocha, C. M., Pascuas, A. J., & Pianeta, A. (2017). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista científica de la Sociedad Española de Acuicultura, 49, 8-20. Obtenido de http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/305/304
Romano, N., Caccia, E., Piergentili, R., Rossi, F., Ficca, A., Ceccariglia, S., & Mastrolia, L. (2011). Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). Fish Shellfish Immunology, 30(3), 773-82. doi: 10.1016/j.fsi.2010.12.032.
Sakyi, M. E., Cai, J., Tang, J., Abarike, E. D., Xia, L., Li, P., . . . Jian, J. (2020). Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquaculture Reports, 17(100370). doi:https://doi.org/10.1016/j.aqrep.2020.100370
Shizuo, M., Alves, G. F., Cardoso, L., Martins, N. B., & Mouriño, J. P. (2020). Can histology and haematology explain inapparent Streptococcus agalactiae infections and asymptomatic mortalities on Nile tilapia farms? Research in Veterinary Science, 129, 13- 20. doi:https://doi.org/10.1016/j.rvsc.2019.12.018
Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (QPCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6–20. doi:https://doi.org/10.1111/j.1574-6941.2008.00629.x Smriga, S., Sandin, S. A., & Azam, F. (2010). Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol. , 1, 31- 42. doi: 10.1111/j.1574-6941.2010.00879.x.
Tseng, D.-Y., Ho, P.-L., Huang, S.-Y., Cheng, S.-C., Shiu, Y.-L., Chiu, C.-S., & Liu, C.-H. (2009). Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology, 26(2), 339- 344. doi:https://doi.org/10.1016/j.fsi.2008.12.003
Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486–503.
Vargas-Albores, F., Garibay-Valdez, E., Martínez-Córdova, L. R., Gollas-Galván, T., Mazorra-Manzano, M., Emerenciano, M. C., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimpculture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi: https://doi.org/10.1016/j.aquaculture.2018.10.005
Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & Sinderen., D. v. (2007). Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. doi: 10.1128/MMBR.00005-07
Villegas-Plazas, M., Wos-Oxley, M. L., Sanchez, J. A., Pieper, D. H., Thomas, O. P., & Junca, H. (2019). Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Microbial Ecology, 78, 243- 256. doi:https://doi.org/10.1007/s00248-018-1285-y
Vine, L. K. (2004). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27, 319–326. Obtenido de https://doi-org.ezproxy.unal.edu.co/10.1111/j.1365-2761.2004.00542.x
Wang, L., Liu, L., Liu, X., Xiang, M., Zhou, L., Huang, C., . . . Miao, L. (2020). The gut microbes, Enterococcus and Escherichia-Shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin Author links open overlay panel. Pharmacological Research, 159(104979). doi:https://doi.org/10.1016/j.phrs.2020.104979
Widanarni, Ekasari, J., & Maryam, S. (2012). Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI Journal of Biosciences, 19(2), 73-80. doi: 10.4308/hjb.19.2.73
Wu, S.-G., Tian, J.-Y., Gatesoupe, F.-J., W.-X. L., Zou, H., Yang, B.-J., & Wang, G.-T. (2013). Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol, 29(9), 1585-1595. doi: 10.1007/s11274-013-1322-4.
Zhang, X., Ding, L., Yu, Y., Kong, W., Yin, Y., Huang, Z., . . . Xu, Z. (2018). The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Frontiers in Immunology, 9(2972). doi: 10.3389/fimmu.2018.02972
Zhu, L.-y., Nie, L., Zhu, G., Xiang, L.-x., & Shao, J.-z. (2013). Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental and Comparative Immunology, 39-62. doi:http://dx.doi.org/10.1016/j.dci.2012.04.001
Zühlke, D., López-Mondéjar, R., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6(25279).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 84 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80579/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80579/2/1017152747.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/80579/3/1017152747.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
5adb848c1e6f0fc5f7184815762d8f42
fa29c33c845144d293d6550a6d1a0692
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089458808520704
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barato Gómez, Paola Andreaab6446ee2208fb6ca924cd29e8ee21e8Pardo Carrasco, Sandra Clemenciafe39f49924d8437bd04909027b444124Gutiérrez Arboleda, Jesed8dd1dedbf92d78b3fc3b9a75fa4fdab0Biodiversidad y Génetica Molecular \'BIOGEM\'2021-10-19T18:48:25Z2021-10-19T18:48:25Z2020https://repositorio.unal.edu.co/handle/unal/80579Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La salud de la tilapia es un tema primordial para conseguir buenos resultados productivos y el ambiente donde residen los peces influye sustancialmente en ello. El RAS (sistema de recirculación acuícola) y BFT (tecnología biofloc) son dos sistemas de producción intensiva y biotecnológicos por beneficiarse de microorganismos para su buen funcionamiento, pero esta microbiota puede estar en contacto con los peces (especialmente en el BFT) produciendo cierta incertidumbre en cuanto a la bioseguridad. Por eso el objetivo de esta investigación fue evaluar el efecto de los sistemas de producción RAS y BFT sobre parámetros productivos y sanitarios (recuento leucocitario y evaluación histológica de branquias e intestino) y la microbiota intestinal en tilapia roja Oreochromis spp. Para ejecutarlo se realizó un diseño completamente al azar en el laboratorio LAMA de la Universidad Nacional de Colombia, Sede Medellín, con seis tanques de 500 L (tres por tratamiento), donde fueron distribuidos 360 juveniles de tilapia roja (12,4 ± 1,2 g), que fueron muestreados los días de recepción, 15, 30, 45 y 60 del experimento. La biomasa fue mayor (P<0,05) en BFT y el factor de conversión alimenticia fue 40 % menor en el BFT con respecto al RAS. Los monocitos fueron mayores (P<0,05) en BFT sin salir del rango normal. Fue mejor la salud branquial en el BFT y no hubo diferencia significativa en el microbioma intestinal entre tratamientos. En conclusión, la tilapia mostró mejores parámetros zootécnicos y condiciones sanitarias aceptables para su producción en el BFT. (Texto tomado de la fuente)The health of tilapia is a primary issue to achieve good productive results and the environment where the fish reside has a substantial influence on this. The RAS (aquaculture recirculation system) and BFT (biofloc technology) are two intensive and biotechnological production systems because they benefit from microorganisms for their proper functioning, but this microbiota may be in contact with the fish (especially in the BFT) producing some uncertainty in terms of biosecurity. Therefore, the objective of this research was to evaluate the effect of the RAS and BFT production systems on productive and health parameters (leukocyte count and histological evaluation of gills and intestine) and the intestinal microbiota in red tilapia Oreochromis spp. To execute it, a completely randomized design was carried out in the LAMA laboratory of the National University of Colombia, Medellín campus, with six 500 L tanks (three per treatment), where 360 juvenile red tilapia (12.4 ± 1, 2 g), which were sampled on reception day, 15, 30, 45 and 60 of the experiment. The biomass was higher (P <0.05) and the feed conversion factor was 40% lower in the BFT concerning the RAS respectively. Monocytes were higher (P <0.05) in BFT without leaving the normal range. Gill health was better in BFT, and there was no significant difference in gut microbiome between treatments. In conclusion, tilapia showed better zootechnical performance and acceptable sanitary conditions for its production in the BFT.MaestríaMagíster en Ciencias - BiotecnologíaAcuicultura responsablexiii, 84 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadasAquacultureBacteriasAcuiculturaTilapia roja (Oreochromis spp.)Microbioma intestinaParámetros zootécnicosSanidad piscícolaAquacultureRed tilapia (Oreochromis spp.Intestinal microbiomeZootechnical parametersFish healthEvaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.Evaluation of the intestinal microbiota, productive and health parameters of tilapia Oreochromis spp. cultured in biofloc and recirculation aquaculture systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageTexthttp://purl.org/redcol/resource_type/TMAdeoye, A. A., Yomla, R., Merrifield, D. L., Jaramillo-Torres, A., Rodiles, A., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiom. Aquaculture, 463, 61-70. doi:http://dx.doi.org/10.1016/j.aquaculture.2016.05.028Aguilera, E., Yany, G., & Romero, J. (2013). Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin american journal of aquatic research, 41 (3), 395-403. doi: 103856/vol41-issue3-fulltext-3Ahmad, Verma, Babitha, Rathore, Saharan, & Gora. (20 de Abril de 2016). Growth, nonspecific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61-67. doi:10.1016/j.aquaculture.2016.02.011Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235.Avnimelech, Y., De-Shryver, P., Emmerenciano, M., Dave, K., Andrew, R., & Nyan, T. (2015). Biofloc Technology - A Practical Guidebook (Vol. 3rd Edition). Louisiana, United States: The World Aquaculture Society.Bailone, Bailone, R., ML Martins, J. M., Vieira, F., Pedrotti, F., Nunes, G., & Silva, B. (2010). Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Arch Med Vet, 42, 221- 227.Bebak-Williams, J., & Noble, A. (2009). Manejo Sanitario de Peces. En M. Timmons, J. Ebeling, & R. Piedrahita, acuicultura en sistemas de recirculación. Cayuga Aqua Ventures, Llc, 640-688.Birg, A., Ritz, N. L., & Lin, H. C. (2019). Chapter 20 - The Unknown Effect of AntibioticInduced Dysbiosis on the Gut Microbiota. En J. Faintuch, & S. Faintuch, Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications (págs. 195-200). Academic Press.Boutin, S., Bernatchez, L., Audet, C., & Derôme, N. (2013). Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLOS ONE, 8(12), e84772. doi:https://doi.org/10.1371/journal.pone.0084772Bryan Wilson & Bret, D. &. (April de 2008). The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua. Microbial Ecology, 55(3), 425–434. doi: 10.1007/s00248-007-9288-0Campisano, A., Ometto, L., Compant, S., Pancher, M., Antonielli, L., Yousa, S., . . . RotaStabelli, O. ( 2014). Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Molecular biology and evolution, 31(5), 1059-1065. doi:10.1093/molbev/msu075Cavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. C., Oshiro, E., Natori, M. M., . . . Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17(100343). doi:https://doi.org/10.1016/j.aqrep.2020.100343Claesson, M. J., Cusack, S., O'Sullivan, O., Greene-Diniz, R., Weerd, H. d., Flannery, E., . . . O', K. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of sciences, 108 (1), 4586-4591. doi:https://doi.org/10.1073/pnas.1000097107Dawood, M. A., Zommara, M., Eweedah, N. M., & Helal, A. I. (2020). The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture, 515(15), 734571. doi:https://doi.org/10.1016/j.aquaculture.2019.734571Eichmiller, J. J., Hamilton, M. J., Staley, C., Sadowsky, M. J., & Sorensen, P. W. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4(44), 1- 13. doi: 10.1186/s40168-016-0190-1Elsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., Farrag, F., Decamp, O., . . . Eltholth, M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24, 1613-1622. doi:https://doi.org/10.1111/anu.12797 24:6 1613-1622Espinosa, & Bermúdez. (2011). La acuicultura y su impacto al medio ambiente. México. Fan, L., Chen, J., Meng, S., Song, C., Qiu, L., Hu, G., & Xu, P. (2015). Characterization of microbial communities in intensive GIFT tilapia (Oreochromis niloticus) pond systems during the peak period of breeding. Aquaculture Research, 1-14. doi:10.1111/are.12894FranciscoVargas-Albores, Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Coelho-Emerenciano, M., Lago-Leston, A., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi:https://doi.org/10.1016/j.aquaculture.2018.10.005Gaikwad, S. S., Shouche, Y. S., & Gade, W. N. (2017). Deep Sequencing Reveals Highly Variable Gut Microbial Composition of Invasive Fish Mossambicus Tilapia (Oreochromis mossambicus) Collected from Two Different Habitats. Indian Journal of Microbiology, 57, 235–240. doi:https://doiorg.ezproxy.unal.edu.co/10.1007/s12088-017-0641-9Giatsis, C., Abernathy, J., Sipkema, D., Ramiro-Garcia, J., Bacanu, G. M., Verreth, J., . . . Verdegem, M. (2016). Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific RepoRts, 6:33965, 1-11. doi: 10.1038/srep33965Gibson, L., Woodworth, J., & George, A. (1998). Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture, 169 (1–2), 111-120. doi:https://doi.org/10.1016/S0044-8486(98)00369-XGomez, D., Sunye, O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:https://doi.org/10.1016/j.fsi.2013.09.032Gunanti, M., Wulansari, P., & Kinzella, K. (2019). The erythrocyte and leucocyte profile of saline tilapia (Oreochromis Niloticus) in a cultivation system with nanobubbles. OP Conf. Series: Earth and Environmental Science 236 012089, 1-7. doi:10.1088/1755- 1315/236/1/012089IHahn-von-Hessberg, C., Quiroz-Bucheli, A., & Grajales-Quintero, A. (2014). Caracteres hematológicos en individuos de tilapia nilótica (Oreochromis niloticus, trewavas 1983) con pesos entre 50-150 g y 150-250 g, estación piscícola, Universidad de Caldas, Colombia. 18(1), 142-157.Han, S., Liu, Y., Zhou, Z., He, S., Cao, Y., Shi, P., . . . Ringø, E. (2010). Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquaculture Research, 42(1), 47-56. doi: https://doi.org/10.1111/j.1365- 2109.2010.02543.xHaridas, H., Verma, A. K., Rathore, G., Prakash, C., Sawant, P. B., & Rani, A. M. (Agosto de 2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research, 48(8), 4346–4355. doi:10.1111/are.13256gerslev, H., Jørgensen, L. v., Strube, M. L., Larsen, N., Dalsgaard, I., M.Boye, & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424-425, 24-34. doi: http://dx.doi.org/10.1016/j.aquaculture.2013.12.032Jiménez, A., Rey, A., Penagos, L., Ariza, M., Figueroa, J., & CA, I. (2007). Streptococcus agalactiae: up to date the only pathogenous Streptococcus of cultured tilapias in Colombia. Rev. Med. Vet. Zoo, 54, 285-294. Obtenido de http://bdigital.unal.edu.co/15896/1/10628- 38445-1-PB.pdfKnief, C., Ramette, A., Frances, L., Alonso-Blanco, C., & Vorholt, J. A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal, 4(6), 719-728. doi: 10.1038/ismej.2010.9Larsen, A. M., Mohammed, H. H., & Arias., C. R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol, 116(6), 1396-1404. doi: 10.1111/jam.12475Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers Mycrobiology, 5 (207). doi: 10.3389/fmicb.2014.00207challenge with Aeromonas salmonicida ssp. Salmonicida. Aquaculture Research, 32(12), 935-945. doi:https://doi.org/10.1046/j.1365-2109.2001.00621.xLoh, J.-Y. (20 de March de 2017). The Role of Probiotics and Their Mechanisms of Action: An Aquaculture Perspective. WORLD AQUACULTURE, 19-23.Lowrey, L., Woodhams, D. C., Tacchi, L., & Salinas, I. (2015). Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Applied and Environmental Microbiology, 81(19), 6915-6925. doi: 10.1128/AEM.01826-15Makarenkov, V., & Lapointe, F.-J. (2004). A weighted least-squares approach for inferring phylogenies from incomplete distance matrices. Bioinformatics, 20(13), 2113-2121. doi.org/10.1093/bioinformatics/bth211Martin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L., Jamet, A., Ledue, F., Blottière, H. M., & Lapaque., N. (2018). Butyrate produced by gut commensal bacteria activates TGFbeta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Scientific Reports, 8(9742). doi: https://doi.org/10.1038/s41598-018-28048-yMelo-Bolívar, J., Pardo, R., Hume, N., Nisbet, D., Rodriguez-Villamizar, F., Alzate, J., . . . Diaz, L. (2019). Establishment and characterization of a competitive exclusion bacterial culture derived from Nile tilapia (Oreochromis niloticus) gut microbiomes showing antibacterial activity against pathogenic Streptococcus agalactiae. PloS one, 14(5), 215375. doi:https://doi.org/10.1371/journal.pone.0215375Mu, L., Yin, X., Bian, X., Wu, L., Yang, Y., Wei, X., & Ye, Z. G. (2018). Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Molecular Immunology, 103, 21-34. doi:https://doi.org/10.1016/j.molimm.2018.08.012Muiswinkel, W. V., & Nakao, M. (2014). A short history of research on immunity to infectious diseases in fish. Developmental and Comparative Immunology, 43, 130–150. doi:http://dx.doi.org/10.1016/j.dci.2013.08.016Nutsch, K., & Hsieh, C.-S. (2012). T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology, 24, 385–391. doi:http://dx.doi.org/10.1016/j.coi.2012.04.009Ottman, N., Smidt, H., Vos, W. M., & Belzer, C. (2012). The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, 104. doi: https://doi.org/10.3389/fcimb.2012.00104Rawls, S. G. (March de 2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596-4601. doi:DOI:10.1073/pnas.0400706101Rhodes, L., Johnson, R., & Myers, M. (2016). Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 464, 683-691. doi: http://dx.doi.org/10.1016/j.aquaculture.2016.05.010Rocha, C. M., Pascuas, A. J., & Pianeta, A. (2017). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista científica de la Sociedad Española de Acuicultura, 49, 8-20. Obtenido de http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/305/304Romano, N., Caccia, E., Piergentili, R., Rossi, F., Ficca, A., Ceccariglia, S., & Mastrolia, L. (2011). Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). Fish Shellfish Immunology, 30(3), 773-82. doi: 10.1016/j.fsi.2010.12.032.Sakyi, M. E., Cai, J., Tang, J., Abarike, E. D., Xia, L., Li, P., . . . Jian, J. (2020). Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquaculture Reports, 17(100370). doi:https://doi.org/10.1016/j.aqrep.2020.100370Shizuo, M., Alves, G. F., Cardoso, L., Martins, N. B., & Mouriño, J. P. (2020). Can histology and haematology explain inapparent Streptococcus agalactiae infections and asymptomatic mortalities on Nile tilapia farms? Research in Veterinary Science, 129, 13- 20. doi:https://doi.org/10.1016/j.rvsc.2019.12.018Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (QPCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6–20. doi:https://doi.org/10.1111/j.1574-6941.2008.00629.x Smriga, S., Sandin, S. A., & Azam, F. (2010). Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol. , 1, 31- 42. doi: 10.1111/j.1574-6941.2010.00879.x.Tseng, D.-Y., Ho, P.-L., Huang, S.-Y., Cheng, S.-C., Shiu, Y.-L., Chiu, C.-S., & Liu, C.-H. (2009). Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology, 26(2), 339- 344. doi:https://doi.org/10.1016/j.fsi.2008.12.003Uribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486–503.Vargas-Albores, F., Garibay-Valdez, E., Martínez-Córdova, L. R., Gollas-Galván, T., Mazorra-Manzano, M., Emerenciano, M. C., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimpculture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi: https://doi.org/10.1016/j.aquaculture.2018.10.005Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & Sinderen., D. v. (2007). Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. doi: 10.1128/MMBR.00005-07Villegas-Plazas, M., Wos-Oxley, M. L., Sanchez, J. A., Pieper, D. H., Thomas, O. P., & Junca, H. (2019). Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Microbial Ecology, 78, 243- 256. doi:https://doi.org/10.1007/s00248-018-1285-yVine, L. K. (2004). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27, 319–326. Obtenido de https://doi-org.ezproxy.unal.edu.co/10.1111/j.1365-2761.2004.00542.xWang, L., Liu, L., Liu, X., Xiang, M., Zhou, L., Huang, C., . . . Miao, L. (2020). The gut microbes, Enterococcus and Escherichia-Shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin Author links open overlay panel. Pharmacological Research, 159(104979). doi:https://doi.org/10.1016/j.phrs.2020.104979Widanarni, Ekasari, J., & Maryam, S. (2012). Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI Journal of Biosciences, 19(2), 73-80. doi: 10.4308/hjb.19.2.73Wu, S.-G., Tian, J.-Y., Gatesoupe, F.-J., W.-X. L., Zou, H., Yang, B.-J., & Wang, G.-T. (2013). Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol, 29(9), 1585-1595. doi: 10.1007/s11274-013-1322-4.Zhang, X., Ding, L., Yu, Y., Kong, W., Yin, Y., Huang, Z., . . . Xu, Z. (2018). The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Frontiers in Immunology, 9(2972). doi: 10.3389/fimmu.2018.02972Zhu, L.-y., Nie, L., Zhu, G., Xiang, L.-x., & Shao, J.-z. (2013). Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental and Comparative Immunology, 39-62. doi:http://dx.doi.org/10.1016/j.dci.2012.04.001Zühlke, D., López-Mondéjar, R., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6(25279).EstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80579/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1017152747.2020.pdf1017152747.2020.pdfTesis Maestría en Ciencias - Biotecnologíaapplication/pdf2146812https://repositorio.unal.edu.co/bitstream/unal/80579/2/1017152747.2020.pdf5adb848c1e6f0fc5f7184815762d8f42MD52THUMBNAIL1017152747.2020.pdf.jpg1017152747.2020.pdf.jpgGenerated Thumbnailimage/jpeg4860https://repositorio.unal.edu.co/bitstream/unal/80579/3/1017152747.2020.pdf.jpgfa29c33c845144d293d6550a6d1a0692MD53unal/80579oai:repositorio.unal.edu.co:unal/805792023-07-30 23:03:55.699Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==