Inducción a floración en yuca (Manihot esculenta Crantz)

La floración en yuca (Manihot esculenta Crantz) está estrechamente relacionada con la ramificación. Aunque los agricultores prefieren los genotipos de tipo erecto, su utilidad como progenitores está limitada por su baja o nula producción de semillas. El objetivo de este estudio fue evaluar el efecto...

Full description

Autores:
Pineda Vargas, Lizzeth Marcela
Tipo de recurso:
Informe
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79001
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79001
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Photoperiod extension
benzyladenine
red light
pruning
branching
cassava breeding
Extensión del fotoperiodo
luz roja
benciladenina
podas
ramificación
mejoramiento de yuca
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_46e49b06b6d1f4791d179bcbf63ae55f
oai_identifier_str oai:repositorio.unal.edu.co:unal/79001
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Inducción a floración en yuca (Manihot esculenta Crantz)
dc.title.alternative.spa.fl_str_mv Induction of flowering in Cassava (Manihot esculenta Crantz)
title Inducción a floración en yuca (Manihot esculenta Crantz)
spellingShingle Inducción a floración en yuca (Manihot esculenta Crantz)
630 - Agricultura y tecnologías relacionadas
Photoperiod extension
benzyladenine
red light
pruning
branching
cassava breeding
Extensión del fotoperiodo
luz roja
benciladenina
podas
ramificación
mejoramiento de yuca
title_short Inducción a floración en yuca (Manihot esculenta Crantz)
title_full Inducción a floración en yuca (Manihot esculenta Crantz)
title_fullStr Inducción a floración en yuca (Manihot esculenta Crantz)
title_full_unstemmed Inducción a floración en yuca (Manihot esculenta Crantz)
title_sort Inducción a floración en yuca (Manihot esculenta Crantz)
dc.creator.fl_str_mv Pineda Vargas, Lizzeth Marcela
dc.contributor.advisor.spa.fl_str_mv Ceballos, Hernán
Mejía de Tafur, Maria Sara
dc.contributor.author.spa.fl_str_mv Pineda Vargas, Lizzeth Marcela
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Photoperiod extension
benzyladenine
red light
pruning
branching
cassava breeding
Extensión del fotoperiodo
luz roja
benciladenina
podas
ramificación
mejoramiento de yuca
dc.subject.proposal.eng.fl_str_mv Photoperiod extension
benzyladenine
red light
pruning
branching
cassava breeding
dc.subject.proposal.spa.fl_str_mv Extensión del fotoperiodo
luz roja
benciladenina
podas
ramificación
mejoramiento de yuca
description La floración en yuca (Manihot esculenta Crantz) está estrechamente relacionada con la ramificación. Aunque los agricultores prefieren los genotipos de tipo erecto, su utilidad como progenitores está limitada por su baja o nula producción de semillas. El objetivo de este estudio fue evaluar el efecto de la extensión del fotoperíodo de luz roja, la poda y la aplicación de benciladenina para inducir la floración en los genotipos de yuca GM 971-2 (ramificado, floración intermedia), CM 4919-2 (erecto, floración tardía), y SM 3348-29 y GM 3893-65 (erecto, tardío o sin floración). Los genotipos fueron cultivados en un experimento factorial en condiciones de fotoperiodo normal (FN) y de fotoperíodo extendido (FE). Además, las ramas jóvenes del primer y segundo eventos de ramificación (ER1 y ER2) se podaron y rociaron con benciladenina (BA). Las plantas sin poda y sin aplicación BA sirvieron como controles. En FE, el tiempo para generar un ER disminuyó para GM 971-2. Además, CM 4919-1, SM 3348-29 y GM 3893-65 produjeron de uno a varios ER en FE pero no en FN. La poda de las ramas jóvenes en ER1 y ER2 fortaleció la dominancia apical de la inflorescencia, aunque la baja frecuencia de flores femeninas por inflorescencia limitó la producción de semillas. El tratamiento con benciladenina aumentó el número de flores femeninas, por lo tanto, aumentó la producción de frutas y semillas. En comparación con los controles, el uso combinado de FE, poda y BA aumentó significativamente la producción promedio de semillas de 10 a 27, de 0 a 22 y de 0 a 60 semillas para GM 971-2, CM 4919-1 y SM 3348-29, respectivamente.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-07-07
dc.date.accessioned.spa.fl_str_mv 2021-02-01T01:49:39Z
dc.date.available.spa.fl_str_mv 2021-02-01T01:49:39Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_93fc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv (Pineda Vargas, 2020)
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79001
identifier_str_mv (Pineda Vargas, 2020)
url https://repositorio.unal.edu.co/handle/unal/79001
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelgadir, H.A., Jager, A.K., Johnson, S.D., y J. Van Staden. (2010). Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. South African Journal of Botany. 76(3): 440-446. https://doi.org/10.1016/j.sajb.2010.02.088
Alves, A. 2002. Cassava Botany and Physiology. Cassava: Biology, production, and utilization. CAB international, pp. 67-89. ISBN: 085199 5241
Ardila, G., Fisher, G. y García, J.C. (2015). La poda de tallos y racimos florales afecta la producción de frutos de lulo (Solanum quitoense var. Septentrionale). Revista Colombiana de Ciencias Hortícolas. 9:24-37. https://doi.org/10.17584/rcch.2015v9i1.3743
Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E., Qian, Q., Kitano, H., y Matsuoka, M. (2005). Cytokinin Oxidase Regulates Rice Grain Production. Science 309: 741. https://doi.org/10.1126/science.1113373.
Ceballos, H., Morante, N., Calle, F., Lenis, J. I., Jaramillo, G., y Pérez, J. C. (2012). Cassava in the Third Millennium: Cassava Genetic Improvement. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9
Ceballos, H. y Ospina, B. (2012). Cassava in the Third Millennium: Modern Production, Processing, Use, and Marketing Systems. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9
Ceballos, H., Pérez, J.C., Barandica, O. J., Lenis, J.I., Morante, N., Calle, F., Pino, L., y Hershey, C.H. (2016). Cassava Breeding I: The Value of Breeding Value. Frontiers in Plant Science. 7:1227. doi: 10.3389/fpls.2016.01227
Ceballos, H., J. Jaramillo, S. Salazar, L. Pineda, F. Calle y T. Setter. (2017). Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science. Vol 9:19-29. https://doi.org/10.5897/JPBCS2016.0617
Chen, M., y Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology. 11:21. https://doi.org/10.1016/j.tcb.2011.07.002
Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., y Xue, X. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. https://doi.org/10.1016/j.scienta.2017.04.037
Choi, H.G., Moon, B.Y., y Kang, N.J. (2015). Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae. 189:22-31. http://dx.doi.org/10.1016/j.scienta.2015.03.022
Claypool, N.B., y Lieth, J.H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae. 268:109371. https://doi.org/10.1016/j.scienta.2020.109371
Craig, D., y Runkle, E. (2016). An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-days plants. Environmental and Experimental Botany. 121, 132-138. https://doi.org/10.1016/j.envexpbot.2015.04.004
Croce, R., y van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10: 492-501. https://doi.org/10.1038/nchembio.1555.
Cuellar-Ortiz, S., Arrieta-Montiel, M., Acosta-Gallegos, J., y Covarrubias, A. (2008). Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell and Environment. 31:1399-1409. https://doi.org/10.1111/j.13653040.2008.01853.x
Darko, E., Heydarizadeh, P., Schoef, B., y Sabzalian, M. (2018). Photosyntesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of The Royal Society. 369:20130243. http://dx.doi.org/10.1098/rstb.2013.0243
Dasumiati, Miftahudin, Triadiati, Hartana, A. y Pronowo, D. (2014). Increasing hermaphrodite flowers using plant growth regulators in andromonoecious Jatropha curcas. Hayati Journal of Biosciences. 21(3):111-120. https://doi.org/10.4308/hjb.21.3.111
Davis, A. y Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security. 5(4):223-238. https://doi.org/10.1002/fes3.97
Davies, P.J. (1995). Plant Hormones, Physiology, Biochemistry and Molecular Biology. (2da ed., p. 1). Ithaca, New York, U.S.A. Kluwer Academic Publishers. ISBN 0792329848
Delalieux, S., Somers, B., Verstraeten, W.W., van Aardt, J.A.N., Keulemans, W. y Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing. 30(8): 1887-1912. https://doi.org/10.1080/01431160802541556
Demotes-Mainard, S., Perón, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., y Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121:4-21. http://dx.doi.org/10.1016/j.envexpbot.2015.05.010
Evers, J., van der Krol, A.R., Vos, J., y Struik, P.C. (2011). Understanding shoot branching by modelling form and function. Trends in Plant Science. 16:9. https://doi.org/10.1016/j.tplants.2011.05.004
Falcioni, R., Moriwaki, T., Pattaro, M., Furlanetto, R. H., Nanni, M. R. y Camargos Antunes, W. (2020). High resolution leaf spectral signature as a tool for foliar pigment estimation displaying potential for species differentiation. Journal of Plant Physiology. 249: 153161. https://doi.org/10.1016/j.jplph.2020.153161
FAO. (2013). Save and Grow: Cassava. A guide to sustainable production intensification. Food and Agriculture Organization of the United Nations. Rome.
Fisher, G., Almanza-Merchán, P.J., y Ramírez, F. (2012). Source-sink relationships in fruit species: A review. Revista Colombiana de Ciencias Hortícolas. 6(2), 238-253. https://doi.org/10.17584/rcch.2012v6i2.1980
Fu, Q., Niu, L., Zhang, Q., Pan, B.Z., He, H., y Xu, Z.F. (2014). Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Industrial Crops and Products. 59: 295-298. https://doi.org/10.1016/j.indcrop.2014.05.028
Gao, Y., Zhang, X., Guo, X., Sun, Y., y Zu, Y. (2006) Effects of tip-pruning treatment on source-sink regulation of Catharanthus roseus seedlings. Journal of Forestry Research. 17(4): 326-328. https://doi.org/10.1007/s11676-006-0075-4
Gautam, P., Terfa, M. T., Olsen, J.E., y Torre, S. (2015). Red and blue light effects on morphology and flowering of Petunia x hybrida. Scientia Hoticulturae, 184, 171-178. https://doi.org/10.1016/j.scienta.2015.01.004.
Gonçalves, W.M., de Oliveira and Silva, S., e Iglesias, C. (2002). Cassava Breeding. Crop Breeding and Applied Biotechnology. 2(4): 617-638. DOI:10.12702/19847033.v02n04a18
Griffiths, C., Paul, M. J., y Foyer, C. H. (2016). Metabolite transport and associated sugar signaling systems underpinning source/sink interactions. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1857(10): 1715-1725. https://doi.org/10.1016/j.bbabio.2016.07.007 Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzales, R. H., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P. Hafeez, A., Hayta, S., Melton, R. E., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., Osbourn, A., J. Moscou, M., Nicholson, P., Harwood, W., Martin, C., Domoney, C., Uauy, C., Hazard, B., Wulff, B. H. y Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. https://doi.org/10.1038/s41596-018-0072-z
Gitelson, A., y Solovchenko, A. (2018). Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance–and absorbance–based approaches. Journal of Photochemistry and Photobiology B: Biology. 178: 537-544. https://doi.org/10.1016/j.jphotobiol.2017.11.023
González, H., y Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de ciencias agrícolas. 34(1):17-31. http://dx.doi.org/10.22267/rcia.173401.60
Haddad, Y., Clair-Maczulajtys, D., y Bory, G. (1995). Effects of curtain-like pruning on distribution and seasonal patterns of carbohydrate reserves in plane (Platanus acerifolia Wild) trees. Tree Physiology 15, 135-140- https://doi.org/10.1093/treephys/15.2.135
Halsey, M., Olsen, K., Taylor, N. y Chavarriaga-Aguirre, P. (2008). Reproductive biology of cassava (Manihot esculenta Crantz) and isolation of experimental field trials. Crop Science. 48:49-58. https://doi.org/10.2135/cropsci2007.05.0279
Hershey, C. (1991). Mejoramiento genético de la yuca en América Latina. Centro Internacional de Agricultura Tropical CIAT. Vol 82. 181 p. Cali, Colombia. ISBN 958-9183-16-6
Hillocks, R.J., J.M. Thresh y A.C. Belloti. (2001). Cassava. Biology, production and utilization. ISBN 0 85199 524 1. 70-71 p.
Hwang, K., Susila, H., Nasim, Z., Jung, J.Y., y Ahn, J.H. (2019). Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant. https://doi.org/10.1016/j.molp.2019.01.002
Hyde, P.T., Guan, X., Abreu, V., y Setter, T.L. (2019). The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation. 90: 441-453. https://doi.org/10.1007/s10725-019-00542-x
Iglesias, C., Clair, H., Calle, F., Bolaños, A. (1994). Propagating cassava (Manihot esculenta) by sexual seed. Experimental agriculture. 30:283-290. https://doi.org/10.1017/S0014479700024388
Jiménez, J. C., Leiva, L. Cardoso, J. A., French, A. N., y Thorp, K. R. (2020). Proximal sensing of Urochloa grasses increases selection accuracy. Crop & Pasture Science. https://doi.org/10.1071/CP19324
Johnson, D.L. (2007). Pruning. Kuser, J. E. En Urban and Community Forestry in the Northeast. (2da ed., p. 237). New Brunswick, NJ, USA. Springer. ISBN 10-14020-4288-4
Kawano, K. (1980). Cassava, in: Fehr, W.R., Hadley, H.H. (eds.) Hybridization of Crop Plants. ASA, CSSA. Madison, Wisconsin, ISBN:9780891185666. pp. 225-233.
Keating, B.A., Evenson, J.P., y Fukai, S. (1982). Environmental effects on growth and development of cassava (Manihot esculenta Crantz.). I. Crop Development. Field Crops Research, (5): 271-2981. https://doi.org/10.1016/0378-4290(82)90030-2
Li, X.G., Su, Y.H., Zhao, X. Y., Li, W., Gao, X.Q., y Zhang, X.S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene. 450: 109-120. https://doi.org/10.1016/j.gene.2009.11.003
Liang, S. (2004). Quantitative remote sensing of land surfaces. Capítulo 3. Canopy reflectance modeling. Wiley Interscience. ISBN 0-471-2816-2. P. 93. Lin, K., Huang, M., Huang, W., Huang, W., Hsu, M., Yang, Z., y Yang, C, (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitate). Scientia Horticulturae. 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002
Luo, Y., Pan, B.Z., Li, L., Yang, C.X., y Xu, Z.F. (2020). Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reproduction 33:21-34. https://doi.org/10.1007/s00497-019-00382-9
Mahlein, A.K., Steiner, U., Dehne, H.W., y Oerke, E.C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture. 11:413-431. https://doi.org/10.1007/s11119-010-9180-7
Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, I., Steiner, U., y Oerke, E.C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment. 128: 21-30. https://doi.org/10.1016/j.rse.2012.09.019
Maimaitiyiming, M., Miller, A.J. y Ghulam, A. (2016). Discriminating spectral signatures among and within two closely related grapevine species. Photogrammetric Engineering & Remote Sensing. 82(2): 51-62. https://doi.org/10.14358/PERS.82.2.51
Manzano, S., Martínez, C., Megías, Z., Gómez, P., Garrido, D., y Jamilena, M. (2011). The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regulation. 65:213-221. https://doi.org/10.1007/s10725-011-9589-7
Manzano, S., Martínez, C., García, J.M., Megías, Z., y Jamilena, M. (2014). Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiology and Biochemistry. 85:96-104. http://dx.doi.org/10.1016/j.plaphy.2014.11.004
Marcelis L.F.M., Heuvelink, E., Baan, L.R., Den Bakker, J., y Xue, L.B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany. Vol. 55, No. 406, pp 2261-2268. https://doi.org/10.1093/jxb/erh245
Maurin V., y DesRochers, A. (2013). Physiological and growth responses to pruning season and intensity of hybrid poplar. Forest Ecology and Management. 304, 399-406. https://doi.org/10.1016/j.foreco.2013.05.039
Meng, Q. y Runkle, E. (2016). Control of flowering using night-interruption and day extension LED lighting. Led Lighting for Urban Agriculture. pp 191-201. https://doi.org/10.1007/978-981-10-1848-0_14
Muleo, R., Morini, S., y Casano, S. (2001). Photoregulation of growth and branching of plum shoots: physiological action of two photosystems. In Vitro Cellular and Developmental Biology – Plant. 37:609-617. https://doi.org/10.1007/s11627-001-0107-x
Nagatani, A. (2010). Phytochrome: structural basis for its functions. Current Opinion in Plant Biology. 13:565-570. https://doi.org/10.1016/j.pbi.2010.07.002
Nguyen, H. D. D., Pan, V., Pham, C., Valdez, R., Doan, K., y Nansen, C. (2020). Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture. 173: 105458. https://doi.org/10.1016/j.compag.2020.105458
Ni, J., Shah, F.A., Liu, W., Wang, Q., Wang, D., Zhao, W., Lu, W., Huang, S., Fu, S., y Wu, L. (2018). Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum. BMC Plant Biology. 18:96. https://doi.org/10.1186/s12870-018-1314-5
Nnedue, G. D. y Hamadina, E. I. (2018). Role of In situ seed desiccation in the control of seed viability of Cassava (Manihot esculenta crantz) hybrids TMS 95/0379 y TMS 98/0505. International Journal of Agriculture and Forestry. 8(2): 92-97. DOI: 10.5923/j.ijaf.20180802.07
O’Brien, J. A. y Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 4:451. doi:10.3389/fpls.2013.00451
Olsen, K.M. y Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal Botany. 88(1):131-142.
Omongo, C. A., Kawuki, R. Bellotti, A., Alicai, T., Baguma, Y., Maruthi, M.N., Bua, A. y Colvin, J. (2012). African cassava whitefly, Bemisia tabaci, resistance in african and south American cassava genotypes. Journal of Integrative Agriculture. 11(2): 327-336. DOI: 10.1016/S2095-3119(12)60017- 3
Ouzounis T., Rosenqvist, E., y Ottosen, C. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 50(8), 1128415–1135.
Pan B.Z. y, Xu, Z.F. (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. Plant Growth Regul 30:166-174. DOI 10.1007/s00344-010-9179-3
Park, Y. y Runkle, E. S. (2018). Spectral effects of light-emiting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. PLoS ONE. 13(8): e0202396. https://doi.org/10.1371/journal. pone.0202386
Perera, P.I.P., Quintero, M. Dedicova, B. Kularatne, J.D.J.S., Ordoñez, C.A., y Ceballos, H. (2012). Comparative morphology, biology, and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). Annals of Botany Plants. 5(1): pls046. doi: 10.1093/aobpla/pls046.
Pineda, L.M., Morante, N. Salazar, S., Hyde, P. Setter, T., y Ceballos, H. (2018). Induction of flowering I: photoperiod extension through a red lights district. IVth GCP21 International Cassava Conference, Cotonou, Benin. June 2018.
Prado, L., Marques, A. P., Saito, E. A., de Souza, M., Marcato, J., Takashi, E., Nobuhiro, N. y Creste, J. (2019). Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation. 83:101907. https://doi.org/10 .1016/j.jag.2019.101907
Ramirez, J.A., Handa, I.T., Posada, J.M., Delagrange, S., y Messier, C. (2018). Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban forestry and Urban Greening. 30, 24-31. https://doi.org/10.1016/j.ufug.2018.01.013
Ramos, L.N., Pineda, L.M., Wasek, I., Wedzony, M., y Ceballos, H. (2019). Reproductive biology in cassava: stigma receptivity and pollen tube growth. Communicative and Integrative Biology. 12:96-111. https://doi.org/10.1080/19420889.2019.1631110
Rockwell, N. C., y Lagarias, J. C. (2017). Phytochrome diversification in cianobacteria and eukaryotic algae. Current Opinion in Plant Biology. 37:87-93. http://dx.doi.org/10.1016/j.pbi.2017.04.003
Ruzin, S. E. (1999). Plant microtechnique and microscopy. Oxford University Press. ISBN: 978-0-19-508956-1
Sablinskas, V. (2003). Instrumentation. En G. Gauglitz y T. Vo-Dinh (Ed.). Handbook of Spectroscopy. p. 63. Wiley-Vch Verlag GmbH & Co. KGaA. ISBN 3-527-29782-0
Samach, A. y Smith, H. M. (2013). Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Science. 207:168-176. https://doi.org/10.1016/j.plantsci.2013.02.006.
Shakya, R., y Lal, M.A. (2018). Photoassimilate Translocation. Plant Physiology, Development and Metabolism. Pp 227-251. DOI: 10.1007/978-981-13-2023-1_6
Silva, L., Parreira, R., Neves, J. R., Cunha Alves, A.A., y de Oliveira, E.J. (2018). Grafting as a estrategy to increase flowering of cassava. Scientia Horticulturae. 240: 544-551. https://doi.org/10.1016/j.scienta.2018.06.070
Singh, R., Tiwari, S., Sanjay, M.G. y Dwivedi, S.K. (2018). Evaluation of plant bio-regulators (PBRs) application on the fruit and seed yield of Jatropha curcas: A bio-fuel plant. International Journal of Complementary and Alternative Medicine. 11(5):288-292. DOI: 10.15406/ijcam.2018.11.00414.
Sterling, A., y Melgarejo, L.M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology. 156:1063-1076. https://doi.org/10.1007/s10658-020-01961-7
Taiz, Z., y Zeiger, E. (2006). Fisiología Vegetal. El fitocromo y el control por la luz del desarrollo vegetal. Volumen 2. 713 p.
Takeda, F., Glenn, D. M., y Stutte, G. W. (2008). Red light affects flowering under long days in a short-day strawberry cultivar. HortScience, 43(7), 2245–2247.
Thwe, A.A., Kasemsap, P. Vercambre, G., Gay, F., Phattaralerphong, J., y Gautier, H. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill). Scientia Horticulturae. 264: 109185. https://doi.org/10.1016/j.scienta.2020.109185
USDA. (2003). United States Department of Agriculture. Cassava (Manihot esculenta Crantz): Plant Guide.
Valentini, G., y Arroyo, L. (2003). La poda en frutales y ornamentales. Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina. ISSN 0327-3737.
Viršilė, A., Brazaitytėa, A., Vaštakaitė-Kairienėa, V., Miliauskienėa, J., Jankauskienėa, J., Novičkovasb, A., Laužikėa, K. y Samuolienėa, G. (2020). The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar, and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chemistry. 310:125799. https://doi.org/10.1016/j.foodchem.2019.125799
Werner, T. y Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology. 12:527-538. DOI 10.1016/j.pbi.2009.07.002
White, A., Rogers, A., Rees, M., y Osborne, C.P. (2016) How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany. 67(1): 31-45. https://doi.org/10.1093/jxb/erv447
Xiong, G.S., Li, J.Y., y Wang, Y.H. (2009). Advances in the regulation and crosstalks of phytohormones. Chinese Sci Bull. 54: 4069-4082. doi: 10.1007/s11434- 009-0629-x
Yamada, K. y Osakabe, Y. (2018). Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell and Developmental Biology. 83:106-114. https://doi.org/10.1016/j.semcdb.2017.12.015
Yang, C., Lee, W. S. y Williamson, J. G. (2012). Classification of blueberry fruit and leaves based on spectral signatures. Biosystems engineering. 113(4): 351-362. https://doi.org/ 10.1016/j.biosystemseng.2012.09.009
Ye, T., Li, Y., Zhang, J., Hou, W., Zhou, W., Lu, J., Xing, Y. y Li, X. (2019). Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice. Global Ecology and Conservation. 20: e0753. https://doi.org/10.1016/j.gecco.2019.e00753
Zhang, Y., Zheng, L., Li, M., Deng, X. y Ji, R. (2015). Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases. Computers and Electronics in Agriculture. 112: 20-27. https://doi.org/10.1016/j.compag.2015.01.006
Zhang, Y., Wang, X. R., y Chen, J. (2019). Effects of light quality and photoperiod of light emitting LED on growth and biomass accumulation of shallot. Journal of Horticulture and Foresty. 11(5): 78-83. DOI: 10.5897/JHF2019.0586
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 84
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Maestría Ciencias Agrarias
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79001/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79001/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79001/1/1033715441.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79001/4/1033715441.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
42fd4ad1e89814f5e4a476b409eb708c
1360c271a3bfa1750c9642ba744a80cf
c93df63a5d54eeb61965e2009af990b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089484934840320
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ceballos, Hernán95bb6b01-7295-4e5d-bc98-6fc201d6cfff-1Mejía de Tafur, Maria Sara782f46ec-cc76-4072-bcc6-8a84ca12ac67-1Pineda Vargas, Lizzeth Marcela963e88aa-03fe-4293-a6c7-0067f4c423042021-02-01T01:49:39Z2021-02-01T01:49:39Z2020-07-07(Pineda Vargas, 2020)https://repositorio.unal.edu.co/handle/unal/79001La floración en yuca (Manihot esculenta Crantz) está estrechamente relacionada con la ramificación. Aunque los agricultores prefieren los genotipos de tipo erecto, su utilidad como progenitores está limitada por su baja o nula producción de semillas. El objetivo de este estudio fue evaluar el efecto de la extensión del fotoperíodo de luz roja, la poda y la aplicación de benciladenina para inducir la floración en los genotipos de yuca GM 971-2 (ramificado, floración intermedia), CM 4919-2 (erecto, floración tardía), y SM 3348-29 y GM 3893-65 (erecto, tardío o sin floración). Los genotipos fueron cultivados en un experimento factorial en condiciones de fotoperiodo normal (FN) y de fotoperíodo extendido (FE). Además, las ramas jóvenes del primer y segundo eventos de ramificación (ER1 y ER2) se podaron y rociaron con benciladenina (BA). Las plantas sin poda y sin aplicación BA sirvieron como controles. En FE, el tiempo para generar un ER disminuyó para GM 971-2. Además, CM 4919-1, SM 3348-29 y GM 3893-65 produjeron de uno a varios ER en FE pero no en FN. La poda de las ramas jóvenes en ER1 y ER2 fortaleció la dominancia apical de la inflorescencia, aunque la baja frecuencia de flores femeninas por inflorescencia limitó la producción de semillas. El tratamiento con benciladenina aumentó el número de flores femeninas, por lo tanto, aumentó la producción de frutas y semillas. En comparación con los controles, el uso combinado de FE, poda y BA aumentó significativamente la producción promedio de semillas de 10 a 27, de 0 a 22 y de 0 a 60 semillas para GM 971-2, CM 4919-1 y SM 3348-29, respectivamente.Flowering in cassava (Manihot esculenta Crantz) is closely linked to branching. Although farmers prefer erect-type genotypes, their usefulness as parents in breeding is limited by their low or no seed production. The objective of this study was to evaluate the effect of red light photoperiod extension, pruning and the application of benzyladenine to induce flowering in cassava genotypes GM 971-2 (branched, intermediate flowering), CM 4919-2 (erect, late flowering), and SM 3348-29 and GM 3893-65 (erect, late or non-flowering). The genotypes were cultivated in a factorial experiment under normal (FN) or extended photoperiod (FE) conditions. In addition, young branches from the first and second branching events (ER1 and ER2) were pruned and sprayed with benzyladenine (BA). Plants without pruning or BA application served as controls. In FE, the time to generate an ER decreased for genotype GM 971-2. Moreover, genotypes CM 4919-1, SM 3348-29 and GM 3893-65 produced from one to several ERs in FE but not in FN. The pruning of young branches in ER1 and ER2 strengthened the apical dominance of the inflorescence, although the low frequency of female flowers per inflorescence limited the production of seeds. Benzyladenin treatment increased the number of female flowers, therefore, increasing the production of fruits and seeds. In comparison to controls, the combined use of FE, pruning and BA significantly increased the averaged seed production from 10 to 27, 0 to 22 and 0 to 60 seeds for GM 971-2, CM 4919-1 and SM 3348-29, respectively.Centro Internacional de Agricultura Tropical (CIAT)Next Gen: Flowering Induction on cassavaMaestría84application/pdfspa630 - Agricultura y tecnologías relacionadasPhotoperiod extensionbenzyladeninered lightpruningbranchingcassava breedingExtensión del fotoperiodoluz rojabenciladeninapodasramificaciónmejoramiento de yucaInducción a floración en yuca (Manihot esculenta Crantz)Induction of flowering in Cassava (Manihot esculenta Crantz)Documento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasMaestría Ciencias AgrariasUniversidad Nacional de Colombia - Sede PalmiraAbdelgadir, H.A., Jager, A.K., Johnson, S.D., y J. Van Staden. (2010). Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. South African Journal of Botany. 76(3): 440-446. https://doi.org/10.1016/j.sajb.2010.02.088Alves, A. 2002. Cassava Botany and Physiology. Cassava: Biology, production, and utilization. CAB international, pp. 67-89. ISBN: 085199 5241Ardila, G., Fisher, G. y García, J.C. (2015). La poda de tallos y racimos florales afecta la producción de frutos de lulo (Solanum quitoense var. Septentrionale). Revista Colombiana de Ciencias Hortícolas. 9:24-37. https://doi.org/10.17584/rcch.2015v9i1.3743Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E., Qian, Q., Kitano, H., y Matsuoka, M. (2005). Cytokinin Oxidase Regulates Rice Grain Production. Science 309: 741. https://doi.org/10.1126/science.1113373.Ceballos, H., Morante, N., Calle, F., Lenis, J. I., Jaramillo, G., y Pérez, J. C. (2012). Cassava in the Third Millennium: Cassava Genetic Improvement. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9Ceballos, H. y Ospina, B. (2012). Cassava in the Third Millennium: Modern Production, Processing, Use, and Marketing Systems. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9Ceballos, H., Pérez, J.C., Barandica, O. J., Lenis, J.I., Morante, N., Calle, F., Pino, L., y Hershey, C.H. (2016). Cassava Breeding I: The Value of Breeding Value. Frontiers in Plant Science. 7:1227. doi: 10.3389/fpls.2016.01227Ceballos, H., J. Jaramillo, S. Salazar, L. Pineda, F. Calle y T. Setter. (2017). Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science. Vol 9:19-29. https://doi.org/10.5897/JPBCS2016.0617Chen, M., y Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology. 11:21. https://doi.org/10.1016/j.tcb.2011.07.002Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., y Xue, X. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. https://doi.org/10.1016/j.scienta.2017.04.037Choi, H.G., Moon, B.Y., y Kang, N.J. (2015). Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae. 189:22-31. http://dx.doi.org/10.1016/j.scienta.2015.03.022Claypool, N.B., y Lieth, J.H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae. 268:109371. https://doi.org/10.1016/j.scienta.2020.109371Craig, D., y Runkle, E. (2016). An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-days plants. Environmental and Experimental Botany. 121, 132-138. https://doi.org/10.1016/j.envexpbot.2015.04.004Croce, R., y van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10: 492-501. https://doi.org/10.1038/nchembio.1555.Cuellar-Ortiz, S., Arrieta-Montiel, M., Acosta-Gallegos, J., y Covarrubias, A. (2008). Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell and Environment. 31:1399-1409. https://doi.org/10.1111/j.13653040.2008.01853.xDarko, E., Heydarizadeh, P., Schoef, B., y Sabzalian, M. (2018). Photosyntesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of The Royal Society. 369:20130243. http://dx.doi.org/10.1098/rstb.2013.0243Dasumiati, Miftahudin, Triadiati, Hartana, A. y Pronowo, D. (2014). Increasing hermaphrodite flowers using plant growth regulators in andromonoecious Jatropha curcas. Hayati Journal of Biosciences. 21(3):111-120. https://doi.org/10.4308/hjb.21.3.111Davis, A. y Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security. 5(4):223-238. https://doi.org/10.1002/fes3.97Davies, P.J. (1995). Plant Hormones, Physiology, Biochemistry and Molecular Biology. (2da ed., p. 1). Ithaca, New York, U.S.A. Kluwer Academic Publishers. ISBN 0792329848Delalieux, S., Somers, B., Verstraeten, W.W., van Aardt, J.A.N., Keulemans, W. y Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing. 30(8): 1887-1912. https://doi.org/10.1080/01431160802541556Demotes-Mainard, S., Perón, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., y Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121:4-21. http://dx.doi.org/10.1016/j.envexpbot.2015.05.010Evers, J., van der Krol, A.R., Vos, J., y Struik, P.C. (2011). Understanding shoot branching by modelling form and function. Trends in Plant Science. 16:9. https://doi.org/10.1016/j.tplants.2011.05.004Falcioni, R., Moriwaki, T., Pattaro, M., Furlanetto, R. H., Nanni, M. R. y Camargos Antunes, W. (2020). High resolution leaf spectral signature as a tool for foliar pigment estimation displaying potential for species differentiation. Journal of Plant Physiology. 249: 153161. https://doi.org/10.1016/j.jplph.2020.153161FAO. (2013). Save and Grow: Cassava. A guide to sustainable production intensification. Food and Agriculture Organization of the United Nations. Rome.Fisher, G., Almanza-Merchán, P.J., y Ramírez, F. (2012). Source-sink relationships in fruit species: A review. Revista Colombiana de Ciencias Hortícolas. 6(2), 238-253. https://doi.org/10.17584/rcch.2012v6i2.1980Fu, Q., Niu, L., Zhang, Q., Pan, B.Z., He, H., y Xu, Z.F. (2014). Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Industrial Crops and Products. 59: 295-298. https://doi.org/10.1016/j.indcrop.2014.05.028Gao, Y., Zhang, X., Guo, X., Sun, Y., y Zu, Y. (2006) Effects of tip-pruning treatment on source-sink regulation of Catharanthus roseus seedlings. Journal of Forestry Research. 17(4): 326-328. https://doi.org/10.1007/s11676-006-0075-4Gautam, P., Terfa, M. T., Olsen, J.E., y Torre, S. (2015). Red and blue light effects on morphology and flowering of Petunia x hybrida. Scientia Hoticulturae, 184, 171-178. https://doi.org/10.1016/j.scienta.2015.01.004.Gonçalves, W.M., de Oliveira and Silva, S., e Iglesias, C. (2002). Cassava Breeding. Crop Breeding and Applied Biotechnology. 2(4): 617-638. DOI:10.12702/19847033.v02n04a18Griffiths, C., Paul, M. J., y Foyer, C. H. (2016). Metabolite transport and associated sugar signaling systems underpinning source/sink interactions. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1857(10): 1715-1725. https://doi.org/10.1016/j.bbabio.2016.07.007 Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzales, R. H., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P. Hafeez, A., Hayta, S., Melton, R. E., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., Osbourn, A., J. Moscou, M., Nicholson, P., Harwood, W., Martin, C., Domoney, C., Uauy, C., Hazard, B., Wulff, B. H. y Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. https://doi.org/10.1038/s41596-018-0072-zGitelson, A., y Solovchenko, A. (2018). Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance–and absorbance–based approaches. Journal of Photochemistry and Photobiology B: Biology. 178: 537-544. https://doi.org/10.1016/j.jphotobiol.2017.11.023González, H., y Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de ciencias agrícolas. 34(1):17-31. http://dx.doi.org/10.22267/rcia.173401.60Haddad, Y., Clair-Maczulajtys, D., y Bory, G. (1995). Effects of curtain-like pruning on distribution and seasonal patterns of carbohydrate reserves in plane (Platanus acerifolia Wild) trees. Tree Physiology 15, 135-140- https://doi.org/10.1093/treephys/15.2.135Halsey, M., Olsen, K., Taylor, N. y Chavarriaga-Aguirre, P. (2008). Reproductive biology of cassava (Manihot esculenta Crantz) and isolation of experimental field trials. Crop Science. 48:49-58. https://doi.org/10.2135/cropsci2007.05.0279Hershey, C. (1991). Mejoramiento genético de la yuca en América Latina. Centro Internacional de Agricultura Tropical CIAT. Vol 82. 181 p. Cali, Colombia. ISBN 958-9183-16-6Hillocks, R.J., J.M. Thresh y A.C. Belloti. (2001). Cassava. Biology, production and utilization. ISBN 0 85199 524 1. 70-71 p.Hwang, K., Susila, H., Nasim, Z., Jung, J.Y., y Ahn, J.H. (2019). Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant. https://doi.org/10.1016/j.molp.2019.01.002Hyde, P.T., Guan, X., Abreu, V., y Setter, T.L. (2019). The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation. 90: 441-453. https://doi.org/10.1007/s10725-019-00542-xIglesias, C., Clair, H., Calle, F., Bolaños, A. (1994). Propagating cassava (Manihot esculenta) by sexual seed. Experimental agriculture. 30:283-290. https://doi.org/10.1017/S0014479700024388Jiménez, J. C., Leiva, L. Cardoso, J. A., French, A. N., y Thorp, K. R. (2020). Proximal sensing of Urochloa grasses increases selection accuracy. Crop & Pasture Science. https://doi.org/10.1071/CP19324Johnson, D.L. (2007). Pruning. Kuser, J. E. En Urban and Community Forestry in the Northeast. (2da ed., p. 237). New Brunswick, NJ, USA. Springer. ISBN 10-14020-4288-4Kawano, K. (1980). Cassava, in: Fehr, W.R., Hadley, H.H. (eds.) Hybridization of Crop Plants. ASA, CSSA. Madison, Wisconsin, ISBN:9780891185666. pp. 225-233.Keating, B.A., Evenson, J.P., y Fukai, S. (1982). Environmental effects on growth and development of cassava (Manihot esculenta Crantz.). I. Crop Development. Field Crops Research, (5): 271-2981. https://doi.org/10.1016/0378-4290(82)90030-2Li, X.G., Su, Y.H., Zhao, X. Y., Li, W., Gao, X.Q., y Zhang, X.S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene. 450: 109-120. https://doi.org/10.1016/j.gene.2009.11.003Liang, S. (2004). Quantitative remote sensing of land surfaces. Capítulo 3. Canopy reflectance modeling. Wiley Interscience. ISBN 0-471-2816-2. P. 93. Lin, K., Huang, M., Huang, W., Huang, W., Hsu, M., Yang, Z., y Yang, C, (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitate). Scientia Horticulturae. 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002Luo, Y., Pan, B.Z., Li, L., Yang, C.X., y Xu, Z.F. (2020). Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reproduction 33:21-34. https://doi.org/10.1007/s00497-019-00382-9Mahlein, A.K., Steiner, U., Dehne, H.W., y Oerke, E.C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture. 11:413-431. https://doi.org/10.1007/s11119-010-9180-7Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, I., Steiner, U., y Oerke, E.C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment. 128: 21-30. https://doi.org/10.1016/j.rse.2012.09.019Maimaitiyiming, M., Miller, A.J. y Ghulam, A. (2016). Discriminating spectral signatures among and within two closely related grapevine species. Photogrammetric Engineering & Remote Sensing. 82(2): 51-62. https://doi.org/10.14358/PERS.82.2.51Manzano, S., Martínez, C., Megías, Z., Gómez, P., Garrido, D., y Jamilena, M. (2011). The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regulation. 65:213-221. https://doi.org/10.1007/s10725-011-9589-7Manzano, S., Martínez, C., García, J.M., Megías, Z., y Jamilena, M. (2014). Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiology and Biochemistry. 85:96-104. http://dx.doi.org/10.1016/j.plaphy.2014.11.004Marcelis L.F.M., Heuvelink, E., Baan, L.R., Den Bakker, J., y Xue, L.B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany. Vol. 55, No. 406, pp 2261-2268. https://doi.org/10.1093/jxb/erh245Maurin V., y DesRochers, A. (2013). Physiological and growth responses to pruning season and intensity of hybrid poplar. Forest Ecology and Management. 304, 399-406. https://doi.org/10.1016/j.foreco.2013.05.039Meng, Q. y Runkle, E. (2016). Control of flowering using night-interruption and day extension LED lighting. Led Lighting for Urban Agriculture. pp 191-201. https://doi.org/10.1007/978-981-10-1848-0_14Muleo, R., Morini, S., y Casano, S. (2001). Photoregulation of growth and branching of plum shoots: physiological action of two photosystems. In Vitro Cellular and Developmental Biology – Plant. 37:609-617. https://doi.org/10.1007/s11627-001-0107-xNagatani, A. (2010). Phytochrome: structural basis for its functions. Current Opinion in Plant Biology. 13:565-570. https://doi.org/10.1016/j.pbi.2010.07.002Nguyen, H. D. D., Pan, V., Pham, C., Valdez, R., Doan, K., y Nansen, C. (2020). Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture. 173: 105458. https://doi.org/10.1016/j.compag.2020.105458Ni, J., Shah, F.A., Liu, W., Wang, Q., Wang, D., Zhao, W., Lu, W., Huang, S., Fu, S., y Wu, L. (2018). Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum. BMC Plant Biology. 18:96. https://doi.org/10.1186/s12870-018-1314-5Nnedue, G. D. y Hamadina, E. I. (2018). Role of In situ seed desiccation in the control of seed viability of Cassava (Manihot esculenta crantz) hybrids TMS 95/0379 y TMS 98/0505. International Journal of Agriculture and Forestry. 8(2): 92-97. DOI: 10.5923/j.ijaf.20180802.07O’Brien, J. A. y Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 4:451. doi:10.3389/fpls.2013.00451Olsen, K.M. y Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal Botany. 88(1):131-142.Omongo, C. A., Kawuki, R. Bellotti, A., Alicai, T., Baguma, Y., Maruthi, M.N., Bua, A. y Colvin, J. (2012). African cassava whitefly, Bemisia tabaci, resistance in african and south American cassava genotypes. Journal of Integrative Agriculture. 11(2): 327-336. DOI: 10.1016/S2095-3119(12)60017- 3Ouzounis T., Rosenqvist, E., y Ottosen, C. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 50(8), 1128415–1135.Pan B.Z. y, Xu, Z.F. (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. Plant Growth Regul 30:166-174. DOI 10.1007/s00344-010-9179-3Park, Y. y Runkle, E. S. (2018). Spectral effects of light-emiting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. PLoS ONE. 13(8): e0202396. https://doi.org/10.1371/journal. pone.0202386Perera, P.I.P., Quintero, M. Dedicova, B. Kularatne, J.D.J.S., Ordoñez, C.A., y Ceballos, H. (2012). Comparative morphology, biology, and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). Annals of Botany Plants. 5(1): pls046. doi: 10.1093/aobpla/pls046.Pineda, L.M., Morante, N. Salazar, S., Hyde, P. Setter, T., y Ceballos, H. (2018). Induction of flowering I: photoperiod extension through a red lights district. IVth GCP21 International Cassava Conference, Cotonou, Benin. June 2018.Prado, L., Marques, A. P., Saito, E. A., de Souza, M., Marcato, J., Takashi, E., Nobuhiro, N. y Creste, J. (2019). Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation. 83:101907. https://doi.org/10 .1016/j.jag.2019.101907Ramirez, J.A., Handa, I.T., Posada, J.M., Delagrange, S., y Messier, C. (2018). Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban forestry and Urban Greening. 30, 24-31. https://doi.org/10.1016/j.ufug.2018.01.013Ramos, L.N., Pineda, L.M., Wasek, I., Wedzony, M., y Ceballos, H. (2019). Reproductive biology in cassava: stigma receptivity and pollen tube growth. Communicative and Integrative Biology. 12:96-111. https://doi.org/10.1080/19420889.2019.1631110Rockwell, N. C., y Lagarias, J. C. (2017). Phytochrome diversification in cianobacteria and eukaryotic algae. Current Opinion in Plant Biology. 37:87-93. http://dx.doi.org/10.1016/j.pbi.2017.04.003Ruzin, S. E. (1999). Plant microtechnique and microscopy. Oxford University Press. ISBN: 978-0-19-508956-1Sablinskas, V. (2003). Instrumentation. En G. Gauglitz y T. Vo-Dinh (Ed.). Handbook of Spectroscopy. p. 63. Wiley-Vch Verlag GmbH & Co. KGaA. ISBN 3-527-29782-0Samach, A. y Smith, H. M. (2013). Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Science. 207:168-176. https://doi.org/10.1016/j.plantsci.2013.02.006.Shakya, R., y Lal, M.A. (2018). Photoassimilate Translocation. Plant Physiology, Development and Metabolism. Pp 227-251. DOI: 10.1007/978-981-13-2023-1_6Silva, L., Parreira, R., Neves, J. R., Cunha Alves, A.A., y de Oliveira, E.J. (2018). Grafting as a estrategy to increase flowering of cassava. Scientia Horticulturae. 240: 544-551. https://doi.org/10.1016/j.scienta.2018.06.070Singh, R., Tiwari, S., Sanjay, M.G. y Dwivedi, S.K. (2018). Evaluation of plant bio-regulators (PBRs) application on the fruit and seed yield of Jatropha curcas: A bio-fuel plant. International Journal of Complementary and Alternative Medicine. 11(5):288-292. DOI: 10.15406/ijcam.2018.11.00414.Sterling, A., y Melgarejo, L.M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology. 156:1063-1076. https://doi.org/10.1007/s10658-020-01961-7Taiz, Z., y Zeiger, E. (2006). Fisiología Vegetal. El fitocromo y el control por la luz del desarrollo vegetal. Volumen 2. 713 p.Takeda, F., Glenn, D. M., y Stutte, G. W. (2008). Red light affects flowering under long days in a short-day strawberry cultivar. HortScience, 43(7), 2245–2247.Thwe, A.A., Kasemsap, P. Vercambre, G., Gay, F., Phattaralerphong, J., y Gautier, H. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill). Scientia Horticulturae. 264: 109185. https://doi.org/10.1016/j.scienta.2020.109185USDA. (2003). United States Department of Agriculture. Cassava (Manihot esculenta Crantz): Plant Guide.Valentini, G., y Arroyo, L. (2003). La poda en frutales y ornamentales. Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina. ISSN 0327-3737.Viršilė, A., Brazaitytėa, A., Vaštakaitė-Kairienėa, V., Miliauskienėa, J., Jankauskienėa, J., Novičkovasb, A., Laužikėa, K. y Samuolienėa, G. (2020). The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar, and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chemistry. 310:125799. https://doi.org/10.1016/j.foodchem.2019.125799Werner, T. y Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology. 12:527-538. DOI 10.1016/j.pbi.2009.07.002White, A., Rogers, A., Rees, M., y Osborne, C.P. (2016) How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany. 67(1): 31-45. https://doi.org/10.1093/jxb/erv447Xiong, G.S., Li, J.Y., y Wang, Y.H. (2009). Advances in the regulation and crosstalks of phytohormones. Chinese Sci Bull. 54: 4069-4082. doi: 10.1007/s11434- 009-0629-xYamada, K. y Osakabe, Y. (2018). Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell and Developmental Biology. 83:106-114. https://doi.org/10.1016/j.semcdb.2017.12.015Yang, C., Lee, W. S. y Williamson, J. G. (2012). Classification of blueberry fruit and leaves based on spectral signatures. Biosystems engineering. 113(4): 351-362. https://doi.org/ 10.1016/j.biosystemseng.2012.09.009Ye, T., Li, Y., Zhang, J., Hou, W., Zhou, W., Lu, J., Xing, Y. y Li, X. (2019). Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice. Global Ecology and Conservation. 20: e0753. https://doi.org/10.1016/j.gecco.2019.e00753Zhang, Y., Zheng, L., Li, M., Deng, X. y Ji, R. (2015). Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases. Computers and Electronics in Agriculture. 112: 20-27. https://doi.org/10.1016/j.compag.2015.01.006Zhang, Y., Wang, X. R., y Chen, J. (2019). Effects of light quality and photoperiod of light emitting LED on growth and biomass accumulation of shallot. Journal of Horticulture and Foresty. 11(5): 78-83. DOI: 10.5897/JHF2019.0586LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79001/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/79001/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53ORIGINAL1033715441.2020.pdf1033715441.2020.pdfapplication/pdf2888303https://repositorio.unal.edu.co/bitstream/unal/79001/1/1033715441.2020.pdf1360c271a3bfa1750c9642ba744a80cfMD51THUMBNAIL1033715441.2020.pdf.jpg1033715441.2020.pdf.jpgGenerated Thumbnailimage/jpeg4111https://repositorio.unal.edu.co/bitstream/unal/79001/4/1033715441.2020.pdf.jpgc93df63a5d54eeb61965e2009af990b2MD54unal/79001oai:repositorio.unal.edu.co:unal/790012023-07-21 23:04:13.43Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==