Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings

Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, the...

Full description

Autores:
Acosta, Lorenzo
Rubio, Marcela
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73886
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73886
http://bdigital.unal.edu.co/38363/
Palabra clave:
Ideal
Prime ideal
Semi-prime ideal
Ordered set
Adjoint functions.
Ideal
ideal primo
ideal semi-primo
conjunto ordenado
funciones adjuntas.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_46407c2e1a0857c18421c46079ce64aa
oai_identifier_str oai:repositorio.unal.edu.co:unal/73886
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Acosta, Lorenzo7a92a4bb-1eb7-4006-9a61-3b673a1c28c9300Rubio, Marcelaf109d580-1170-4ce4-ae9c-c3785e81e91b3002019-07-03T16:59:17Z2019-07-03T16:59:17Z2013https://repositorio.unal.edu.co/handle/unal/73886http://bdigital.unal.edu.co/38363/Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, then the set of S−maximal ideals of R is a complete lattice, isomorphic to the lattice of the ideals of S. In particular, the annihilator of S in R is the minimum of the S−maximal ideals of R. So the lattice structure of S−maximal ideals of R does not depend on the ring R.On the other hand, the ideals of S can be extended to ideals of R and the ideals of R can be restricted to ideals of S. These two processes are not adjoint to each other, but if we restrict to appropriated collections of ideals we can obtain adjunctions.Dados un anillo conmutativo R y S uno de sus ideales, la función I -- and gt; (I : S), que transforma ideales de R en ideales de R es adjunta a derecha de la función I -- and gt; IS. Se definen los ideales S−maximales de R como aquellos  ideales J de R tales que (J : S) = J. Si el anillo S es seudo-regular, entoncesel conjunto de ideales S−maximales de R es un retículo completo, isomorfo al retículo de los ideales de S. En particular, el anulador de S en R es el mínimo de los ideales S−maximales de R. La estructura de retículo de losideales S−maximales de R no depende entonces del anillo R.Por otro lado, los ideales de S se pueden extender a ideales de R y los ideales de R se pueden restringir a ideales de S. Estos dos procesos no son adjuntos entre sí, pero si se restringen a colecciones apropiadas de ideales s´ı se obtienensendas adjunciones.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/41107Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380Acosta, Lorenzo and Rubio, Marcela (2013) Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings. Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380 .Some adjunctions associated with extensions and restrictions of ideals in the context of commutative ringsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTIdealPrime idealSemi-prime idealOrdered setAdjoint functions.Idealideal primoideal semi-primoconjunto ordenadofunciones adjuntas.ORIGINAL41107-185294-2-PB.pdfapplication/pdf490358https://repositorio.unal.edu.co/bitstream/unal/73886/1/41107-185294-2-PB.pdf874e18a187bcf8d29cf48322aa40bd43MD51THUMBNAIL41107-185294-2-PB.pdf.jpg41107-185294-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg6055https://repositorio.unal.edu.co/bitstream/unal/73886/2/41107-185294-2-PB.pdf.jpgd938dd24f2725f114af31432a0db0023MD52unal/73886oai:repositorio.unal.edu.co:unal/738862024-06-26 23:10:53.62Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
title Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
spellingShingle Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
Ideal
Prime ideal
Semi-prime ideal
Ordered set
Adjoint functions.
Ideal
ideal primo
ideal semi-primo
conjunto ordenado
funciones adjuntas.
title_short Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
title_full Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
title_fullStr Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
title_full_unstemmed Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
title_sort Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
dc.creator.fl_str_mv Acosta, Lorenzo
Rubio, Marcela
dc.contributor.author.spa.fl_str_mv Acosta, Lorenzo
Rubio, Marcela
dc.subject.proposal.spa.fl_str_mv Ideal
Prime ideal
Semi-prime ideal
Ordered set
Adjoint functions.
Ideal
ideal primo
ideal semi-primo
conjunto ordenado
funciones adjuntas.
topic Ideal
Prime ideal
Semi-prime ideal
Ordered set
Adjoint functions.
Ideal
ideal primo
ideal semi-primo
conjunto ordenado
funciones adjuntas.
description Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, then the set of S−maximal ideals of R is a complete lattice, isomorphic to the lattice of the ideals of S. In particular, the annihilator of S in R is the minimum of the S−maximal ideals of R. So the lattice structure of S−maximal ideals of R does not depend on the ring R.On the other hand, the ideals of S can be extended to ideals of R and the ideals of R can be restricted to ideals of S. These two processes are not adjoint to each other, but if we restrict to appropriated collections of ideals we can obtain adjunctions.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:59:17Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:59:17Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73886
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/38363/
url https://repositorio.unal.edu.co/handle/unal/73886
http://bdigital.unal.edu.co/38363/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/bolma/article/view/41107
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380
dc.relation.references.spa.fl_str_mv Acosta, Lorenzo and Rubio, Marcela (2013) Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings. Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Boletín de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73886/1/41107-185294-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73886/2/41107-185294-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 874e18a187bcf8d29cf48322aa40bd43
d938dd24f2725f114af31432a0db0023
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089407753355264