Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings
Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, the...
- Autores:
-
Acosta, Lorenzo
Rubio, Marcela
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73886
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73886
http://bdigital.unal.edu.co/38363/
- Palabra clave:
- Ideal
Prime ideal
Semi-prime ideal
Ordered set
Adjoint functions.
Ideal
ideal primo
ideal semi-primo
conjunto ordenado
funciones adjuntas.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_46407c2e1a0857c18421c46079ce64aa |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73886 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Acosta, Lorenzo7a92a4bb-1eb7-4006-9a61-3b673a1c28c9300Rubio, Marcelaf109d580-1170-4ce4-ae9c-c3785e81e91b3002019-07-03T16:59:17Z2019-07-03T16:59:17Z2013https://repositorio.unal.edu.co/handle/unal/73886http://bdigital.unal.edu.co/38363/Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, then the set of S−maximal ideals of R is a complete lattice, isomorphic to the lattice of the ideals of S. In particular, the annihilator of S in R is the minimum of the S−maximal ideals of R. So the lattice structure of S−maximal ideals of R does not depend on the ring R.On the other hand, the ideals of S can be extended to ideals of R and the ideals of R can be restricted to ideals of S. These two processes are not adjoint to each other, but if we restrict to appropriated collections of ideals we can obtain adjunctions.Dados un anillo conmutativo R y S uno de sus ideales, la función I -- and gt; (I : S), que transforma ideales de R en ideales de R es adjunta a derecha de la función I -- and gt; IS. Se definen los ideales S−maximales de R como aquellos ideales J de R tales que (J : S) = J. Si el anillo S es seudo-regular, entoncesel conjunto de ideales S−maximales de R es un retículo completo, isomorfo al retículo de los ideales de S. En particular, el anulador de S en R es el mínimo de los ideales S−maximales de R. La estructura de retículo de losideales S−maximales de R no depende entonces del anillo R.Por otro lado, los ideales de S se pueden extender a ideales de R y los ideales de R se pueden restringir a ideales de S. Estos dos procesos no son adjuntos entre sí, pero si se restringen a colecciones apropiadas de ideales s´ı se obtienensendas adjunciones.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/41107Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380Acosta, Lorenzo and Rubio, Marcela (2013) Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings. Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380 .Some adjunctions associated with extensions and restrictions of ideals in the context of commutative ringsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTIdealPrime idealSemi-prime idealOrdered setAdjoint functions.Idealideal primoideal semi-primoconjunto ordenadofunciones adjuntas.ORIGINAL41107-185294-2-PB.pdfapplication/pdf490358https://repositorio.unal.edu.co/bitstream/unal/73886/1/41107-185294-2-PB.pdf874e18a187bcf8d29cf48322aa40bd43MD51THUMBNAIL41107-185294-2-PB.pdf.jpg41107-185294-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg6055https://repositorio.unal.edu.co/bitstream/unal/73886/2/41107-185294-2-PB.pdf.jpgd938dd24f2725f114af31432a0db0023MD52unal/73886oai:repositorio.unal.edu.co:unal/738862024-06-26 23:10:53.62Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
title |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
spellingShingle |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings Ideal Prime ideal Semi-prime ideal Ordered set Adjoint functions. Ideal ideal primo ideal semi-primo conjunto ordenado funciones adjuntas. |
title_short |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
title_full |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
title_fullStr |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
title_full_unstemmed |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
title_sort |
Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings |
dc.creator.fl_str_mv |
Acosta, Lorenzo Rubio, Marcela |
dc.contributor.author.spa.fl_str_mv |
Acosta, Lorenzo Rubio, Marcela |
dc.subject.proposal.spa.fl_str_mv |
Ideal Prime ideal Semi-prime ideal Ordered set Adjoint functions. Ideal ideal primo ideal semi-primo conjunto ordenado funciones adjuntas. |
topic |
Ideal Prime ideal Semi-prime ideal Ordered set Adjoint functions. Ideal ideal primo ideal semi-primo conjunto ordenado funciones adjuntas. |
description |
Given a commutative ring R and S one of its ideals, the function I -- and gt; (I : S) that transforms ideals of R into ideals of R, is right adjoint of the function I -- and gt; IS. We define the S−maximal ideals of R as those ideals J of R such that (J : S) = J. If the ring S is pseudo-regular, then the set of S−maximal ideals of R is a complete lattice, isomorphic to the lattice of the ideals of S. In particular, the annihilator of S in R is the minimum of the S−maximal ideals of R. So the lattice structure of S−maximal ideals of R does not depend on the ring R.On the other hand, the ideals of S can be extended to ideals of R and the ideals of R can be restricted to ideals of S. These two processes are not adjoint to each other, but if we restrict to appropriated collections of ideals we can obtain adjunctions. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T16:59:17Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T16:59:17Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73886 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/38363/ |
url |
https://repositorio.unal.edu.co/handle/unal/73886 http://bdigital.unal.edu.co/38363/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/bolma/article/view/41107 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas Boletín de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380 |
dc.relation.references.spa.fl_str_mv |
Acosta, Lorenzo and Rubio, Marcela (2013) Some adjunctions associated with extensions and restrictions of ideals in the context of commutative rings. Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 Boletín de Matemáticas; Vol. 20, núm. 2 (2013); 81-95 2357-6529 0120-0380 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Boletín de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73886/1/41107-185294-2-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73886/2/41107-185294-2-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
874e18a187bcf8d29cf48322aa40bd43 d938dd24f2725f114af31432a0db0023 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089407753355264 |