Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2
fotografías, gráficos, tablas,
- Autores:
-
Macías Quiroga, Iván Fernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81694
- Palabra clave:
- 540 - Química y ciencias afines
Colorantes azoicos
Arcillas pilarizadas
Procesos avanzados de oxidación
Peróxido de hidrógeno activado con bicarbonato
Cinética
Costos
Azo dyes
Pillared clays
Advanced oxidation processes
Bicarbonate-activated hydrogen peroxide system
Kinetics
Costs
Química experimental
Experimental chemistry
Química mineral
Inorganic chemistry
- Rights
- closedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_45d49e3aba99489f20b6c0eafc7724bd |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81694 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
dc.title.translated.eng.fl_str_mv |
Aluminium-Cobalt-Pillared Clays (Al-Co-PILCs) as catalysts for dye degradation using HCO3-/H2O2 system |
title |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
spellingShingle |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 540 - Química y ciencias afines Colorantes azoicos Arcillas pilarizadas Procesos avanzados de oxidación Peróxido de hidrógeno activado con bicarbonato Cinética Costos Azo dyes Pillared clays Advanced oxidation processes Bicarbonate-activated hydrogen peroxide system Kinetics Costs Química experimental Experimental chemistry Química mineral Inorganic chemistry |
title_short |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
title_full |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
title_fullStr |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
title_full_unstemmed |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
title_sort |
Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2 |
dc.creator.fl_str_mv |
Macías Quiroga, Iván Fernando |
dc.contributor.advisor.none.fl_str_mv |
Sanabria González, Nancy Rocío |
dc.contributor.author.none.fl_str_mv |
Macías Quiroga, Iván Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Procesos Químicos Cataliticos y Biotecnológicos |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Colorantes azoicos Arcillas pilarizadas Procesos avanzados de oxidación Peróxido de hidrógeno activado con bicarbonato Cinética Costos Azo dyes Pillared clays Advanced oxidation processes Bicarbonate-activated hydrogen peroxide system Kinetics Costs Química experimental Experimental chemistry Química mineral Inorganic chemistry |
dc.subject.proposal.spa.fl_str_mv |
Colorantes azoicos Arcillas pilarizadas Procesos avanzados de oxidación Peróxido de hidrógeno activado con bicarbonato Cinética Costos |
dc.subject.proposal.eng.fl_str_mv |
Azo dyes Pillared clays Advanced oxidation processes Bicarbonate-activated hydrogen peroxide system Kinetics Costs |
dc.subject.unesco.none.fl_str_mv |
Química experimental Experimental chemistry Química mineral Inorganic chemistry |
description |
fotografías, gráficos, tablas, |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-07-07T19:35:26Z |
dc.date.available.none.fl_str_mv |
2022-07-07T19:35:26Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_15cd |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/PA |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81694 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81694 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 2. Dyes and Pigments: Their Structure and Properties, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 13-29. Barbusiński, K. and Majewski, J. 2003. Discoloration of azo dye acid red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies, 12(2): p. 151-155. Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 5. Colorants in Health and Environmental Aspects, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 69-83. Vacchi, F.I., Albuquerque, A.F., Vendemiatti, J.A., Morales, D.A., Ormond, A.B., Freeman, H.S., Zocolo, G.J., Zanoni, M.V.B., and Umbuzeiro, G. 2013. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Science of the Total Environment, 442: p. 302-309. de Luna, L.A.V., da Silva, T.H.G., Nogueira, R.F.P., Kummrow, F., and Umbuzeiro, G.A. 2014. Aquatic toxicity of dyes before and after photo-Fenton treatment. Journal of Hazardous Materials, 276: p. 332-338. Xu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. 2004. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7): p. 595-600. Nidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20(4): p. 2099-2132. Ramírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323. Lucas, M.S. and Peres, J.A. 2006. Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3): p. 236-244. Arroyave Rojas, J.A., Garcés Giraldo, L.F., and Mejía Trujillo, J. 2009. Empleo del reactivo de Fenton para la degradación del colorante tartrazina. Revista Lasallista de Investigación, 6(1): p. 27-34. Arroyave Rojas, J.A., Rodríguez Gaviria, E.M., Barón Aristizábal, C.A., and Moreno Salazar, C.C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo de Fenton. Producción + Limpia, 7: p. 48-58. Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825. Xu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43. Atalay, S. and Ersöz, G. 2016. Novel Catalysts in Advanced Oxidation of Organic Pollutants. Sharma, S.K. (Ed). Springer International Publishing: Jaipur, India. p. 1-60. Goldstein, S., Meyerstein, D., and Czapski, G. 1993. The Fenton reagents. Free Radical Biology and Medicine, 15(4): p. 435-445. Bokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135. Bauer, W., Berneth, H., Clausen, T., Engel, A., Filosa, M., and Gregory, P. 2002. Chapter 1. Dyes, General Survey, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Frankfurt, Germany. p. 1-12. Saratale, R.G., Saratale, G.D., Chang, J.S., and Govindwar, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): p. 138-157. Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 1. Historical Development of Colorants, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 1-12. Sherwood, M., Baum, H., Bonner, J., Carlson, N., Coghlan, A., Davis, N., Denney, R., Katrizky, A., Praill, P., and Price, R. 1985. Chapter 3. Color and Organic Chemistry, in Life and Science. Chemistry Today. Martin, S. (Ed). Bertelsmann International GmbH: Gütersloh, Germany. p. 66-100. Clarke, E.A. and Anliker, R. 1980. Chapter 7. Organic Dyes and Pigments, in Anthropogenic Compounds. Anliker, R. (Ed). Springer Berlin Heidelberg: Berlin, Germany. p. 181-215. Yagub, M.T., Sen, T.K., Afroze, S., and Ang, H.M. 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209: p. 172-184. Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 3. Classification of Dye and Pigments, in Dyes and Pigments. Sharma, S.K. (Ed). Springer International: Jaipur, India. p. 31-45. Gupta, V.K. and Suhas. 2009. Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management, 90(8): p. 2313-2342. Mishra, G. and Tripathy, M. 1993. A critical review of the treatments for decolourization of textile effluent. Colourage, 40(1): p. 35-38. Purkait, M.K., DasGupta, S., and De, S. 2005. Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management, 76(2): p. 135-142. Clark, M. 2011. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. Clark, M. (Ed). Woodhead Publishing, Elsevier: Cambridge, UK. p. 1-680. García R, A., Aubad L, A., and Zapata P, R. 1985. Capitulo 21. Pinturas y Colorantes, in Química Orgánica. Aubad L, A. (Ed). Temis S.A: Bogotá, Colombia. Hunger, K., Gregory, P., Miederer, P., Berneth, H., Heid, C., and Mennicke, W. 2004. Chapter 2. Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Weinheim, Germany. p. 13-112. Khan, S. and Malik, A. 2014. Chapter 4. Environmental and Health Effects of Textile Industry Wastewater, in Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants. Malik, A., Grohmann, E., and Akhtar, R. (Eds). Springer: Dordrecht, Netherlands. p. 55-71. Robinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255. Banat, I.M., Nigam, P., Singh, D., and Marchant, R. 1996. Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58(3): p. 217-227. Fu, Y. and Viraraghavan, T. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3): p. 251-262. FAO. 2016. Agriculture Organization of the United Nations-FAO, World Health Organization-WHO, Codex Alimentarius, Norma general del Codex para los aditivos alimentarios, Codex Stan 192-1995, Revisión 2016. p. 1-453 Restrepo G, M. 2006. Producción más limpia en la industria alimentaria. Producción + Limpia, 1(1): p. 87-101. Bello E, A., Vásquez M, M.E., Rincón D, D., and López E, Ó. 2005. VIII fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá D. C., Secretaría Distrital de Ambiente, Bogotá, Colombia. p. 16-57 Abdalla, K.Z. and Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1): p. 42-48. Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111 Barrios-Ziolo, L.F., Gaviria-Restrepo, L.F., Agudelo, E.A., and Cardona-Gallo, S.A. 2016. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el Área Metropolitana del Valle de Aburrá. Revista EIA, 13(26): p. 61-74. Banković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V., and Jovanović, D. 2012. Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Applied Clay Science, 58: p. 73-78. Abe, F.R., Soares, A.M.V.M., Oliveira, D.P.d., and Gravato, C. 2018. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environmental Pollution, 235: p. 255-262. Novotný, Č., Dias, N., Kapanen, A., Malachová, K., Vándrovcová, M., Itävaara, M., and Lima, N. 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9): p. 1436-1442. Oller, I., Malato, S., and Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Science of the Total Environment, 409(20): p. 4141-4166. Zhang, X., Li, G., and Wang, Y. 2007. Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source. Dyes and Pigments, 74(3): p. 536-544. Gomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223. Cañizares, P., Martínez, F., Jiménez, C., Lobato, J., and Rodrigo, M.A. 2006. Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science & Technology, 40(20): p. 6418-6424. Atalay, S. and Ersöz, G. 2015. Chapter 3. Advanced Oxidation Processes for Removal of Dyes From Aqueous Media, in Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Wiley and and Scrivener Publishing: New Jersey, USA. p. 83-117. Buthiyappan, A., Abdul Aziz, A.R., and Ashri Wan Daud, W.M. 2016. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1): p. 1-47. Nidheesh, P.V., Zhou, M., and Oturan, M.A. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: p. 210-227. Macías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S.M., and Sanabria-González, N.R. 2021. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28(19): p. 23791-23811. Rauf, M.A. and Ashraf, S.S. 2009. Chapter 9. Application of Advanced Oxidation Processes (AOP) to Dye Degradation -An Overview, in Dyes and Pigments: New Research. Lang, A.R. (Ed). Nova Science: New York, USA. p. 259-290. Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E.R., and Firoozbahr, M. 2020. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143: p. 138-163. Pavithra, K.G., P, S.K., V, J., and P, S.R. 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75: p. 1-19. Katheresan, V., Kansedo, J., and Lau, S.Y. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): p. 4676-4697. Singh, K. and Arora, S. 2011. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9): p. 807-878. Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9): p. 1061-1085. Oturan, M.A. and Aaron, J.J. 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23): p. 2577-2641. Centi, G. and Perathoner, S. 2014. Chapter 10. Advanced Oxidation Processes in Water Treatment, in Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry. Duprez, D. and Cavani, F. (Eds). Imperial College Press: London, UK. p. 251-290. Loures, C., Alcântara, M., Izario-Filho, H., Teixeira, A.C., Silva, F.T., Paiva, T., and Lamas-Samanamud, G. 2013. Advanced oxidative degradation processes: Fundamentals and applications. International Review of Chemical Engineering, 5(2): p. 102-120. Sharma, S., Ruparelia, J., and Patel, M.L. 2011. A general review on advanced oxidation processes for waste water treatment. International Conference on Current Trends in Technology, "Nuicone – 2011”. Nirma University, Ahmedabad, Gujarat, India. p. 1-7 Malakootian, M., Shahesmaeili, A., Faraji, M., Amiri, H., and Silva Martinez, S. 2020. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environmental Protection, 134: p. 292-307. Kanakaraju, D., Glass, B.D., and Oelgemöller, M. 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219: p. 189-207. Krishnan, R.Y., Manikandan, S., Subbaiya, R., Biruntha, M., Govarthanan, M., and Karmegam, N. 2021. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environmental Technology & Innovation, 23: p. Article ID 101757. Salimi, M., Esrafili, A., Gholami, M., Jonidi Jafari, A., Rezaei Kalantary, R., Farzadkia, M., Kermani, M., and Sobhi, H.R. 2017. Contaminants of emerging concern: a review of new approach in AOP technologies. Environmental Monitoring and Assessment, 189(8): p. 414. Camargo-Perea, A.L., Rubio-Clemente, A., and Peñuela, G.A. 2020. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water, 12(4): p. Article ID 1068. Kowalska, K., Maniakova, G., Carotenuto, M., Sacco, O., Vaiano, V., Lofrano, G., and Rizzo, L. 2020. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere, 238: p. Article ID 124665. Maniakova, G., Kowalska, K., Murgolo, S., Mascolo, G., Libralato, G., Lofrano, G., Sacco, O., Guida, M., and Rizzo, L. 2020. Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Separation and Purification Technology, 236: p. Article ID 116249. Poza-Nogueiras, V., Rosales, E., Pazos, M., and Sanromán, M.Á. 2018. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review. Chemosphere, 201: p. 399-416. Sreeja, P.H. and Sosamony, K.J. 2016. A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment. Procedia Technology, 24: p. 217-223. Neyens, E. and Baeyens, J. 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3): p. 33-50. Haber, F. and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 147(861): p. 332-351. Shen, Y., Zhang, Z., and Xiao, K. 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): p. 91846-91854. Rahim P., S., Abdul R., A.A., and Wan D., W.M.A. 2014. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64: p. 24-35. Ramírez, J.H., Vicente, M.A., and Madeira, L.M. 2010. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98(1): p. 10-26. Babuponnusami, A. and Muthukumar, K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): p. 557-572. García-Segura, S., Bellotindos, L.M., Huang, Y.-H., Brillas, E., and Lu, M.-C. 2016. Fluidized-bed Fenton process as alternative wastewater treatment technology - A review. Journal of the Taiwan Institute of Chemical Engineers, 67: p. 211-225. Wang, N., Zheng, T., Zhang, G., and Wang, P. 2016. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1): p. 762-787. Carriazo, J., Bossa-Benavides, L., and Castillo, E. 2012. Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno. Química Nova, 35(6): p. 1101-1106. Luo, M., Lv, L., Deng, G., Yao, W., Ruan, Y., Li, X., and Xu, A. 2014. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205. Duarte, F., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., and Madeira, L.M. 2009. Fenton-like degradation of azo-dye orange II catalyzed by transition metals on carbon aerogels. Applied Catalysis B: Environmental, 85(3): p. 139-147. Nasiruddin Khan, M. and Bhutto, S. 2010. Kinetic study of the oxidatve decolorization of xylenol orange by hydrogen peroxide in micellar medium. Journal of the Chilean Chemical Society, 55(2): p. 170-175. Strlič, M., Kolar, J., Šelih, V., Kocar, D., and Pihlar, B. 2003. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chimica Slovenica, 50(4): p. 619-632. Sawyer, C.N., McCarty, P., and Parkin, G.F. 2001. Química para Ingeniería Ambiental. Sawyer, C.N. (Ed). McGraw-Hill: Bogotá, Colombia. p. 1-680. Riley Tetzlaff, H. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885. de Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224. Drago, R., Frank, K., Yang, Y.C., and Wagner, G. 1998. Catalytic activation of hydrogen peroxide-A green oxidant system. Proceedings of the 1997 ERDEC Scientific Conference on Chemical and Biological Defense Research, US Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD. Springfield, USA. p. 1-882 Yao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221. Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30. Bennett, D.A., Yao, H., and Richardson, D.E. 2001. Mechanism of sulfide oxidations by peroxymonocarbonate. Inorganic Chemistry, 40(13): p. 2996-3001. Balagam, B. and Richardson, D.E. 2008. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-Oxidation of amines. Inorganic Chemistry, 47(3): p. 1173-1178. Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332. Zhao, S., Xi, H., Zuo, Y., Wang, Q., Wang, Z., and Yan, Z. 2018. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. Journal of Hazardous Materials, 344: p. 136-145. Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310. Xu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195. Ember, E., Gazzaz, H.A., Rothbart, S., Puchta, R., and van Eldik, R. 2010. MnII - A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H2O2. Applied Catalysis B: Environmental, 95(3): p. 179-191. Cheng, L., Wei, M., Huang, L., Pan, F., Xia, D., Li, X., and Xu, A. 2014. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(II) ions in bicarbonate aqueous solution. Industrial & Engineering Chemistry Research, 53(9): p. 3478-3485. Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463. Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173. George, S.M. 1995. Introduction: Heterogeneous catalysis. Chemical Reviews, 95(3): p. 475-476. Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839. Zhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410. Long, X., Yang, Z., Wang, H., Chen, M., Peng, K., Zeng, Q., and Xu, A. 2012. Selective degradation of orange II with the Cobalt(II)–Bicarbonate–Hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003. Guo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100. Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211. Liu, J. and Zhang, G. 2014. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Physical Chemistry Chemical Physics, 16(18): p. 8178-8192. Pandey, P. and Saini, V. 2018. Chapter 11. Pillared Interlayered Clays for Pollution Remediation: Innovative Materials, in Green Adsorbents for Pollutant Removal. Fundamentals and Desing. Crini, G. and Lichtfouse, E. (Eds). Springer: Cham, Switzerland. p. 353-376. Kloprogge, J.T. 1998. Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. Journal of Porous Materials, 5(1): p. 5-41. Ding, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., and Zhu, H.Y. 2001. Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8: p. 273-293. Vicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557. Bertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123. Kunio, O., Johji, K., Mitsuru, S., Mikiya, O., and Minoru, T. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847. Fang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94. Su, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329. Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276. Karthikeyan, S., Ezhil Priya, M., Boopathy, R., Velan, M., Mandal, A.B., and Sekaran, G. 2012. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: Kinetic and thermodynamic studies. Environmental Science and Pollution Research, 19(5): p. 1828-1840 Abou-Gamra, Z.M. 2014. Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 4(3): p. 285-291. Hashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318. Ramírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205. Silva, A.M.T., Ramírez, J.H., Söylemez, U., and Madeira, L.M. 2012. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of acid orange 7. Applied Catalysis B: Environmental, 121-122: p. 10-19. Rache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200. Minz, S., Garg, S., and Gupta, R. 2018. Catalytic wet peroxide oxidation of 4-Nitrophenol over Al–Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction. Chemical Engineering Communications, 205(5): p. 667-679. Arimi, M.M. 2017. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27(2): p. 275-282. Covinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229. Lázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283. Panda, N., Sahoo, H., and Mohapatra, S. 2011. Decolourization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite. Journal of Hazardous Materials, 185(1): p. 359-365. Rupa, A.V., Manikandan, D., Divakar, D., and Sivakumar, T. 2007. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. Journal of Hazardous Materials, 147(3): p. 906-913. Bergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220. Behnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102. Santana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822. Li, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378. Krichevskaya, M., Klauson, D., Portjanskaja, E., and Preis, S. 2011. The cost evaluation of advanced oxidation processes in laboratory and pilot-scale experiments. The Journal of the International Ozone Association, 33(3): p. 211-223. Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1): p. 51-59. Mahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003. Sanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33. Cañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420. dos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16. Gil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82. Ibarra-Taquez, H.N., Dobrosz-Gómez, I., and Gómez, M.-Á. 2018. Optimización multiobjetivo del proceso Fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29(5): p. 111-122. Arias, M.E. and Brown, M.T. 2009. Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. Ecological Engineering, 35(7): p. 1070-1078. Lyu, Y., Ye, H., Zhao, Z., Tian, J., and Chen, L. 2020. Exploring the cost of wastewater treatment in a chemical industrial park: Model development and application. Resources, Conservation and Recycling, 155: p. Article ID 104663. Camacho-Gómez, J.A. and Celada-Arango, C.M. 2004. Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. Ministerio de Minas y Energía, Instituto Colombiano de Geología y Minería (Ingeominas), Bogotá, Colombia. p. 1-241 Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2018. Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: p. Article ID 5969178 Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15 Otavo-Loaiza, R.A., Sanabria-González, N.R., and Giraldo-Gómez, G.I. 2019. Tartrazine removal from aqueous solution by HDTMA-Br-modified Colombian bentonite. The Scientific World Journal, 2019: p. Article ID 2042563. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163. Mukherjee, S. 2013. Chapter 2. Classification and Composition of Clay Constituents, in The Science of Clays. Ghosh, B. (Ed). Springer: Dordrecht, Netherlands. p. 23-32. Barton, C.D. and Karathanasis, A.D. 2002. Chapter 45. Clay Minerals, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: New York, USA. p. 187-192. Bergaya, F. and Lagaly, G. 2006. Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 1-18. Sivrikaya, O., Uzal, B., and Ozturk, Y.E. 2017. Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135: p. 532-537. Brigatti, M.F., Galán, E., and Theng, B.K.G. 2006. Chapter 2. Structure And Mineralogy of Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier Science: Amsterdam, Netherlands. p. 21-81. Molina, C.B., Casas, J.A., Pizarro, A.H., and Rodríguez, J.J. 2011. Chapter 16. Pillared Clays as Green Chemistry Catalysts: Application to Wastewater Treatment, in Clay: Types, Properties and Uses. Humphrey, J.P. and Boyd, D.E. (Eds). Nova Science Publishers: New York, USA. p. 435-474. Mackenzie, R.C. 1959. The classification and nomenclature of clay minerals. Clay Minerals Bulletin, 4(21): p. 52-66. Rauf, M.A. 2009. Chapter 11. Removal of Dyes from Solution on Clay Surfaces - An overview, in Dyes and Pigments. New research Lang, A.R. (Ed). Nova Science: New York, USA. p. 314. Kotal, M. and Bhowmick, A.K. 2015. Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Science, 51: p. 127-187. Matocha, C.J. 2006. Chapter 26. Clay: Charge Properties, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: Florida, USA. p. 287-290. Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans. Geological Society of America Bulletin 76(7): p. 803–832. Thorez, J. 1976. Practical Identification of Clay Minerals: A Handbook for Teachers and Students in Clay Mineralogy. Imprimerie G. Lelotte: Liège, Belgium. p. 1-90. Kleeberg, R., Monecke, T., and Hillier, S. 2008. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples? Clays and Clay Minerals, 56(4): p. 404-415. Zhang, G., Germaine, J.T., Martin, R.T., and Whittle, A.J. 2003. A simple sample-mounting method for radndom powder X-ray diffraction. Clays and Clay Minerals, 51(2): p. 218-225. Moore, D.M. and Reynolds, R.C. 1997. Chapter 7. Identification of Clay Minerals and Associated Minerals, in X-Ray Diffraction and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 227-260. Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., and Song, H. 2018. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1): p. 16-29. Kahle, M., Kleber, M., and Jahn, R. 2002. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma, 109(3-4): p. 191-205. Moore, D.M. and Reynolds, R.C. 1997. Chapter 9. Quantitative Analysis, in X-ray Diffraction and the Identification and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 327-360. Stanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., and Radosavljević-Mihajlović, A. 2011. Characterization of bentonite clay from 'Greda' deposit. Processing and Application of Ceramics, 5(2): p. 97-101. de Oliveira, C., Rocha, M., da Silva, A., and Bertolino, L. 2016. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Cerâmica, 62(363): p. 272-277. Darton, N. 1906. Fish remains in Ordovician rocks in Bighorn mountains, Wyoming, with a résumé of Ordovician geology of the northwest. Bulletin of the Geological Society of America, 17(1): p. 541-566. Jaeckels, N., Tenzer, S., Meier, M., Will, F., Dietrich, H., Decker, H., and Fronk, P. 2017. Influence of bentonite fining on protein composition in wine. LWT - Food Science and Technology, 75: p. 335-343. Koyuncu, H., Kul, A.R., Çalımlı, A., Yıldız, N., and Ceylan, H. 2007. Adsorption of dark compounds with bentonites in apple juice. LWT - Food Science and Technology, 40(3): p. 489-497. Granizo, N., Vega, J.M., de la Fuente, D., Simancas, J., and Morcillo, M. 2012. Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Cation-exchange pigments. Progress in Organic Coatings, 75(3): p. 147-161. Cervini-Silva, J., Nieto-Camacho, A., Kaufhold, S., Ufer, K., and Ronquillo de Jesús, E. 2015. The anti-inflammatory activity of bentonites. Applied Clay Science, 118: p. 56-60. Nones, J., Gracher-Riella, H., Gonçalves-Trentin, A., and Nones, J. 2015. Effects of bentonite on different cell types: A brief review. Applied Clay Science, 105-106: p. 225-230. Al-Shahrani, S.S. 2014. Treatment of wastewater contaminated with cobalt using saudi activated bentonite. Alexandria Engineering Journal, 53(1): p. 205-211. Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., Reitzel, K., Spears, B.M., Winfield, I.J., Crosa, G., D'Haese, P., Yasseri, S., and Lürling, M. 2016. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 97: p. 162-174. Sanabria, N.R., Centeno, M.A., Molina, R., and Moreno, S. 2009. Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Applied Catalysis A: General, 356(2): p. 243-249. Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J., and Moreno, S. 2003. Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Applied Clay Science, 22(6): p. 303-308. de Stefanis, A. and Tomlinson, A.A.G. 2006. Towards designing pillared clays for catalysis. Catalysis Today, 114(2–3): p. 126-141. Laguna E., O.H. 2007. Efecto del contenido esmectítico en procesos de pilarización de minerales arcillosos provenientes de la cordillera central de Colombia. Tesis de Maestría en Ciencias-Química. Departamento de Química-Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá, Colombia. p. 1-152 Laguna E., O.H., Molina G., C.M., Moreno, S., and Molina G., R. 2008. Naturaleza mineralógica de esmectitas provenientes de la formación Honda (noreste del Tolima - Colombia). Boletín de Ciencias de la Tierra, 23: p. 55-68. Carriazo, J., Centeno, M., Odriozola, J., Moreno, S., and Molina, R. 2007. Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General, 317(1): p. 120-128. Galeano, L.A., Gil, A., and Vicente, M.A. 2010. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Applied Catalysis B: Environmental, 100(1–2): p. 271-281. Pérez, A., Centeno, M.A., Odriozola, J.A., Molina, R., and Moreno, S. 2008. The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions. Catalysis Today, 133–135: p. 526-529. Sanabria, N.R., Ávila, P., Yates, M., Rasmussen, S.B., Molina, R., and Moreno, S. 2010. Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 47(3–4): p. 283-289. Sanabria, N.R. 2009. Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’s) en estado sólido y su viabilidad en la obtención de extrusados. Tesis de Doctorado en Ciencias Química. Departamento de química-Facultad de Ciencias. Universidad Nacional de Colombia, Bogotá, Colombia. p. 1-191 Aloui, L., Ayari, F., Ben Othman, A., and Trabelsi-Ayadi, M. 2015. Heavy metals removal from watercourses by low cost natural Tunisian material environmental protection. International Journal of Engineering and Applied Sciences, 2(7): p. 33-38. de Oliveira, T., Guégan, R., Thiebault, T., Milbeau, C.L., Muller, F., Teixeira, V., Giovanela, M., and Boussafir, M. 2017. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. Journal of Hazardous Materials, 323: p. 558-566. Lee, Y.-C., Park, W.-K., and Yang, J.-W. 2011. Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 190(1): p. 652-658. Cool, P. and Vansant, E.F. 1998. Chapter 9. Pillared Clays: Preparation, Characterization and Applications, in Synthesis. Karge, H.G. and Weitkamp, J. (Eds). Springer: Berlin, Germany. p. 265-288. Bergaya, F., Aouad, A., and Mandalia, T. 2006. Chapter 7.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 393-421. Gil, A., Santamaría, L., Korili, S.A., Vicente, M.A., Barbosa, L.V., de Souza, S.D., Marçal, L., de Faria, E.H., and Ciuffi, K.J. 2021. A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering, 9(5): p. Article ID 105808. Figueras, F. 1988. Pillared clays as catalysts. Catalysis Reviews, 30(3): p. 457-499. Mesmer, R.E. and Baes, C.F. 1990. Review of hydrolysis behavior of ions in aqueous solutions. MRS Online Proceedings Library (OPL), 180: p. 85-96. Zhu, J., Wen, K., Zhang, P., Wang, Y., Ma, L., Xi, Y., Zhu, R., Liu, H., and He, H. 2017. Keggin-Al30 pillared montmorillonite. Microporous and Mesoporous Materials, 242: p. 256-263. Johansson, G. 1960. On the crystal structures of some basic aluminum salts. Acta Chemica Scandinavica, 14(3): p. 771-773. Johansson, G. 1962. The crystal structures of [Al2(OH)2(H2O)8](SO4)2. 2H2O and [Al2(OH)2(H2O)8](SeO4)2. 2H2O. Acta Chemica Scandinavica, 16(2): p. 403-420. Aouad, A., Pineau, A., Tchoubar, D., and Bergaya, F. 2006. Al-pillared montmorillonite obtained in concentrated media. Effect of the anions (nitrate, sulfate and chloride) associated with the Al species. Clays and Clay Minerals, 54(5): p. 626-637. Keggin, J.F. and Bragg, W.L. 1934. The structure and formula of 12-phosphotungstic acid. Royal Society Publishing A, 144(851): p. 75-100. Lin, J.-L., Huang, C., Chin, C.-J.M., and Pan, J.R. 2009. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PAC1 coagulation. Water Research, 43(17): p. 4285-4295. Rustad, J., Loring, J., and Casey, W. 2004. Oxygen-exchange pathways in aluminum polyoxocations. Geochimica et Cosmochimica Acta, 68(14): p. 3011-3017. Barrer, R.M. and MacLeod, D.M. 1955. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society, 51: p. 1290-1300. Oszkó, A., Kiss, J., and Kiricsi, I. 1999. XPS investigations on the feasibility of isomorphous substitution of octahedral Al3+ for Fe3+ in Keggin ion salts. Physical Chemistry Chemical Physics, 1(10): p. 2565-2568. Thomas, S.M., Bertrand, J.A., Occelli, M.L., Stencel, J.M., and Gould, S.A.C. 1999. Synthesis and characterization of expanded smectites containing trinuclear Co complexes. Chemistry of Materials, 11(4): p. 1153-1164. Urruchurto, C.M., Carriazo, J.G., Osorio, C., Moreno, S., and Molina, R.A. 2013. Spray-drying for the preparation of Al–Co–Cu pillared clays: A comparison with the conventional hot-drying method. Powder Technology, 239: p. 451-457. Bertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123. Banković, P., Mojović, Z., Milutinović-Nikolić, A., Jović-Jovičić, N., Marinović, S., and Jovanović, D. 2010. Mixed pillared bentonite for electrooxidation of phenol. Applied Clay Science, 49(1-2): p. 84-89. Kollár, M., De Stefanis, A., Solt, H.E., Mihályi, M.R., Valyon, J., and Tomlinson, A.A.G. 2010. The mechanism of the Fischer–Tropsch reaction over supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical, 333(1): p. 37-45. Sietsma, J.R.A., Jos van Dillen, A., de Jongh, P.E., and de Jong, K.P. 2006. Chapter 12. Application of Ordered Mesoporous Materials as Model Supports to Study Catalyst Preparation by Impregnation and Drying, in Studies in Surface Science and Catalysis. Gaigneaux, E.M., Devillers, M., De Vos, D.E., Hermans, S., Jacobs, P.A., Martens, J.A., and Ruiz, P. (Eds). Elsevier: Louvain, Belgium p. 95-102. Haukka, S., Lakomaa, E.L., and Suntola, T. 1999. Chapter 23. Adsorption Controlled Preparation of Heterogeneous Catalysts, in Studies in Surface Science and Catalysis. Dąbrowski, A. (Ed). Elsevier Science B.V.: Amsterdam, Netherlands. p. 715-750. Royer, S., Leroux, C., Revel, R., Rouleau, L., and Morin, S. 2006. Synthesis and surface reactivity of nanocomposite support Al2O3/α-Al2O3. Studies in Surface Science and Catalysis, 162: p. 441-448. Cardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25. Gil, A., Gandía, L.M., and Vicente, M.A. 2000. Recent Advances in the Synthesis and Catalytic Applications of Pillared Clays. Catalysis Reviews, 42(1-2): p. 145-212. Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O. 2009. Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catalysis Today, 141(3): p. 385-392. Marcos, F.C.F., Assaf, J.M., and Assaf, E.M. 2018. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 458: p. 297-306. González, E. and Moronta, A. 2004. The dehydrogenation of ethylbenzene to styrene catalyzed by a natural and an Al-pillared clays impregnated with cobalt compounds: A comparative study. Applied Catalysis A: General, 258(1): p. 99-105. Su, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329. Hao, Q.-Q., Wang, G.-W., Liu, Z.-T., Lu, J., and Liu, Z.-W. 2010. Co/pillared clay bifunctional catalyst for controlling the product distribution of Fischer−Tropsch synthesis. Industrial & Engineering Chemistry Research, 49(19): p. 9004-9011. Zhao, Y.-H., Song, Y.-H., Hao, Q.-Q., Wang, Y.-J., Wang, W., Liu, Z.-T., Zhang, D., Liu, Z.-W., Zhang, Q.-J., and Lu, J. 2015. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 138: p. 116-124. El Gaidoumi, A., Loqman, A., Benadallah, A.C., El Bali, B., and Kherbeche, A. 2019. Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10(4): p. 1043-1051. Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276. Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211. Lee, J., von Gunten, U., and Kim, J.-H. 2020. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 54(6): p. 3064-3081. Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Research, 39(16): p. 3891-3899. Gálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87. Santos Silva, A., Seitovna Kalmakhanova, M., Kabykenovna Massalimova, B., G. Sgorlon, J., Jose Luis, D.d.T., and T. Gomes, H. 2019. Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts, 9(9): p. Aticle ID 705. Khankhasaeva, S.T. and Badmaeva, S.V. 2020. Removal of p-aminobenzenesulfanilamide from water solutions by catalytic photo-oxidation over Fe-pillared clay. Water Research, 185: p. Article ID 116212. Abdennouri, M., Baâlala, M., Galadi, A., El Makhfouk, M., Bensitel, M., Nohair, K., Sadiq, M., Boussaoud, A., and Barka, N. 2016. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 9: p. S313-S318. Bobu, M., Yediler, A., Siminiceanu, I., and Schulte-Hostede, S. 2008. Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental, 83(1): p. 15-23. Gong, Z., Liao, L., Lv, G., and Wang, X. 2016. A simple method for physical purification of bentonite. Applied Clay Science, 119: p. 294-300. Sanabria, N., Molina, R., and Moreno, S. 2012. Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the post treatment of coffee wastewater. International Journal of Photoenergy, 2012: p. Article ID 864104. Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294. Yilmaz, I. 2004. Relationships between liquid limit, cation exchange capacity, and swelling potentials of clayey soils. Eurasian Soil Science, 37(5): p. 506-512. Grim, R.E. 1968. Clay Mineralogy. Grim, R.E. (Ed). McGraw-Hill Book Company, Inc.: New York, USA. p. 1-596. Carlson, L. 2004. Bentonite mineralogy. Part 1: Methods of investigation—A literature review /Part 2: Mineralogical research of selected bentonites. Working Report 2002-02. Olkilouto, Finland. p. 1-108 Russell, J.D. and Fraser, A.R. 1994. Chapter 2. Infrared Methods, in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Wilson, M.J. (Ed). Springer: Dordrecht, Netherlands. p. 11-67. Madejova, J. and Komadel, P. 2001. Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49(5): p. 410-432. Madejová, J., Janek, M., Komadel, P., Herbert, H.J., and Moog, H.C. 2002. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20(6): p. 255-271. Carriazo, J., Molina, R., and Moreno, S. 2007. Caracterización estructural y textural de una bentonita colombiana. Revista Colombiana de Química, 36(2): p. 213-225. Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1): p. 1-10. Silva, L.S., Lima, L.C.B., Silva, F.C., Matos, J.M.E., Santos, M.R.M.C., Santos Júnior, L.S., Sousa, K.S., and da Silva Filho, E.C. 2013. Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chemical Engineering Journal, 218: p. 89-98. Nasiruddin Khan, M. and Sarwar, A. 2007. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters, 14(3): p. 461-469. Amaringo Villa, F.A. and Anaguano, A.H. 2013. Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental, 4(2): p. 27-36. Pecini, E.M. and Avena, M.J. 2013. Measuring the Isoelectric Point of the Edges of Clay Mineral Particles: The Case of Montmorillonite. Langmuir, 29(48): p. 14926-14934. Bohor, B.F. and Hughes, R.E. 1971. Scanning electron microscopy of clays and clay minerals. Clays and Clay Minerals, 19(1): p. 49-54. McPhee, C., Reed, J., and Zubizarreta, I. 2015. Chapert 4. Core Sample Preparation, in Core Analysis. A Best Practice Guide. McPhee, C., Reed, J., and Zubizarreta, I. (Eds). Elsevier: Oxford, UK. p. 135-179. Garcés-Aguilar, W. and Garcés, R. 2017. Caracterización de las arcillas del norte del Cauca, Colombia enclave para la optimización del proceso productivo de la industria ladrillera. Journal de Ciencia e Ingenieria, 9(1): p. 34-41. ASTM. 2010. D4318-05m, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, D-18 on Soil Rock, West Conshohocken, USA. p. 1-16 Rao, S.M., Kachroo, T.A., Allam, M.M., Joshi, M., and Acharya, A. 2008. Geotechnical characterization of some Indian bentonites for their use as buffer material in geological repository. Proceedings of 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Citeseer. p. 1-6 White, A.W. 1949. Atterberg plastic limits of clay minerals. American Mineralogist: Journal of Earth Planetary Materials, 34(7-8): p. 508-512. Ismaeel, S.H., Mabrouk, M.S., Ali, A.A.-A., and Abn Elwalead, K. 2017. Synthesis and characterization of bentonite nanocomposites from Egyptian bentonitic clay. International Journal of Nanotechnology and Allied Sciences, 1(1): p. 16-29. Bleam, W.F. 2012. Chapter 3. Clay Mineralogy and Clay Chemistry, in Soil and Environmental Chemistry. Bleam, W.F. (Ed). Academic Press: Oxford, UK. p. 85-116. Gil, A., Korili, S.A., Trujillano, R., and Vicente, M.A. 2011. A review on characterization of pillared clays by specific techniques. Applied Clay Science, 53(2): p. 97-105. Wang, M. and Muhammed, M. 1999. Novel synthesis of Al13-cluster based alumina materials. Nanostructured Materials, 11(8): p. 1219-1229. Furrer, G., Ludwig, C., and Schindler, P.W. 1992. On the chemistry of the Keggin Al13 polymer: I. Acid-base properties. Journal of Colloid and Interface Science, 149(1): p. 56-67. Duong, L.V., Wood, B.J., and Kloprogge, J.T. 2005. XPS study of basic aluminum sulphate and basic aluminium nitrate. Materials Letters, 59(14): p. 1932-1936. Casey, W.H. 2006. Large Aqueous Aluminum Hydroxide Molecules. Chemical Reviews, 106(1): p. 1-16. Arnoldy, P. and Moulijn, J.A. 1985. Temperature-programmed reduction of CoOAI2O3 catalysts. Journal of Catalysis, 93(1): p. 38-54. Gayer, K.H. and Garrett, A.B. 1950. The solubility of cobalt hydroxide, Co(OH)2, in solutions of hydrochloric acid and sodium hydroxide at 25°. Journal of the American Chemical Society, 72(9): p. 3921-3923. Ohtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847. Kishi, Y., Shigemi, S., Doihara, S., Mostafa, M.G., and Wase, K. 1998. Study on the hydrolysis of cobalt ions in aqueous solution. Hydrometallurgy, 47(2): p. 325-338. Fang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94. Tetsuka, H., Katayama, I., Sakuma, H., and Tamura, K. 2018. Effects of humidity and interlayer cations on the frictional strength of montmorillonite. Earth, Planets and Space, 70(1): p. 56. Pálinkó, I., Lázár, K., and Kiricsi, I. 1997. Cationic mixed pillared layer clays: Infrared and Mössbauer characteristics of the pillaring agents and pillared structures in Fe,Al and Cr,Al pillared montmorillonites. Journal of Molecular Structure, 410-411(4): p. 547-550. Bradley, S.M., Kydd, R.A., Yamdagni, R., and Fyfe, C.A. 1992. Chapter 2. Ga13, GaAl12, and Al13 Polyoxocations and Pillared Clays, in Expanded Clays and Other Microporous Solids. Occelli, M.L. and Robson, H.E. (Eds). Springer: Boston, USA. p. 13-31. Douglas, B.E., McDaniel, D.H., and Alexander, J.J. 1994. Concepts and Models of Inorganic Chemistry. Dean F, M. (Ed). Wiley New York, USA. p. 1-928. Thommes, M., Kaneko, K., V. Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquerol, J., and Sing, K. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): p. 1051–1069. Leofanti, G., Padovan, M., Tozzola, G., and Venturelli, B. 1998. Surface area and pore texture of catalysts. Catalysis Today, 41(1): p. 207-219. Ramsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., and Coles, B.J. 1995. An objective assessment of analytical method precision: Comparison of ICP-AES and XRF for the analysis of silicate rocks. Chemical Geology, 124(1): p. 1-19. Mnasri Ghnimi, S. and Frini-Srasra, N. 2018. A comparison of single and mixed pillared clays for zinc and chromium cations removal. Applied Clay Science, 158: p. 150-157. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): p. 603-619. Gil, A. and Montes, M. 1994. Analysis of the microporosity in pillared clays. Langmuir, 10(1): p. 291-297. Vicente, M.A., Belver, C., Trujillano, R., Rives, V., Álvarez, A.C., Lambert, J.F., Korili, S.A., Gandı́a, L.M., and Gil, A. 2004. Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Applied Catalysis A: General, 267(1-2): p. 47-58. Colín L, J.A., Reyes, J.A.d.l., Vázquez, A., and Montoya, A. 2005. Pillar effects in MoS2 catalysts supported on Al and Zr pillared clays in a hydrotreatment reaction: A preliminary study. Applied Surface Science, 240(1): p. 48-62. Vicente, M.A. and Lambert, J.-F. 2001. Synthesis of Pt pillared clay nanocomposite catalysts from [PtII(NH3)4]Cl2 precursor. Physical Chemistry Chemical Physics, 3(21): p. 4843-4852. van Wormer, K. and Besthorn, F.H. 2017. Chapter 7. Human Behavior and the Natural Environment: The Community of the Earth, in Human Behavior and the Social Environment, Macro Level: Groups, Communities, and Organizations. Van Wormer, K. and Besthorn, F.H. (Eds). Oxford University Press: Oxford, UK. p. 243-297. WWAP. 2019. United Nations World Water Assessment Programme. The United Nations world water development report 2019: leaving no one behind, Facts and Figures. UNESCO, Paris, France. p. 1-12 Celis-Zapata, L.P. 2013. Análisis de la política pública de agua potable y saneamiento básico para el sector rural en Colombia-período de gobierno 2010-2014. Tesis de Maestría en Política Social. Pontificia Universidad Javeriana. Departamento de Ciencia Política - Facultad de Ciencias Políticas y Relaciones Internacionales. Bogotá, Colombia. p. 1-97 WWAP. 2017. United Nations World Water Assessment Programme. The United Nations World Water Development Report 2017: Wastewater - Facts and Figure, The Untapped Resource. UNESCO, Paris, France. p. 1-12 Dotto, G.L., Esquerdo, V.M., Vieira, M.L.G., and Pinto, L.A.A. 2012. Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids and Surfaces B: Biointerfaces, 91: p. 234-241. Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., and El Harfi, A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11): p. Article ID e02711. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., and Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2): p. 275-290. Pereira, L. and Alves, M. 2012. Chapter 4. Dyes - Environmental Impact and Remediation, in Environmental Protection Strategies for Sustainable Development. Malik, A. and Grohmann, E. (Eds). Springer: Dordrecht, Netherlands. p. 111-162. Rawat, D., Mishra, V., and Sharma, R.S. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere, 155: p. 591-605. Barrios-Ziolo, L.-F., Gaviria-Restrepo, L.-F., Agudelo, E.A., and Cardona-Gallo, S.A. 2017. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el area metropolitana del valle de aburra. Revista EIA, 13(26): p. 61-74. Gutiérrez, D.L. 2020. El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338 Gomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223. Pirvu, F., Iancu, V.-I., Niculescu, M., Lehr, C., Pascu, L., and Galaon, T. 2020. Environmental detection of brilliant blue, sunset yellow and tartrazine using direct injection HPLC-DAD technique. Revista de Chimie, 71(6): p. 390-400. Motta, C.M., Simoniello, P., Arena, C., Capriello, T., Panzuto, R., Vitale, E., Agnisola, C., Tizzano, M., Avallone, B., and Ferrandino, I. 2019. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environmental Pollution, 253: p. 1126-1135. Ameta, S.C. 2018. Chapter 1. Introduction, in Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology. Ameta, S.C. and Ameta, R. (Eds). Academic Press: London, UK. p. 1-12. Jamee, R. and Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4): p. 114-118. Vincenzo, V., Giuseppina, I., Luigi, R., and Diana, S. 2017. Advanced oxidation processes for the removal of food dyes in wastewater. Current Organic Chemistry, 21(12): p. 1068-1073. Robinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255. Bokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135. Tetzlaff, H.R. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885. de Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224. Payne, G.B. 1961. Reactions of hydrogen peroxide. VIII. Oxidation of isopropylidenemalononitrile and ethyl isopropylidenecyanoacetate. The Journal of Organic Chemistry, 26(3): p. 663-668. Yao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221. Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825. Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332. Xu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195. Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111. Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463. Bruland, K.W., Donat, J.R., and Hutchins, D.A. 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577. Barceloux, D.G. and Barceloux, D. 1999. Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): p. 201-216. Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173. Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839. Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310. Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211. Cardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25. Torres, M., de los Santos, C., Portugau, P., Yeste, M.D.P., and Castiglioni, J. 2021. Utilization of a PILC-Al obtained from Uruguayan clay as support of mesoporous MnOx-catalysts on the combustion of toluene. Applied Clay Science, 201: p. Article ID 105935. Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276. Schoonheydt, R.A., Pinnavaia, T., Lagaly, G., and Gangas, N. 1999. Pillared clays and pillared layered solids (technical report). Pure and Applied Chemistry 71(12): p. 2367-2371. Gil, A., Massinon, A., and Grange, P. 1995. Analysis and comparison of the microporosity in Al-, Zr- and Ti-pillared clays. Microporous Materials, 4(5): p. 369-378. Zuo, S., Yang, P., and Wang, X. 2017. Efficient and environmentally friendly synthesis of AlFe-PILC-Supported MnCe catalysts for benzene combustion. ACS Omega, 2(8): p. 5179-5186. Gálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87. Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15 Vicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557. Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press. Jawad, A., Lu, X., Chen, Z., and Yin, G. 2014. Degradation of chlorophenols by supported Co–Mg–Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. The Journal of Physical Chemistry A, 118(43): p. 10028-10035. Zhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410. Ay, F., Catalkaya, E.C., and Kargi, F. 2009. A statistical experiment design approach for advanced oxidation of direct red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162(1): p. 230-236. Abdel-Rahman, M.A., Hassan, S.E.D., El-Din, M.N., Azab, M.S., El-Belely, E.F., Alrefaey, H.M.A., and Elsakhawy, T. 2020. One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Applied Sciences, 2(4): p. Article ID 573. Ramírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76. Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294. Francis, F., Sabu, A., Nampoothiri, K.M., Ramachandran, S., Ghosh, S., Szakacs, G., and Pandey, A. 2003. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2): p. 107-115. Al-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A.A., Lafi, W.K., Al-Othman, A., and Alsheyab, M. 2020. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Science of the Total Environment, 700: p. Article ID 134576. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163. Singh, S.K., Dodge, J., Durrani, M.J., and Khan, M.A. 1995. Optimization and characterization of controlled release pellets coated with an experimental latex: I. Anionic drug. International Journal of Pharmaceutics, 125(2): p. 243-255. Sánchez-Lafuente, C., Furlanetto, S., Fernández-Arévalo, M., Alvarez-Fuentes, J., Rabasco, A.M., Faucci, M.T., Pinzauti, S., and Mura, P. 2002. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design. International Journal of Pharmaceutics, 237(1): p. 107-118. Pelalak, R., Alizadeh, R., Ghareshabani, E., and Heidari, Z. 2020. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Science of the Total Environment, 734: p. Article ID 139446. Narayanasamy, L. and Murugesan, T. 2014. Degradation of alizarin yellow R using UV/H2O2 advanced oxidation process. Environmental Progress & Sustainable Energy, 33(2): p. 482-489. Abu Amr, S.S., Aziz, H.A., and Adlan, M.N. 2013. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Management, 33(6): p. 1434-1441. Muniyasamy, A., Sivaporul, G., Gopinath, A., Lakshmanan, R., Altaee, A., Achary, A., and Velayudhaperumal Chellam, P. 2020. Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process - Ozonation: Experimental & partial derivative modelling approach. Journal of Environmental Management, 265: p. Article ID 110397. Wang, Z.-P., Wang, Z.-W., and Xu, K. 2017. Optimization of wet denitration by dual oxidant (H2O2/S2O82−) advanced oxidation process. Fuel Processing Technology, 156: p. 82-89. Abbey, J., Fields, B., O'Mullane, M., and Tomaska, L.D. 2014. Chapter 23. Food Additives: Colorants, in Encyclopedia of Food Safety. Motarjemi, Y. (Ed). Academic Press: Waltham, USA. p. 459-465. Benincá, C., Peralta-Zamora, P., Tavares, C.R.G., and Igarashi-Mafra, L. 2013. Degradation of an azo dye (ponceau 4R) and treatment of wastewater from a food industry by ozonation. Ozone: Science & Engineering, 35(4): p. 295-301. Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236. Guo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100. Guechi, E.-K. and Hamdaoui, O. 2016. Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies. Desalination and Water Treatment, 57(22): p. 10270-10285. Aguiar, J.E., Bezerra, B.T.C., Siqueira, A.C.A., Barrera, D., Sapag, K., Azevedo, D.C.S., Lucena, S.M.P., and Silva, I.J. 2014. Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49(5): p. 741-751. Valverde, J.L., de Lucas, A., Sánchez, P., Dorado, F., and Romero, A. 2003. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B: Environmental, 43(1): p. 43-56. Bahranowski, K., Kielski, A., Serwicka, E.M., Wisła-Walsh, E., and Wodnicka, K. 2000. Influence of doping with copper on the texture of pillared montmorillonite catalysts. Microporous and Mesoporous Materials, 41(1): p. 201-215. Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107-108: p. 126-132. Ohtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847. Bagal, M.V. and Gogate, P.R. 2012. Sonochemical degradation of alachlor in the presence of process intensifying additives. Separation and Purification Technology, 90: p. 92-100. Chaplin, B.P., Schrader, G., and Farrell, J. 2010. Electrochemical destruction of N-nitrosodimethylamine in reverse osmosis concentrates using boron-doped diamond film electrodes. Environmental Science & Technology, 44(11): p. 4264-4269. Wu, C. and Linden, K.G. 2010. Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research, 44(12): p. 3585-3594. Gultekin, I. and Ince, N.H. 2004. Degradation of reactive azo dyes by UV/H2O2: Impact of radical scavengers. Journal of Environmental Science and Health, Part A, 39(4): p. 1069-1081. Huang, J. and Mabury, S.A. 2000. A new method for measuring carbonate radical reactivity toward pesticides. Environmental Toxicology and Chemistry, 19(6): p. 1501-1507. Hung, H.-M., Kang, J.-W., and Hoffmann, M.R. 2002. The Sonolytic Destruction of Methyl tert-Butyl Ether Present in Contaminated Groundwater. Water Environment Research, 74(6): p. 545-556. Minero, C., Pellizzari, P., Maurino, V., Pelizzetti, E., and Vione, D. 2008. Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental, 77(3-4): p. 308-316. Richardson, D.E., Regino, C.A.S., Yao, H., and Johnson, J.V. 2003. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radical Biology and Medicine, 35(12): p. 1538-1550. Regino, C.A.S. and Richardson, D.E. 2007. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 360(14): p. 3971-3977. Arslan, I. and Balcioğlu, I.A. 1999. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2): p. 95-108. Wu, C.-H. and Chang, C.-L. 2006. Decolorization of reactive red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. Journal of Hazardous Materials, 128(2-3): p. 265-272. Sadik, W. and Shama, G. 2002. UV-Induced decolourization of an azo dye by homogeneous advanced oxidation processes. Process Safety and Environmental Protection, 80(6): p. 310-314. Giwa, A.-R.A., Bello, I.A., Olabintan, A.B., Bello, O.S., and Saleh, T.A. 2020. Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue. Heliyon, 6(8): p. Article ID e04454. Hashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318. Chirchi, L. and Ghorbel, A. 2002. Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Applied Clay Science, 21(5): p. 271-276. Sun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., and Zhou, Q. 2009. Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2): p. 1052-1057. Santana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163. Behnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102. Nicodemos-Ramos, M.D., Sousa, L.A., and Aguiar, A. 2020. Effect of cysteine using Fenton processes on decolorizing different dyes: A kinetic study. Environmental Technology: p. 1-13. Ramírez, J.H. and Madeira, L., 2010. Chapter 6. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes, in Pillared Clays and Related Catalysts. Gil, A., Korili, S., Trujillano, R., and Vicente, M. (Eds). Springer, New York, USA. p. 129-165. Levenspiel, O., 2007. Chapter 18. Solid Catalyzed Reactions, in Chemical Reactor Engineering. Levenspiel, O. (Ed). John Wiley and Sons, Chichester, UK. p. 376-426. Ramírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205. Timofeeva, M.N., Khankhasaeva, S.T., Badmaeva, S.V., Chuvilin, A.L., Burgina, E.B., Ayupov, A.B., Panchenko, V.N., and Kulikova, A.V. 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Applied Catalysis B: Environmental, 59(3-4): p. 243-248. Luo, M., Bowden, D., and Brimblecombe, P. 2009. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Applied Catalysis B: Environmental, 85(3): p. 201-206. Donlagić, J. and Levec, J. 1998. Comparison of Catalyzed and Noncatalyzed Oxidation of Azo Dye and Effect on Biodegradability. Environmental Science & Technology, 32(9): p. 1294-1302. Silva, A.M.T., Quinta-Ferreira, R.M., and Levec, J. 2003. Catalytic and Noncatalytic Wet Oxidation of Formaldehyde. A Novel Kinetic Model. Industrial & Engineering Chemistry Research, 42(21): p. 5099-5108. Levec, J. 1997. Oxidation of an Azo Dye in Subcritical Aqueous Solutions. Industrial & Engineering Chemistry Research, 36(9): p. 3480-3486. Gordon, T.R. and Marsh, A.L. 2009. Temperature dependence of the oxidation of 2-chlorophenol by hydrogen peroxide in the presence of goethite. Catalysis Letters, 132(3): p. 349-354. Khieu, D.Q., Quang, D.T., Lam, T.D., Phu, N.H., Lee, J.H., and Kim, J.S. 2009. Fe-MCM-41 with highly ordered mesoporous structure and high Fe content: Synthesis and application in heterogeneous catalytic wet oxidation of phenol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65(1): p. 73-81. Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15 Covinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229. Lázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283. Bergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220. Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-González, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. 1-12. Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332. Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825. Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463. Li, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378. Xu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43. Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310. Gosetti, F., Gianotti, V., Polati, S., and Gennaro, M.C. 2005. HPLC-MS degradation study of E110 sunset yellow FCF in a commercial beverage. Journal of Chromatography A, 1090(1-2): p. 107-115. Astals, S., Batstone, D.J., Tait, S., and Jensen, P.D. 2015. Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research, 81: p. 208-215. Guélou, E., Barrault, J., Fournier, J., and Tatibouët, J.-M. 2003. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Applied Catalysis B: Environmental, 44(1): p. 1-8. Barrault, J., Bouchoule, C., Tatibouët, J.M., Abdellaoui, M., Majesté, A., Louloudi, I., Papayannakos, N., and Gangas, N.H. 2000. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Studies in Surface Science and Catalysis, 130: p. 749-754. Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294. Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30. Takagi, J. and Ishigure, K. 1985. Thermal Decomposition of Hydrogen Peroxide and Its Effect on Reactor Water Monitoring of Boiling Water Reactors. Nuclear Science and Engineering, 89(2): p. 177-186. Lin, C., Smith, F., Ichikawa, N., Baba, T., and Itow, M. 1991. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. Journal of International Journal of Chemical Kinetics, 23(11): p. 971-987. Ramírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76. Ramírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323. Yuranova, T., Enea, O., Mielczarski, E., Mielczarski, J., Albers, P., and Kiwi, J. 2004. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 49(1): p. 39-50. Sum, O.S.N., Feng, J., Hub, X., and Yue, P.L. 2005. Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1): p. 233-242. Revell, L.E. and Williamson, B.E. 2013. Why are some reactions slower at higher temperatures? Journal of Chemical Education, 90(8): p. 1024-1027. Mozurkewich, M. and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells. The Journal of Physical Chemistry, 88(25): p. 6429-6435. Mozurkewich, M., Lamb, J.J., and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 2. Hydroxyl + carbon monoxide. The Journal of Physical Chemistry, 88(25): p. 6435-6441. Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236. Moreira, F.C., García-Segura, S., Vilar, V.J.P., Boaventura, R.A.R., and Brillas, E. 2013. Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Applied Catalysis B: Environmental, 142-143: p. 877-890. Chaimaa, B. and Byoud, F. 2017. Decolorization and degradation of ponceau 4R by the super-iron (VI) in an aqueous solution. Journal of Materials and Environmental Science, 8(5): p. 1668-1675. Terres, J., Battisti, R., Andreaus, J., and de Jesus, P.C. 2014. Decolorization and degradation of indigo carmine dye from aqueous solution catalyzed by horseradish peroxidase. Biocatalysis and Biotransformation, 32(1): p. 64-73. Yang, J. 1987. Analysis of Dye. Chemical Industry Press, 1: p. 156–163. El-Desoky, H.S., Ghoneim, M.M., and Zidan, N.M. 2010. Decolorization and degradation of ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264(1): p. 143-150. Fónagy, O., Szabó-Bárdos, E., and Horváth, O. 2021. 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407: p. Article ID 113057. Kan, H., Soklun, H., Yang, Z., Wu, R., Shen, J., Qu, G., and Wang, T. 2020. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. Article ID 115974. Phaniendra, A., Jestadi, D.B., and Periyasamy, L. 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1): p. 11-26. Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173. Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839. Tanaka, K., Padermpole, K., and Hisanaga, T. 2000. Photocatalytic degradation of commercial azo dyes. Water Research, 34(1): p. 327-333. Guivarch, E., Trevin, S., Lahitte, C., and Oturan, M.A. 2003. Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters, 1(1): p. 38-44. Baughman, G.L. and Weber, E.J. 1994. Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. Environmental Science & Technology, 28(2): p. 267-276. Weber, E.J. and Adams, R.L. 1995. Chemical- and sediment- mediated reduction of the azo dye disperse blue 79. Environmental Science & Technology, 29(5): p. 1163-1170. Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111. Meriç, S., Kaptan, D., and Ölmez, T. 2004. Color and COD removal from wastewater containing reactive black 5 using Fenton’s oxidation process. Chemosphere, 54(3): p. 435-441. Ganesh, R., Boardman, G.D., and Michelsen, D. 1994. Fate of azo dyes in sludges. Water Research, 28(6): p. 1367-1376. Bafana, A., Devi, S.S., and Chakrabarti, T. 2011. Azo dyes: Past, present and the future. Journal of Environmental Reviews, 19: p. 350-371. Smith, R., 2005. Chapter 2. Process Economics, in Chemical Process: Design and Integration. Smith, R. (Ed). John Wiley & Sons, West Sussex, UK. p. 17-35. Rodríguez Miranda, J., García-Ubaque, C., and Londoño, J. 2015. Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. DYNA, 82(192): p. 230-238. Gil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82. Acampa, G., Giustra, M., and Parisi, C. 2019. Water treatment emergency: Cost evaluation tools. Sustainability, 11(9): p. Article ID 2609. Towler, G. and Sinnott, R., 2013. Chapter 9. Economic Evaluation of Projects, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 389-429. Towler, G. and Sinnott, R., 2013. Chapter 7. Capital Cost Estimating, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 307-354. Towler, G. and Sinnott, R., 2013. Chapter 8. Estimating Revenues and Production Costs, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 355-387. Douglas, J.M., 1988. Conceptual Design of Chemical Processes. Bradley, J.W. (Ed). McGraw-Hill New York, USA. p. 1-601. Silla, H., 2003. Chapter 2. Production and Capital Cost Estimation, in Chemical Process Engineering: Design and Economics. Silla, H. (Ed). CRC Press, New York, USA. p. 41-94. Dodane, P.-H., Mbéguéré, M., Sow, O., and Strande, L. 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in dakar, Senegal. Environmental Science & Technology, 46(7): p. 3705-3711. Khoshgoftar-Manesh, M.H., Abadi, S.K., Amidpour, M., and Hamedi, M.H. 2013. A new targeting method for estimation of cogeneration potential and total annualized cost in process industries. Chemical Engineering Research and Design, 91(6): p. 1039-1049. Bashar, R., Gungor, K., Karthikeyan, K.G., and Barak, P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197: p. 280-290. Mahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003. Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211. Russo, D. 2021. Kinetic modeling of advanced oxidation processes using microreactors: Challenges and opportunities for Scale-Up. Applied Sciences, 11(3): p. 1-19. Donati, G. and Paludetto, R. 1997. Scale up of chemical reactors. Catalysis Today, 34(3): p. 483-533. Zlokarnik, M., 2006. Scale-Up in Chemical Engineering. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296. Zlokarnik, M., 2010. Scale-Up of Chemical and Biotechnological Processes. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296. Elliott, L.D., Knowles, J.P., Stacey, C.S., Klauber, D.J., and Booker-Milburn, K.I. 2018. Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. Reaction Chemistry & Engineering, 3(1): p. 86-93. Toulouse, C., Cezerac, J., Cabassud, M., Le Lann, M.V., and Casamatta, G. 1996. Optimisation and scale-up of batch chemical reactors: Impact of safety constraints. Chemical Engineering Science, 51(10): p. 2243-2252. Rueda Márquez, J.J., Levchuk, I., and Sillanpää, M. 2018. Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12): p. 1-18. SAC, ONG Servicios Ambientales de Caldas, Corpocaldas, Informe red de monitoreo quebrada Manizales–I Semestre (2015), Manizales, Colombia. p. 1-204 UTP, Universidad Tecnológica de Pereira, Selección de alternativas para el tratamiento de aguas residuales del interceptor quebrada Manizales, incluyendo la estabilización, tratamiento y disposicion adecuada de lodos fase 1, Corpocaldas. p. 1-226 Gutiérrez, D.L., El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338 Seshadri, S., Bishop, P.L., and Agha, A.M. 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2): p. 127-137. Yaseen, D.A. and Scholz, M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16(2): p. 1193-1226. Al Prol, A.E. 2019. Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian Journal of Fisheries Aquatic Research, 3(2): p. 1-18. Turton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., 2008. Capítulo 3. Batch Processing, in Analysis, Synthesis and Design of Chemical Processes. Turton, R. (Ed). Pearson Education, Massachusetts, USA. p. 106-135. Couper, J.R., 2003. Chapter 4. Estimation of Capital Requirements, in Process Engineering Economics. Heinemann, H. (Ed). Marcel Dekker Inc, Miami, USA. p. 65-134. Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press. Vicente, M.A., Gil, A., and Bergaya, F., 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier, Oxford, UK. p. 523-557. Moreno, S., Gutiérrez, E., Alvarez, A., Papayannakos, N.G., and Poncelet, G. 1997. Al-pillared clays: From lab syntheses to pilot scale production characterisation and catalytic properties. Applied Catalysis A: General, 165(1): p. 103-114. Aouad, A., Mandalia, T., and Bergaya, F. 2005. A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Applied Clay Science, 28(1-4): p. 175-182. Ikehata, K., Gamal El-Din, M., and Snyder, S.A. 2008. Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater. Ozone: Science & Engineering, 30(1): p. 21-26. Sanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33. Cañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420. dos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16. Hassan, H. and Hameed, B. 2011. Decolorization of acid red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst. International Conference on Environment Science and Engineering 8: p. 232-236. Ochoa-Gutiérrez, K.S. and Mueses, M.A. 2014. Experimental and mathematical evaluation of molecular adsorption models for organic pollutants on TiO2-P25 particles. Ingeniería y Competitividad, 16(2): p. 309-320. Anirudhan, T.S. and Ramachandran, M. 2015. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95: p. 215-225. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
ix, 206 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81694/1/1053777983.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81694/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81694/3/1053777983.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8bd78e3efd9d25dc8652a9158149f472 8153f7789df02f0a4c9e079953658ab2 63e516de91506cab0dbe6c2069a0fe4c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089931519164416 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbSanabria González, Nancy Rocío89cfd82b6de7c0bb6518a665de05d174600Macías Quiroga, Iván Fernandoc2b1ffea8abe04812d94118713794c8a600Procesos Químicos Cataliticos y Biotecnológicos2022-07-07T19:35:26Z2022-07-07T19:35:26Z2021https://repositorio.unal.edu.co/handle/unal/81694Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías, gráficos, tablas,En la presente investigación se realizó la caracterización química, estructural y textural de una bentonita proveniente del norte del departamento de Tolima. El mineral arcilloso fue sometido a un proceso de pilarización con aluminio y posterior impregnación con cobalto y el material obtenido - Co(%)/Al-PILC - fue utilizado como catalizador en la activación del peróxido de hidrógeno con bicarbonato (sistema BAP, por sus siglas en inglés Bicarbonate-Activated Peroxide) para la oxidación de dos colorantes alimenticios. Los materiales Co(1.0, 3.0 y 6.0%)/Al-PILC mostraron una alta actividad para la decoloración del ponceau 4R (P4R) y amarillo sunset (AS) en solución acuosa, sin embargo, la arcilla impregnada con 1.0% de cobalto fue la que preservó en mayor proporción las propiedades texturales del soporte Al-PILC. Se utilizó la metodología de superficie de respuesta (MSR) basada en un diseño central compuesto (DCC) para analizar el efecto de las variables H2O2, NaHCO3 y Co(1.0%)/Al-PILC sobre la oxidación de los colorantes P4R y AS, considerando como variables de respuesta la decoloración y la remoción de carbono total (CT). Los diseños experimentales mostraron que las concentraciones de peróxido de hidrógeno y bicarbonato son las variables que más influyen en la decoloración y mineralización de los dos colorantes alimenticios estudiados. Se obtuvieron dos modelos cinéticos empíricos de segundo orden para cada colorante, uno para la decoloración y otro para la remoción de carbono total. También se determinaron las condiciones óptimas de las variables de respuesta para el P4R y AS, y bajo estas condiciones se evaluó la estabilidad del catalizador (ciclos de reuso) y el efecto de los “scavengers” de radicales. Bajo las condiciones de reacción, determinadas por la optimización multiobjetivo de los modelos, se realizaron las pruebas cinéticas de decoloración, mostrando que los datos experimentales de concentración normalizada para el P4R y AS se ajustaron a ecuaciones cinéticas de pseudo segundo y primer orden, respectivamente. También se estableció, a través de pruebas de toxicidad por digestión anaerobia, que los subproductos de la oxidación de los colorantes no son tóxicos. Finalmente, con los modelos empíricos y cinéticos de decoloración, se realizaron simulaciones para realizar la evaluación preliminar de costos de tratamiento, estudiando el efecto de la concentración y volumen de agua a tratar. (Texto tomado de la fuente)In the present investigation, the chemical, structural and textural characterization of a bentonite from the northern department of Tolima (Colombia) was carried out. The clay mineral was subjected to a process of pillarization with aluminum and subsequent impregnation with cobalt. The materials obtained - Co(%)/Al-PILCs - were used as a catalyst for the activation of hydrogen peroxide with bicarbonate (BAP system) in the oxidation of two food dyes. The Co(1.0, 3.0 and 6.0%)/Al-PILC materials showed high activity for the decolorization of ponceau 4R (P4R) and sunset yellow (AS) in aqueous solution. However, the clay impregnated with 1.0% cobalt preserved the textural properties of the Al-PILC support. Response surface methodology (RSM) based on a central composite design (CCD) was used to analyze the effect of H2O2, NaHCO3 and Co(1.0%)/Al-PILC as variables on the oxidation of P4R and AS dyes. Discoloration and total carbon (TC) removal were considered as response variables. The experimental designs showed that hydrogen peroxide and bicarbonate concentrations are the variables that influence most the decolorization and mineralization for both food dyes studied. Two second-order empirical models were obtained for each dye, one for decolorization and the other for total carbon removal. Optimal conditions were determined for response variables of P4R and AS. Therefore, under the mentioned conditions, the stability of the catalyst (reuse cycles) and the effect of free radical scavengers were evaluated. Under the reaction conditions determined by multi-objective optimization, decolorization kinetic tests were performed, showing that the experimental data of normalized concentration for P4R and AS fitted the pseudo second and first order kinetic models, respectively. It was also established through toxicity tests by anaerobic digestion that the by-products of dye oxidation are non-toxic. Finally, with the empirical and kinetic decolorization equations, modeling was carried out for the preliminary evaluation of treatment costs, studying the effect of the concentration and volume of water to be treated.DoctoradoDoctor en Ingeniería – Ingeniería QuímicaQuímica Y Procesosix, 206 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales540 - Química y ciencias afinesColorantes azoicosArcillas pilarizadasProcesos avanzados de oxidaciónPeróxido de hidrógeno activado con bicarbonatoCinéticaCostosAzo dyesPillared claysAdvanced oxidation processesBicarbonate-activated hydrogen peroxide systemKineticsCostsQuímica experimentalExperimental chemistryQuímica mineralInorganic chemistryArcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2Aluminium-Cobalt-Pillared Clays (Al-Co-PILCs) as catalysts for dye degradation using HCO3-/H2O2 systemTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/resource_type/c_15cdImageTexthttp://purl.org/redcol/resource_type/PAGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 2. Dyes and Pigments: Their Structure and Properties, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 13-29.Barbusiński, K. and Majewski, J. 2003. Discoloration of azo dye acid red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies, 12(2): p. 151-155.Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 5. Colorants in Health and Environmental Aspects, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 69-83.Vacchi, F.I., Albuquerque, A.F., Vendemiatti, J.A., Morales, D.A., Ormond, A.B., Freeman, H.S., Zocolo, G.J., Zanoni, M.V.B., and Umbuzeiro, G. 2013. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Science of the Total Environment, 442: p. 302-309.de Luna, L.A.V., da Silva, T.H.G., Nogueira, R.F.P., Kummrow, F., and Umbuzeiro, G.A. 2014. Aquatic toxicity of dyes before and after photo-Fenton treatment. Journal of Hazardous Materials, 276: p. 332-338.Xu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. 2004. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7): p. 595-600.Nidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20(4): p. 2099-2132.Ramírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323.Lucas, M.S. and Peres, J.A. 2006. Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3): p. 236-244.Arroyave Rojas, J.A., Garcés Giraldo, L.F., and Mejía Trujillo, J. 2009. Empleo del reactivo de Fenton para la degradación del colorante tartrazina. Revista Lasallista de Investigación, 6(1): p. 27-34.Arroyave Rojas, J.A., Rodríguez Gaviria, E.M., Barón Aristizábal, C.A., and Moreno Salazar, C.C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo de Fenton. Producción + Limpia, 7: p. 48-58.Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.Xu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.Atalay, S. and Ersöz, G. 2016. Novel Catalysts in Advanced Oxidation of Organic Pollutants. Sharma, S.K. (Ed). Springer International Publishing: Jaipur, India. p. 1-60.Goldstein, S., Meyerstein, D., and Czapski, G. 1993. The Fenton reagents. Free Radical Biology and Medicine, 15(4): p. 435-445.Bokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.Bauer, W., Berneth, H., Clausen, T., Engel, A., Filosa, M., and Gregory, P. 2002. Chapter 1. Dyes, General Survey, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Frankfurt, Germany. p. 1-12.Saratale, R.G., Saratale, G.D., Chang, J.S., and Govindwar, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): p. 138-157.Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 1. Historical Development of Colorants, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 1-12.Sherwood, M., Baum, H., Bonner, J., Carlson, N., Coghlan, A., Davis, N., Denney, R., Katrizky, A., Praill, P., and Price, R. 1985. Chapter 3. Color and Organic Chemistry, in Life and Science. Chemistry Today. Martin, S. (Ed). Bertelsmann International GmbH: Gütersloh, Germany. p. 66-100.Clarke, E.A. and Anliker, R. 1980. Chapter 7. Organic Dyes and Pigments, in Anthropogenic Compounds. Anliker, R. (Ed). Springer Berlin Heidelberg: Berlin, Germany. p. 181-215.Yagub, M.T., Sen, T.K., Afroze, S., and Ang, H.M. 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209: p. 172-184.Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 3. Classification of Dye and Pigments, in Dyes and Pigments. Sharma, S.K. (Ed). Springer International: Jaipur, India. p. 31-45.Gupta, V.K. and Suhas. 2009. Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management, 90(8): p. 2313-2342.Mishra, G. and Tripathy, M. 1993. A critical review of the treatments for decolourization of textile effluent. Colourage, 40(1): p. 35-38.Purkait, M.K., DasGupta, S., and De, S. 2005. Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management, 76(2): p. 135-142.Clark, M. 2011. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. Clark, M. (Ed). Woodhead Publishing, Elsevier: Cambridge, UK. p. 1-680.García R, A., Aubad L, A., and Zapata P, R. 1985. Capitulo 21. Pinturas y Colorantes, in Química Orgánica. Aubad L, A. (Ed). Temis S.A: Bogotá, Colombia.Hunger, K., Gregory, P., Miederer, P., Berneth, H., Heid, C., and Mennicke, W. 2004. Chapter 2. Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Weinheim, Germany. p. 13-112.Khan, S. and Malik, A. 2014. Chapter 4. Environmental and Health Effects of Textile Industry Wastewater, in Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants. Malik, A., Grohmann, E., and Akhtar, R. (Eds). Springer: Dordrecht, Netherlands. p. 55-71.Robinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255.Banat, I.M., Nigam, P., Singh, D., and Marchant, R. 1996. Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58(3): p. 217-227.Fu, Y. and Viraraghavan, T. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3): p. 251-262.FAO. 2016. Agriculture Organization of the United Nations-FAO, World Health Organization-WHO, Codex Alimentarius, Norma general del Codex para los aditivos alimentarios, Codex Stan 192-1995, Revisión 2016. p. 1-453Restrepo G, M. 2006. Producción más limpia en la industria alimentaria. Producción + Limpia, 1(1): p. 87-101.Bello E, A., Vásquez M, M.E., Rincón D, D., and López E, Ó. 2005. VIII fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá D. C., Secretaría Distrital de Ambiente, Bogotá, Colombia. p. 16-57Abdalla, K.Z. and Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1): p. 42-48.Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111Barrios-Ziolo, L.F., Gaviria-Restrepo, L.F., Agudelo, E.A., and Cardona-Gallo, S.A. 2016. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el Área Metropolitana del Valle de Aburrá. Revista EIA, 13(26): p. 61-74.Banković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V., and Jovanović, D. 2012. Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Applied Clay Science, 58: p. 73-78.Abe, F.R., Soares, A.M.V.M., Oliveira, D.P.d., and Gravato, C. 2018. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environmental Pollution, 235: p. 255-262.Novotný, Č., Dias, N., Kapanen, A., Malachová, K., Vándrovcová, M., Itävaara, M., and Lima, N. 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9): p. 1436-1442.Oller, I., Malato, S., and Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Science of the Total Environment, 409(20): p. 4141-4166.Zhang, X., Li, G., and Wang, Y. 2007. Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source. Dyes and Pigments, 74(3): p. 536-544.Gomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223.Cañizares, P., Martínez, F., Jiménez, C., Lobato, J., and Rodrigo, M.A. 2006. Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science & Technology, 40(20): p. 6418-6424.Atalay, S. and Ersöz, G. 2015. Chapter 3. Advanced Oxidation Processes for Removal of Dyes From Aqueous Media, in Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Wiley and and Scrivener Publishing: New Jersey, USA. p. 83-117.Buthiyappan, A., Abdul Aziz, A.R., and Ashri Wan Daud, W.M. 2016. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1): p. 1-47.Nidheesh, P.V., Zhou, M., and Oturan, M.A. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: p. 210-227.Macías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S.M., and Sanabria-González, N.R. 2021. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28(19): p. 23791-23811.Rauf, M.A. and Ashraf, S.S. 2009. Chapter 9. Application of Advanced Oxidation Processes (AOP) to Dye Degradation -An Overview, in Dyes and Pigments: New Research. Lang, A.R. (Ed). Nova Science: New York, USA. p. 259-290.Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E.R., and Firoozbahr, M. 2020. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143: p. 138-163.Pavithra, K.G., P, S.K., V, J., and P, S.R. 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75: p. 1-19.Katheresan, V., Kansedo, J., and Lau, S.Y. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): p. 4676-4697.Singh, K. and Arora, S. 2011. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9): p. 807-878.Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9): p. 1061-1085.Oturan, M.A. and Aaron, J.J. 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23): p. 2577-2641.Centi, G. and Perathoner, S. 2014. Chapter 10. Advanced Oxidation Processes in Water Treatment, in Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry. Duprez, D. and Cavani, F. (Eds). Imperial College Press: London, UK. p. 251-290.Loures, C., Alcântara, M., Izario-Filho, H., Teixeira, A.C., Silva, F.T., Paiva, T., and Lamas-Samanamud, G. 2013. Advanced oxidative degradation processes: Fundamentals and applications. International Review of Chemical Engineering, 5(2): p. 102-120.Sharma, S., Ruparelia, J., and Patel, M.L. 2011. A general review on advanced oxidation processes for waste water treatment. International Conference on Current Trends in Technology, "Nuicone – 2011”. Nirma University, Ahmedabad, Gujarat, India. p. 1-7Malakootian, M., Shahesmaeili, A., Faraji, M., Amiri, H., and Silva Martinez, S. 2020. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environmental Protection, 134: p. 292-307.Kanakaraju, D., Glass, B.D., and Oelgemöller, M. 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219: p. 189-207.Krishnan, R.Y., Manikandan, S., Subbaiya, R., Biruntha, M., Govarthanan, M., and Karmegam, N. 2021. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environmental Technology & Innovation, 23: p. Article ID 101757.Salimi, M., Esrafili, A., Gholami, M., Jonidi Jafari, A., Rezaei Kalantary, R., Farzadkia, M., Kermani, M., and Sobhi, H.R. 2017. Contaminants of emerging concern: a review of new approach in AOP technologies. Environmental Monitoring and Assessment, 189(8): p. 414.Camargo-Perea, A.L., Rubio-Clemente, A., and Peñuela, G.A. 2020. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water, 12(4): p. Article ID 1068.Kowalska, K., Maniakova, G., Carotenuto, M., Sacco, O., Vaiano, V., Lofrano, G., and Rizzo, L. 2020. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere, 238: p. Article ID 124665.Maniakova, G., Kowalska, K., Murgolo, S., Mascolo, G., Libralato, G., Lofrano, G., Sacco, O., Guida, M., and Rizzo, L. 2020. Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Separation and Purification Technology, 236: p. Article ID 116249.Poza-Nogueiras, V., Rosales, E., Pazos, M., and Sanromán, M.Á. 2018. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review. Chemosphere, 201: p. 399-416.Sreeja, P.H. and Sosamony, K.J. 2016. A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment. Procedia Technology, 24: p. 217-223.Neyens, E. and Baeyens, J. 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3): p. 33-50.Haber, F. and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 147(861): p. 332-351.Shen, Y., Zhang, Z., and Xiao, K. 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): p. 91846-91854.Rahim P., S., Abdul R., A.A., and Wan D., W.M.A. 2014. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64: p. 24-35.Ramírez, J.H., Vicente, M.A., and Madeira, L.M. 2010. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98(1): p. 10-26.Babuponnusami, A. and Muthukumar, K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): p. 557-572.García-Segura, S., Bellotindos, L.M., Huang, Y.-H., Brillas, E., and Lu, M.-C. 2016. Fluidized-bed Fenton process as alternative wastewater treatment technology - A review. Journal of the Taiwan Institute of Chemical Engineers, 67: p. 211-225.Wang, N., Zheng, T., Zhang, G., and Wang, P. 2016. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1): p. 762-787.Carriazo, J., Bossa-Benavides, L., and Castillo, E. 2012. Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno. Química Nova, 35(6): p. 1101-1106.Luo, M., Lv, L., Deng, G., Yao, W., Ruan, Y., Li, X., and Xu, A. 2014. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.Duarte, F., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., and Madeira, L.M. 2009. Fenton-like degradation of azo-dye orange II catalyzed by transition metals on carbon aerogels. Applied Catalysis B: Environmental, 85(3): p. 139-147.Nasiruddin Khan, M. and Bhutto, S. 2010. Kinetic study of the oxidatve decolorization of xylenol orange by hydrogen peroxide in micellar medium. Journal of the Chilean Chemical Society, 55(2): p. 170-175.Strlič, M., Kolar, J., Šelih, V., Kocar, D., and Pihlar, B. 2003. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chimica Slovenica, 50(4): p. 619-632.Sawyer, C.N., McCarty, P., and Parkin, G.F. 2001. Química para Ingeniería Ambiental. Sawyer, C.N. (Ed). McGraw-Hill: Bogotá, Colombia. p. 1-680.Riley Tetzlaff, H. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885.de Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224.Drago, R., Frank, K., Yang, Y.C., and Wagner, G. 1998. Catalytic activation of hydrogen peroxide-A green oxidant system. Proceedings of the 1997 ERDEC Scientific Conference on Chemical and Biological Defense Research, US Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD. Springfield, USA. p. 1-882Yao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221.Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.Bennett, D.A., Yao, H., and Richardson, D.E. 2001. Mechanism of sulfide oxidations by peroxymonocarbonate. Inorganic Chemistry, 40(13): p. 2996-3001.Balagam, B. and Richardson, D.E. 2008. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-Oxidation of amines. Inorganic Chemistry, 47(3): p. 1173-1178.Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.Zhao, S., Xi, H., Zuo, Y., Wang, Q., Wang, Z., and Yan, Z. 2018. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. Journal of Hazardous Materials, 344: p. 136-145.Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.Xu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.Ember, E., Gazzaz, H.A., Rothbart, S., Puchta, R., and van Eldik, R. 2010. MnII - A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H2O2. Applied Catalysis B: Environmental, 95(3): p. 179-191.Cheng, L., Wei, M., Huang, L., Pan, F., Xia, D., Li, X., and Xu, A. 2014. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(II) ions in bicarbonate aqueous solution. Industrial & Engineering Chemistry Research, 53(9): p. 3478-3485.Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.George, S.M. 1995. Introduction: Heterogeneous catalysis. Chemical Reviews, 95(3): p. 475-476.Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.Zhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410.Long, X., Yang, Z., Wang, H., Chen, M., Peng, K., Zeng, Q., and Xu, A. 2012. Selective degradation of orange II with the Cobalt(II)–Bicarbonate–Hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003.Guo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.Liu, J. and Zhang, G. 2014. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Physical Chemistry Chemical Physics, 16(18): p. 8178-8192.Pandey, P. and Saini, V. 2018. Chapter 11. Pillared Interlayered Clays for Pollution Remediation: Innovative Materials, in Green Adsorbents for Pollutant Removal. Fundamentals and Desing. Crini, G. and Lichtfouse, E. (Eds). Springer: Cham, Switzerland. p. 353-376.Kloprogge, J.T. 1998. Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. Journal of Porous Materials, 5(1): p. 5-41.Ding, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., and Zhu, H.Y. 2001. Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8: p. 273-293.Vicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557.Bertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123.Kunio, O., Johji, K., Mitsuru, S., Mikiya, O., and Minoru, T. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.Fang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94.Su, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329.Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.Karthikeyan, S., Ezhil Priya, M., Boopathy, R., Velan, M., Mandal, A.B., and Sekaran, G. 2012. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: Kinetic and thermodynamic studies. Environmental Science and Pollution Research, 19(5): p. 1828-1840Abou-Gamra, Z.M. 2014. Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 4(3): p. 285-291.Hashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318.Ramírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205.Silva, A.M.T., Ramírez, J.H., Söylemez, U., and Madeira, L.M. 2012. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of acid orange 7. Applied Catalysis B: Environmental, 121-122: p. 10-19.Rache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200.Minz, S., Garg, S., and Gupta, R. 2018. Catalytic wet peroxide oxidation of 4-Nitrophenol over Al–Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction. Chemical Engineering Communications, 205(5): p. 667-679.Arimi, M.M. 2017. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27(2): p. 275-282.Covinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229.Lázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283.Panda, N., Sahoo, H., and Mohapatra, S. 2011. Decolourization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite. Journal of Hazardous Materials, 185(1): p. 359-365.Rupa, A.V., Manikandan, D., Divakar, D., and Sivakumar, T. 2007. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. Journal of Hazardous Materials, 147(3): p. 906-913.Bergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220.Behnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102.Santana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822.Li, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.Krichevskaya, M., Klauson, D., Portjanskaja, E., and Preis, S. 2011. The cost evaluation of advanced oxidation processes in laboratory and pilot-scale experiments. The Journal of the International Ozone Association, 33(3): p. 211-223.Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1): p. 51-59.Mahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003.Sanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33.Cañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420.dos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16.Gil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82.Ibarra-Taquez, H.N., Dobrosz-Gómez, I., and Gómez, M.-Á. 2018. Optimización multiobjetivo del proceso Fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29(5): p. 111-122.Arias, M.E. and Brown, M.T. 2009. Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. Ecological Engineering, 35(7): p. 1070-1078.Lyu, Y., Ye, H., Zhao, Z., Tian, J., and Chen, L. 2020. Exploring the cost of wastewater treatment in a chemical industrial park: Model development and application. Resources, Conservation and Recycling, 155: p. Article ID 104663.Camacho-Gómez, J.A. and Celada-Arango, C.M. 2004. Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. Ministerio de Minas y Energía, Instituto Colombiano de Geología y Minería (Ingeominas), Bogotá, Colombia. p. 1-241Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2018. Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: p. Article ID 5969178Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15Otavo-Loaiza, R.A., Sanabria-González, N.R., and Giraldo-Gómez, G.I. 2019. Tartrazine removal from aqueous solution by HDTMA-Br-modified Colombian bentonite. The Scientific World Journal, 2019: p. Article ID 2042563.Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.Mukherjee, S. 2013. Chapter 2. Classification and Composition of Clay Constituents, in The Science of Clays. Ghosh, B. (Ed). Springer: Dordrecht, Netherlands. p. 23-32.Barton, C.D. and Karathanasis, A.D. 2002. Chapter 45. Clay Minerals, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: New York, USA. p. 187-192.Bergaya, F. and Lagaly, G. 2006. Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 1-18.Sivrikaya, O., Uzal, B., and Ozturk, Y.E. 2017. Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135: p. 532-537.Brigatti, M.F., Galán, E., and Theng, B.K.G. 2006. Chapter 2. Structure And Mineralogy of Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier Science: Amsterdam, Netherlands. p. 21-81.Molina, C.B., Casas, J.A., Pizarro, A.H., and Rodríguez, J.J. 2011. Chapter 16. Pillared Clays as Green Chemistry Catalysts: Application to Wastewater Treatment, in Clay: Types, Properties and Uses. Humphrey, J.P. and Boyd, D.E. (Eds). Nova Science Publishers: New York, USA. p. 435-474.Mackenzie, R.C. 1959. The classification and nomenclature of clay minerals. Clay Minerals Bulletin, 4(21): p. 52-66.Rauf, M.A. 2009. Chapter 11. Removal of Dyes from Solution on Clay Surfaces - An overview, in Dyes and Pigments. New research Lang, A.R. (Ed). Nova Science: New York, USA. p. 314.Kotal, M. and Bhowmick, A.K. 2015. Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Science, 51: p. 127-187.Matocha, C.J. 2006. Chapter 26. Clay: Charge Properties, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: Florida, USA. p. 287-290.Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans. Geological Society of America Bulletin 76(7): p. 803–832.Thorez, J. 1976. Practical Identification of Clay Minerals: A Handbook for Teachers and Students in Clay Mineralogy. Imprimerie G. Lelotte: Liège, Belgium. p. 1-90.Kleeberg, R., Monecke, T., and Hillier, S. 2008. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples? Clays and Clay Minerals, 56(4): p. 404-415.Zhang, G., Germaine, J.T., Martin, R.T., and Whittle, A.J. 2003. A simple sample-mounting method for radndom powder X-ray diffraction. Clays and Clay Minerals, 51(2): p. 218-225.Moore, D.M. and Reynolds, R.C. 1997. Chapter 7. Identification of Clay Minerals and Associated Minerals, in X-Ray Diffraction and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 227-260.Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., and Song, H. 2018. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1): p. 16-29.Kahle, M., Kleber, M., and Jahn, R. 2002. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma, 109(3-4): p. 191-205.Moore, D.M. and Reynolds, R.C. 1997. Chapter 9. Quantitative Analysis, in X-ray Diffraction and the Identification and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 327-360.Stanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., and Radosavljević-Mihajlović, A. 2011. Characterization of bentonite clay from 'Greda' deposit. Processing and Application of Ceramics, 5(2): p. 97-101.de Oliveira, C., Rocha, M., da Silva, A., and Bertolino, L. 2016. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Cerâmica, 62(363): p. 272-277.Darton, N. 1906. Fish remains in Ordovician rocks in Bighorn mountains, Wyoming, with a résumé of Ordovician geology of the northwest. Bulletin of the Geological Society of America, 17(1): p. 541-566.Jaeckels, N., Tenzer, S., Meier, M., Will, F., Dietrich, H., Decker, H., and Fronk, P. 2017. Influence of bentonite fining on protein composition in wine. LWT - Food Science and Technology, 75: p. 335-343.Koyuncu, H., Kul, A.R., Çalımlı, A., Yıldız, N., and Ceylan, H. 2007. Adsorption of dark compounds with bentonites in apple juice. LWT - Food Science and Technology, 40(3): p. 489-497.Granizo, N., Vega, J.M., de la Fuente, D., Simancas, J., and Morcillo, M. 2012. Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Cation-exchange pigments. Progress in Organic Coatings, 75(3): p. 147-161.Cervini-Silva, J., Nieto-Camacho, A., Kaufhold, S., Ufer, K., and Ronquillo de Jesús, E. 2015. The anti-inflammatory activity of bentonites. Applied Clay Science, 118: p. 56-60.Nones, J., Gracher-Riella, H., Gonçalves-Trentin, A., and Nones, J. 2015. Effects of bentonite on different cell types: A brief review. Applied Clay Science, 105-106: p. 225-230.Al-Shahrani, S.S. 2014. Treatment of wastewater contaminated with cobalt using saudi activated bentonite. Alexandria Engineering Journal, 53(1): p. 205-211.Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., Reitzel, K., Spears, B.M., Winfield, I.J., Crosa, G., D'Haese, P., Yasseri, S., and Lürling, M. 2016. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 97: p. 162-174.Sanabria, N.R., Centeno, M.A., Molina, R., and Moreno, S. 2009. Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Applied Catalysis A: General, 356(2): p. 243-249.Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J., and Moreno, S. 2003. Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Applied Clay Science, 22(6): p. 303-308.de Stefanis, A. and Tomlinson, A.A.G. 2006. Towards designing pillared clays for catalysis. Catalysis Today, 114(2–3): p. 126-141.Laguna E., O.H. 2007. Efecto del contenido esmectítico en procesos de pilarización de minerales arcillosos provenientes de la cordillera central de Colombia. Tesis de Maestría en Ciencias-Química. Departamento de Química-Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá, Colombia. p. 1-152Laguna E., O.H., Molina G., C.M., Moreno, S., and Molina G., R. 2008. Naturaleza mineralógica de esmectitas provenientes de la formación Honda (noreste del Tolima - Colombia). Boletín de Ciencias de la Tierra, 23: p. 55-68.Carriazo, J., Centeno, M., Odriozola, J., Moreno, S., and Molina, R. 2007. Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General, 317(1): p. 120-128.Galeano, L.A., Gil, A., and Vicente, M.A. 2010. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Applied Catalysis B: Environmental, 100(1–2): p. 271-281.Pérez, A., Centeno, M.A., Odriozola, J.A., Molina, R., and Moreno, S. 2008. The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions. Catalysis Today, 133–135: p. 526-529.Sanabria, N.R., Ávila, P., Yates, M., Rasmussen, S.B., Molina, R., and Moreno, S. 2010. Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 47(3–4): p. 283-289.Sanabria, N.R. 2009. Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’s) en estado sólido y su viabilidad en la obtención de extrusados. Tesis de Doctorado en Ciencias Química. Departamento de química-Facultad de Ciencias. Universidad Nacional de Colombia, Bogotá, Colombia. p. 1-191Aloui, L., Ayari, F., Ben Othman, A., and Trabelsi-Ayadi, M. 2015. Heavy metals removal from watercourses by low cost natural Tunisian material environmental protection. International Journal of Engineering and Applied Sciences, 2(7): p. 33-38.de Oliveira, T., Guégan, R., Thiebault, T., Milbeau, C.L., Muller, F., Teixeira, V., Giovanela, M., and Boussafir, M. 2017. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. Journal of Hazardous Materials, 323: p. 558-566.Lee, Y.-C., Park, W.-K., and Yang, J.-W. 2011. Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 190(1): p. 652-658.Cool, P. and Vansant, E.F. 1998. Chapter 9. Pillared Clays: Preparation, Characterization and Applications, in Synthesis. Karge, H.G. and Weitkamp, J. (Eds). Springer: Berlin, Germany. p. 265-288.Bergaya, F., Aouad, A., and Mandalia, T. 2006. Chapter 7.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 393-421.Gil, A., Santamaría, L., Korili, S.A., Vicente, M.A., Barbosa, L.V., de Souza, S.D., Marçal, L., de Faria, E.H., and Ciuffi, K.J. 2021. A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering, 9(5): p. Article ID 105808.Figueras, F. 1988. Pillared clays as catalysts. Catalysis Reviews, 30(3): p. 457-499.Mesmer, R.E. and Baes, C.F. 1990. Review of hydrolysis behavior of ions in aqueous solutions. MRS Online Proceedings Library (OPL), 180: p. 85-96.Zhu, J., Wen, K., Zhang, P., Wang, Y., Ma, L., Xi, Y., Zhu, R., Liu, H., and He, H. 2017. Keggin-Al30 pillared montmorillonite. Microporous and Mesoporous Materials, 242: p. 256-263.Johansson, G. 1960. On the crystal structures of some basic aluminum salts. Acta Chemica Scandinavica, 14(3): p. 771-773.Johansson, G. 1962. The crystal structures of [Al2(OH)2(H2O)8](SO4)2. 2H2O and [Al2(OH)2(H2O)8](SeO4)2. 2H2O. Acta Chemica Scandinavica, 16(2): p. 403-420.Aouad, A., Pineau, A., Tchoubar, D., and Bergaya, F. 2006. Al-pillared montmorillonite obtained in concentrated media. Effect of the anions (nitrate, sulfate and chloride) associated with the Al species. Clays and Clay Minerals, 54(5): p. 626-637.Keggin, J.F. and Bragg, W.L. 1934. The structure and formula of 12-phosphotungstic acid. Royal Society Publishing A, 144(851): p. 75-100.Lin, J.-L., Huang, C., Chin, C.-J.M., and Pan, J.R. 2009. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PAC1 coagulation. Water Research, 43(17): p. 4285-4295.Rustad, J., Loring, J., and Casey, W. 2004. Oxygen-exchange pathways in aluminum polyoxocations. Geochimica et Cosmochimica Acta, 68(14): p. 3011-3017.Barrer, R.M. and MacLeod, D.M. 1955. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society, 51: p. 1290-1300.Oszkó, A., Kiss, J., and Kiricsi, I. 1999. XPS investigations on the feasibility of isomorphous substitution of octahedral Al3+ for Fe3+ in Keggin ion salts. Physical Chemistry Chemical Physics, 1(10): p. 2565-2568.Thomas, S.M., Bertrand, J.A., Occelli, M.L., Stencel, J.M., and Gould, S.A.C. 1999. Synthesis and characterization of expanded smectites containing trinuclear Co complexes. Chemistry of Materials, 11(4): p. 1153-1164.Urruchurto, C.M., Carriazo, J.G., Osorio, C., Moreno, S., and Molina, R.A. 2013. Spray-drying for the preparation of Al–Co–Cu pillared clays: A comparison with the conventional hot-drying method. Powder Technology, 239: p. 451-457.Bertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123.Banković, P., Mojović, Z., Milutinović-Nikolić, A., Jović-Jovičić, N., Marinović, S., and Jovanović, D. 2010. Mixed pillared bentonite for electrooxidation of phenol. Applied Clay Science, 49(1-2): p. 84-89.Kollár, M., De Stefanis, A., Solt, H.E., Mihályi, M.R., Valyon, J., and Tomlinson, A.A.G. 2010. The mechanism of the Fischer–Tropsch reaction over supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical, 333(1): p. 37-45.Sietsma, J.R.A., Jos van Dillen, A., de Jongh, P.E., and de Jong, K.P. 2006. Chapter 12. Application of Ordered Mesoporous Materials as Model Supports to Study Catalyst Preparation by Impregnation and Drying, in Studies in Surface Science and Catalysis. Gaigneaux, E.M., Devillers, M., De Vos, D.E., Hermans, S., Jacobs, P.A., Martens, J.A., and Ruiz, P. (Eds). Elsevier: Louvain, Belgium p. 95-102.Haukka, S., Lakomaa, E.L., and Suntola, T. 1999. Chapter 23. Adsorption Controlled Preparation of Heterogeneous Catalysts, in Studies in Surface Science and Catalysis. Dąbrowski, A. (Ed). Elsevier Science B.V.: Amsterdam, Netherlands. p. 715-750.Royer, S., Leroux, C., Revel, R., Rouleau, L., and Morin, S. 2006. Synthesis and surface reactivity of nanocomposite support Al2O3/α-Al2O3. Studies in Surface Science and Catalysis, 162: p. 441-448.Cardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25.Gil, A., Gandía, L.M., and Vicente, M.A. 2000. Recent Advances in the Synthesis and Catalytic Applications of Pillared Clays. Catalysis Reviews, 42(1-2): p. 145-212.Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O. 2009. Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catalysis Today, 141(3): p. 385-392.Marcos, F.C.F., Assaf, J.M., and Assaf, E.M. 2018. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 458: p. 297-306.González, E. and Moronta, A. 2004. The dehydrogenation of ethylbenzene to styrene catalyzed by a natural and an Al-pillared clays impregnated with cobalt compounds: A comparative study. Applied Catalysis A: General, 258(1): p. 99-105.Su, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329.Hao, Q.-Q., Wang, G.-W., Liu, Z.-T., Lu, J., and Liu, Z.-W. 2010. Co/pillared clay bifunctional catalyst for controlling the product distribution of Fischer−Tropsch synthesis. Industrial & Engineering Chemistry Research, 49(19): p. 9004-9011.Zhao, Y.-H., Song, Y.-H., Hao, Q.-Q., Wang, Y.-J., Wang, W., Liu, Z.-T., Zhang, D., Liu, Z.-W., Zhang, Q.-J., and Lu, J. 2015. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 138: p. 116-124.El Gaidoumi, A., Loqman, A., Benadallah, A.C., El Bali, B., and Kherbeche, A. 2019. Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10(4): p. 1043-1051.Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.Lee, J., von Gunten, U., and Kim, J.-H. 2020. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 54(6): p. 3064-3081.Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Research, 39(16): p. 3891-3899.Gálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87.Santos Silva, A., Seitovna Kalmakhanova, M., Kabykenovna Massalimova, B., G. Sgorlon, J., Jose Luis, D.d.T., and T. Gomes, H. 2019. Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts, 9(9): p. Aticle ID 705.Khankhasaeva, S.T. and Badmaeva, S.V. 2020. Removal of p-aminobenzenesulfanilamide from water solutions by catalytic photo-oxidation over Fe-pillared clay. Water Research, 185: p. Article ID 116212.Abdennouri, M., Baâlala, M., Galadi, A., El Makhfouk, M., Bensitel, M., Nohair, K., Sadiq, M., Boussaoud, A., and Barka, N. 2016. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 9: p. S313-S318.Bobu, M., Yediler, A., Siminiceanu, I., and Schulte-Hostede, S. 2008. Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental, 83(1): p. 15-23.Gong, Z., Liao, L., Lv, G., and Wang, X. 2016. A simple method for physical purification of bentonite. Applied Clay Science, 119: p. 294-300.Sanabria, N., Molina, R., and Moreno, S. 2012. Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the post treatment of coffee wastewater. International Journal of Photoenergy, 2012: p. Article ID 864104.Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.Yilmaz, I. 2004. Relationships between liquid limit, cation exchange capacity, and swelling potentials of clayey soils. Eurasian Soil Science, 37(5): p. 506-512.Grim, R.E. 1968. Clay Mineralogy. Grim, R.E. (Ed). McGraw-Hill Book Company, Inc.: New York, USA. p. 1-596.Carlson, L. 2004. Bentonite mineralogy. Part 1: Methods of investigation—A literature review /Part 2: Mineralogical research of selected bentonites. Working Report 2002-02. Olkilouto, Finland. p. 1-108Russell, J.D. and Fraser, A.R. 1994. Chapter 2. Infrared Methods, in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Wilson, M.J. (Ed). Springer: Dordrecht, Netherlands. p. 11-67.Madejova, J. and Komadel, P. 2001. Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49(5): p. 410-432.Madejová, J., Janek, M., Komadel, P., Herbert, H.J., and Moog, H.C. 2002. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20(6): p. 255-271.Carriazo, J., Molina, R., and Moreno, S. 2007. Caracterización estructural y textural de una bentonita colombiana. Revista Colombiana de Química, 36(2): p. 213-225.Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1): p. 1-10.Silva, L.S., Lima, L.C.B., Silva, F.C., Matos, J.M.E., Santos, M.R.M.C., Santos Júnior, L.S., Sousa, K.S., and da Silva Filho, E.C. 2013. Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chemical Engineering Journal, 218: p. 89-98.Nasiruddin Khan, M. and Sarwar, A. 2007. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters, 14(3): p. 461-469.Amaringo Villa, F.A. and Anaguano, A.H. 2013. Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental, 4(2): p. 27-36.Pecini, E.M. and Avena, M.J. 2013. Measuring the Isoelectric Point of the Edges of Clay Mineral Particles: The Case of Montmorillonite. Langmuir, 29(48): p. 14926-14934.Bohor, B.F. and Hughes, R.E. 1971. Scanning electron microscopy of clays and clay minerals. Clays and Clay Minerals, 19(1): p. 49-54.McPhee, C., Reed, J., and Zubizarreta, I. 2015. Chapert 4. Core Sample Preparation, in Core Analysis. A Best Practice Guide. McPhee, C., Reed, J., and Zubizarreta, I. (Eds). Elsevier: Oxford, UK. p. 135-179.Garcés-Aguilar, W. and Garcés, R. 2017. Caracterización de las arcillas del norte del Cauca, Colombia enclave para la optimización del proceso productivo de la industria ladrillera. Journal de Ciencia e Ingenieria, 9(1): p. 34-41.ASTM. 2010. D4318-05m, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, D-18 on Soil Rock, West Conshohocken, USA. p. 1-16Rao, S.M., Kachroo, T.A., Allam, M.M., Joshi, M., and Acharya, A. 2008. Geotechnical characterization of some Indian bentonites for their use as buffer material in geological repository. Proceedings of 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Citeseer. p. 1-6White, A.W. 1949. Atterberg plastic limits of clay minerals. American Mineralogist: Journal of Earth Planetary Materials, 34(7-8): p. 508-512.Ismaeel, S.H., Mabrouk, M.S., Ali, A.A.-A., and Abn Elwalead, K. 2017. Synthesis and characterization of bentonite nanocomposites from Egyptian bentonitic clay. International Journal of Nanotechnology and Allied Sciences, 1(1): p. 16-29.Bleam, W.F. 2012. Chapter 3. Clay Mineralogy and Clay Chemistry, in Soil and Environmental Chemistry. Bleam, W.F. (Ed). Academic Press: Oxford, UK. p. 85-116.Gil, A., Korili, S.A., Trujillano, R., and Vicente, M.A. 2011. A review on characterization of pillared clays by specific techniques. Applied Clay Science, 53(2): p. 97-105.Wang, M. and Muhammed, M. 1999. Novel synthesis of Al13-cluster based alumina materials. Nanostructured Materials, 11(8): p. 1219-1229.Furrer, G., Ludwig, C., and Schindler, P.W. 1992. On the chemistry of the Keggin Al13 polymer: I. Acid-base properties. Journal of Colloid and Interface Science, 149(1): p. 56-67.Duong, L.V., Wood, B.J., and Kloprogge, J.T. 2005. XPS study of basic aluminum sulphate and basic aluminium nitrate. Materials Letters, 59(14): p. 1932-1936.Casey, W.H. 2006. Large Aqueous Aluminum Hydroxide Molecules. Chemical Reviews, 106(1): p. 1-16.Arnoldy, P. and Moulijn, J.A. 1985. Temperature-programmed reduction of CoOAI2O3 catalysts. Journal of Catalysis, 93(1): p. 38-54.Gayer, K.H. and Garrett, A.B. 1950. The solubility of cobalt hydroxide, Co(OH)2, in solutions of hydrochloric acid and sodium hydroxide at 25°. Journal of the American Chemical Society, 72(9): p. 3921-3923.Ohtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.Kishi, Y., Shigemi, S., Doihara, S., Mostafa, M.G., and Wase, K. 1998. Study on the hydrolysis of cobalt ions in aqueous solution. Hydrometallurgy, 47(2): p. 325-338.Fang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94.Tetsuka, H., Katayama, I., Sakuma, H., and Tamura, K. 2018. Effects of humidity and interlayer cations on the frictional strength of montmorillonite. Earth, Planets and Space, 70(1): p. 56.Pálinkó, I., Lázár, K., and Kiricsi, I. 1997. Cationic mixed pillared layer clays: Infrared and Mössbauer characteristics of the pillaring agents and pillared structures in Fe,Al and Cr,Al pillared montmorillonites. Journal of Molecular Structure, 410-411(4): p. 547-550.Bradley, S.M., Kydd, R.A., Yamdagni, R., and Fyfe, C.A. 1992. Chapter 2. Ga13, GaAl12, and Al13 Polyoxocations and Pillared Clays, in Expanded Clays and Other Microporous Solids. Occelli, M.L. and Robson, H.E. (Eds). Springer: Boston, USA. p. 13-31.Douglas, B.E., McDaniel, D.H., and Alexander, J.J. 1994. Concepts and Models of Inorganic Chemistry. Dean F, M. (Ed). Wiley New York, USA. p. 1-928.Thommes, M., Kaneko, K., V. Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquerol, J., and Sing, K. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): p. 1051–1069.Leofanti, G., Padovan, M., Tozzola, G., and Venturelli, B. 1998. Surface area and pore texture of catalysts. Catalysis Today, 41(1): p. 207-219.Ramsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., and Coles, B.J. 1995. An objective assessment of analytical method precision: Comparison of ICP-AES and XRF for the analysis of silicate rocks. Chemical Geology, 124(1): p. 1-19.Mnasri Ghnimi, S. and Frini-Srasra, N. 2018. A comparison of single and mixed pillared clays for zinc and chromium cations removal. Applied Clay Science, 158: p. 150-157.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): p. 603-619.Gil, A. and Montes, M. 1994. Analysis of the microporosity in pillared clays. Langmuir, 10(1): p. 291-297.Vicente, M.A., Belver, C., Trujillano, R., Rives, V., Álvarez, A.C., Lambert, J.F., Korili, S.A., Gandı́a, L.M., and Gil, A. 2004. Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Applied Catalysis A: General, 267(1-2): p. 47-58.Colín L, J.A., Reyes, J.A.d.l., Vázquez, A., and Montoya, A. 2005. Pillar effects in MoS2 catalysts supported on Al and Zr pillared clays in a hydrotreatment reaction: A preliminary study. Applied Surface Science, 240(1): p. 48-62.Vicente, M.A. and Lambert, J.-F. 2001. Synthesis of Pt pillared clay nanocomposite catalysts from [PtII(NH3)4]Cl2 precursor. Physical Chemistry Chemical Physics, 3(21): p. 4843-4852.van Wormer, K. and Besthorn, F.H. 2017. Chapter 7. Human Behavior and the Natural Environment: The Community of the Earth, in Human Behavior and the Social Environment, Macro Level: Groups, Communities, and Organizations. Van Wormer, K. and Besthorn, F.H. (Eds). Oxford University Press: Oxford, UK. p. 243-297.WWAP. 2019. United Nations World Water Assessment Programme. The United Nations world water development report 2019: leaving no one behind, Facts and Figures. UNESCO, Paris, France. p. 1-12Celis-Zapata, L.P. 2013. Análisis de la política pública de agua potable y saneamiento básico para el sector rural en Colombia-período de gobierno 2010-2014. Tesis de Maestría en Política Social. Pontificia Universidad Javeriana. Departamento de Ciencia Política - Facultad de Ciencias Políticas y Relaciones Internacionales. Bogotá, Colombia. p. 1-97WWAP. 2017. United Nations World Water Assessment Programme. The United Nations World Water Development Report 2017: Wastewater - Facts and Figure, The Untapped Resource. UNESCO, Paris, France. p. 1-12Dotto, G.L., Esquerdo, V.M., Vieira, M.L.G., and Pinto, L.A.A. 2012. Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids and Surfaces B: Biointerfaces, 91: p. 234-241.Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., and El Harfi, A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11): p. Article ID e02711.Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., and Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2): p. 275-290.Pereira, L. and Alves, M. 2012. Chapter 4. Dyes - Environmental Impact and Remediation, in Environmental Protection Strategies for Sustainable Development. Malik, A. and Grohmann, E. (Eds). Springer: Dordrecht, Netherlands. p. 111-162.Rawat, D., Mishra, V., and Sharma, R.S. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere, 155: p. 591-605.Barrios-Ziolo, L.-F., Gaviria-Restrepo, L.-F., Agudelo, E.A., and Cardona-Gallo, S.A. 2017. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el area metropolitana del valle de aburra. Revista EIA, 13(26): p. 61-74.Gutiérrez, D.L. 2020. El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338Gomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223.Pirvu, F., Iancu, V.-I., Niculescu, M., Lehr, C., Pascu, L., and Galaon, T. 2020. Environmental detection of brilliant blue, sunset yellow and tartrazine using direct injection HPLC-DAD technique. Revista de Chimie, 71(6): p. 390-400.Motta, C.M., Simoniello, P., Arena, C., Capriello, T., Panzuto, R., Vitale, E., Agnisola, C., Tizzano, M., Avallone, B., and Ferrandino, I. 2019. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environmental Pollution, 253: p. 1126-1135.Ameta, S.C. 2018. Chapter 1. Introduction, in Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology. Ameta, S.C. and Ameta, R. (Eds). Academic Press: London, UK. p. 1-12.Jamee, R. and Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4): p. 114-118.Vincenzo, V., Giuseppina, I., Luigi, R., and Diana, S. 2017. Advanced oxidation processes for the removal of food dyes in wastewater. Current Organic Chemistry, 21(12): p. 1068-1073.Robinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255.Bokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.Tetzlaff, H.R. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885.de Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224.Payne, G.B. 1961. Reactions of hydrogen peroxide. VIII. Oxidation of isopropylidenemalononitrile and ethyl isopropylidenecyanoacetate. The Journal of Organic Chemistry, 26(3): p. 663-668.Yao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221.Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.Xu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.Bruland, K.W., Donat, J.R., and Hutchins, D.A. 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577.Barceloux, D.G. and Barceloux, D. 1999. Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): p. 201-216.Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.Cardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25.Torres, M., de los Santos, C., Portugau, P., Yeste, M.D.P., and Castiglioni, J. 2021. Utilization of a PILC-Al obtained from Uruguayan clay as support of mesoporous MnOx-catalysts on the combustion of toluene. Applied Clay Science, 201: p. Article ID 105935.Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.Schoonheydt, R.A., Pinnavaia, T., Lagaly, G., and Gangas, N. 1999. Pillared clays and pillared layered solids (technical report). Pure and Applied Chemistry 71(12): p. 2367-2371.Gil, A., Massinon, A., and Grange, P. 1995. Analysis and comparison of the microporosity in Al-, Zr- and Ti-pillared clays. Microporous Materials, 4(5): p. 369-378.Zuo, S., Yang, P., and Wang, X. 2017. Efficient and environmentally friendly synthesis of AlFe-PILC-Supported MnCe catalysts for benzene combustion. ACS Omega, 2(8): p. 5179-5186.Gálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87.Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15Vicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557.Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press.Jawad, A., Lu, X., Chen, Z., and Yin, G. 2014. Degradation of chlorophenols by supported Co–Mg–Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. The Journal of Physical Chemistry A, 118(43): p. 10028-10035.Zhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410.Ay, F., Catalkaya, E.C., and Kargi, F. 2009. A statistical experiment design approach for advanced oxidation of direct red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162(1): p. 230-236.Abdel-Rahman, M.A., Hassan, S.E.D., El-Din, M.N., Azab, M.S., El-Belely, E.F., Alrefaey, H.M.A., and Elsakhawy, T. 2020. One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Applied Sciences, 2(4): p. Article ID 573.Ramírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76.Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.Francis, F., Sabu, A., Nampoothiri, K.M., Ramachandran, S., Ghosh, S., Szakacs, G., and Pandey, A. 2003. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2): p. 107-115.Al-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A.A., Lafi, W.K., Al-Othman, A., and Alsheyab, M. 2020. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Science of the Total Environment, 700: p. Article ID 134576.Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.Singh, S.K., Dodge, J., Durrani, M.J., and Khan, M.A. 1995. Optimization and characterization of controlled release pellets coated with an experimental latex: I. Anionic drug. International Journal of Pharmaceutics, 125(2): p. 243-255.Sánchez-Lafuente, C., Furlanetto, S., Fernández-Arévalo, M., Alvarez-Fuentes, J., Rabasco, A.M., Faucci, M.T., Pinzauti, S., and Mura, P. 2002. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design. International Journal of Pharmaceutics, 237(1): p. 107-118.Pelalak, R., Alizadeh, R., Ghareshabani, E., and Heidari, Z. 2020. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Science of the Total Environment, 734: p. Article ID 139446.Narayanasamy, L. and Murugesan, T. 2014. Degradation of alizarin yellow R using UV/H2O2 advanced oxidation process. Environmental Progress & Sustainable Energy, 33(2): p. 482-489.Abu Amr, S.S., Aziz, H.A., and Adlan, M.N. 2013. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Management, 33(6): p. 1434-1441.Muniyasamy, A., Sivaporul, G., Gopinath, A., Lakshmanan, R., Altaee, A., Achary, A., and Velayudhaperumal Chellam, P. 2020. Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process - Ozonation: Experimental & partial derivative modelling approach. Journal of Environmental Management, 265: p. Article ID 110397.Wang, Z.-P., Wang, Z.-W., and Xu, K. 2017. Optimization of wet denitration by dual oxidant (H2O2/S2O82−) advanced oxidation process. Fuel Processing Technology, 156: p. 82-89.Abbey, J., Fields, B., O'Mullane, M., and Tomaska, L.D. 2014. Chapter 23. Food Additives: Colorants, in Encyclopedia of Food Safety. Motarjemi, Y. (Ed). Academic Press: Waltham, USA. p. 459-465.Benincá, C., Peralta-Zamora, P., Tavares, C.R.G., and Igarashi-Mafra, L. 2013. Degradation of an azo dye (ponceau 4R) and treatment of wastewater from a food industry by ozonation. Ozone: Science & Engineering, 35(4): p. 295-301.Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236.Guo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.Guechi, E.-K. and Hamdaoui, O. 2016. Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies. Desalination and Water Treatment, 57(22): p. 10270-10285.Aguiar, J.E., Bezerra, B.T.C., Siqueira, A.C.A., Barrera, D., Sapag, K., Azevedo, D.C.S., Lucena, S.M.P., and Silva, I.J. 2014. Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49(5): p. 741-751.Valverde, J.L., de Lucas, A., Sánchez, P., Dorado, F., and Romero, A. 2003. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B: Environmental, 43(1): p. 43-56.Bahranowski, K., Kielski, A., Serwicka, E.M., Wisła-Walsh, E., and Wodnicka, K. 2000. Influence of doping with copper on the texture of pillared montmorillonite catalysts. Microporous and Mesoporous Materials, 41(1): p. 201-215.Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107-108: p. 126-132.Ohtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.Bagal, M.V. and Gogate, P.R. 2012. Sonochemical degradation of alachlor in the presence of process intensifying additives. Separation and Purification Technology, 90: p. 92-100.Chaplin, B.P., Schrader, G., and Farrell, J. 2010. Electrochemical destruction of N-nitrosodimethylamine in reverse osmosis concentrates using boron-doped diamond film electrodes. Environmental Science & Technology, 44(11): p. 4264-4269.Wu, C. and Linden, K.G. 2010. Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research, 44(12): p. 3585-3594.Gultekin, I. and Ince, N.H. 2004. Degradation of reactive azo dyes by UV/H2O2: Impact of radical scavengers. Journal of Environmental Science and Health, Part A, 39(4): p. 1069-1081.Huang, J. and Mabury, S.A. 2000. A new method for measuring carbonate radical reactivity toward pesticides. Environmental Toxicology and Chemistry, 19(6): p. 1501-1507.Hung, H.-M., Kang, J.-W., and Hoffmann, M.R. 2002. The Sonolytic Destruction of Methyl tert-Butyl Ether Present in Contaminated Groundwater. Water Environment Research, 74(6): p. 545-556.Minero, C., Pellizzari, P., Maurino, V., Pelizzetti, E., and Vione, D. 2008. Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental, 77(3-4): p. 308-316.Richardson, D.E., Regino, C.A.S., Yao, H., and Johnson, J.V. 2003. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radical Biology and Medicine, 35(12): p. 1538-1550.Regino, C.A.S. and Richardson, D.E. 2007. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 360(14): p. 3971-3977.Arslan, I. and Balcioğlu, I.A. 1999. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2): p. 95-108.Wu, C.-H. and Chang, C.-L. 2006. Decolorization of reactive red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. Journal of Hazardous Materials, 128(2-3): p. 265-272.Sadik, W. and Shama, G. 2002. UV-Induced decolourization of an azo dye by homogeneous advanced oxidation processes. Process Safety and Environmental Protection, 80(6): p. 310-314.Giwa, A.-R.A., Bello, I.A., Olabintan, A.B., Bello, O.S., and Saleh, T.A. 2020. Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue. Heliyon, 6(8): p. Article ID e04454.Hashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318.Chirchi, L. and Ghorbel, A. 2002. Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Applied Clay Science, 21(5): p. 271-276.Sun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., and Zhou, Q. 2009. Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2): p. 1052-1057.Santana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822.Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.Behnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102.Nicodemos-Ramos, M.D., Sousa, L.A., and Aguiar, A. 2020. Effect of cysteine using Fenton processes on decolorizing different dyes: A kinetic study. Environmental Technology: p. 1-13.Ramírez, J.H. and Madeira, L., 2010. Chapter 6. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes, in Pillared Clays and Related Catalysts. Gil, A., Korili, S., Trujillano, R., and Vicente, M. (Eds). Springer, New York, USA. p. 129-165.Levenspiel, O., 2007. Chapter 18. Solid Catalyzed Reactions, in Chemical Reactor Engineering. Levenspiel, O. (Ed). John Wiley and Sons, Chichester, UK. p. 376-426.Ramírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205.Timofeeva, M.N., Khankhasaeva, S.T., Badmaeva, S.V., Chuvilin, A.L., Burgina, E.B., Ayupov, A.B., Panchenko, V.N., and Kulikova, A.V. 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Applied Catalysis B: Environmental, 59(3-4): p. 243-248.Luo, M., Bowden, D., and Brimblecombe, P. 2009. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Applied Catalysis B: Environmental, 85(3): p. 201-206.Donlagić, J. and Levec, J. 1998. Comparison of Catalyzed and Noncatalyzed Oxidation of Azo Dye and Effect on Biodegradability. Environmental Science & Technology, 32(9): p. 1294-1302.Silva, A.M.T., Quinta-Ferreira, R.M., and Levec, J. 2003. Catalytic and Noncatalytic Wet Oxidation of Formaldehyde. A Novel Kinetic Model. Industrial & Engineering Chemistry Research, 42(21): p. 5099-5108.Levec, J. 1997. Oxidation of an Azo Dye in Subcritical Aqueous Solutions. Industrial & Engineering Chemistry Research, 36(9): p. 3480-3486.Gordon, T.R. and Marsh, A.L. 2009. Temperature dependence of the oxidation of 2-chlorophenol by hydrogen peroxide in the presence of goethite. Catalysis Letters, 132(3): p. 349-354.Khieu, D.Q., Quang, D.T., Lam, T.D., Phu, N.H., Lee, J.H., and Kim, J.S. 2009. Fe-MCM-41 with highly ordered mesoporous structure and high Fe content: Synthesis and application in heterogeneous catalytic wet oxidation of phenol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65(1): p. 73-81.Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15Covinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229.Lázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283.Bergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220.Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-González, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. 1-12.Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.Li, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.Xu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.Gosetti, F., Gianotti, V., Polati, S., and Gennaro, M.C. 2005. HPLC-MS degradation study of E110 sunset yellow FCF in a commercial beverage. Journal of Chromatography A, 1090(1-2): p. 107-115.Astals, S., Batstone, D.J., Tait, S., and Jensen, P.D. 2015. Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research, 81: p. 208-215.Guélou, E., Barrault, J., Fournier, J., and Tatibouët, J.-M. 2003. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Applied Catalysis B: Environmental, 44(1): p. 1-8.Barrault, J., Bouchoule, C., Tatibouët, J.M., Abdellaoui, M., Majesté, A., Louloudi, I., Papayannakos, N., and Gangas, N.H. 2000. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Studies in Surface Science and Catalysis, 130: p. 749-754.Ramírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.Takagi, J. and Ishigure, K. 1985. Thermal Decomposition of Hydrogen Peroxide and Its Effect on Reactor Water Monitoring of Boiling Water Reactors. Nuclear Science and Engineering, 89(2): p. 177-186.Lin, C., Smith, F., Ichikawa, N., Baba, T., and Itow, M. 1991. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. Journal of International Journal of Chemical Kinetics, 23(11): p. 971-987.Ramírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76.Ramírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323.Yuranova, T., Enea, O., Mielczarski, E., Mielczarski, J., Albers, P., and Kiwi, J. 2004. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 49(1): p. 39-50.Sum, O.S.N., Feng, J., Hub, X., and Yue, P.L. 2005. Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1): p. 233-242.Revell, L.E. and Williamson, B.E. 2013. Why are some reactions slower at higher temperatures? Journal of Chemical Education, 90(8): p. 1024-1027.Mozurkewich, M. and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells. The Journal of Physical Chemistry, 88(25): p. 6429-6435.Mozurkewich, M., Lamb, J.J., and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 2. Hydroxyl + carbon monoxide. The Journal of Physical Chemistry, 88(25): p. 6435-6441.Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236.Moreira, F.C., García-Segura, S., Vilar, V.J.P., Boaventura, R.A.R., and Brillas, E. 2013. Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Applied Catalysis B: Environmental, 142-143: p. 877-890.Chaimaa, B. and Byoud, F. 2017. Decolorization and degradation of ponceau 4R by the super-iron (VI) in an aqueous solution. Journal of Materials and Environmental Science, 8(5): p. 1668-1675.Terres, J., Battisti, R., Andreaus, J., and de Jesus, P.C. 2014. Decolorization and degradation of indigo carmine dye from aqueous solution catalyzed by horseradish peroxidase. Biocatalysis and Biotransformation, 32(1): p. 64-73.Yang, J. 1987. Analysis of Dye. Chemical Industry Press, 1: p. 156–163.El-Desoky, H.S., Ghoneim, M.M., and Zidan, N.M. 2010. Decolorization and degradation of ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264(1): p. 143-150.Fónagy, O., Szabó-Bárdos, E., and Horváth, O. 2021. 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407: p. Article ID 113057.Kan, H., Soklun, H., Yang, Z., Wu, R., Shen, J., Qu, G., and Wang, T. 2020. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. Article ID 115974.Phaniendra, A., Jestadi, D.B., and Periyasamy, L. 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1): p. 11-26.Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.Tanaka, K., Padermpole, K., and Hisanaga, T. 2000. Photocatalytic degradation of commercial azo dyes. Water Research, 34(1): p. 327-333.Guivarch, E., Trevin, S., Lahitte, C., and Oturan, M.A. 2003. Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters, 1(1): p. 38-44.Baughman, G.L. and Weber, E.J. 1994. Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. Environmental Science & Technology, 28(2): p. 267-276.Weber, E.J. and Adams, R.L. 1995. Chemical- and sediment- mediated reduction of the azo dye disperse blue 79. Environmental Science & Technology, 29(5): p. 1163-1170.Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.Meriç, S., Kaptan, D., and Ölmez, T. 2004. Color and COD removal from wastewater containing reactive black 5 using Fenton’s oxidation process. Chemosphere, 54(3): p. 435-441.Ganesh, R., Boardman, G.D., and Michelsen, D. 1994. Fate of azo dyes in sludges. Water Research, 28(6): p. 1367-1376.Bafana, A., Devi, S.S., and Chakrabarti, T. 2011. Azo dyes: Past, present and the future. Journal of Environmental Reviews, 19: p. 350-371.Smith, R., 2005. Chapter 2. Process Economics, in Chemical Process: Design and Integration. Smith, R. (Ed). John Wiley & Sons, West Sussex, UK. p. 17-35.Rodríguez Miranda, J., García-Ubaque, C., and Londoño, J. 2015. Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. DYNA, 82(192): p. 230-238.Gil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82.Acampa, G., Giustra, M., and Parisi, C. 2019. Water treatment emergency: Cost evaluation tools. Sustainability, 11(9): p. Article ID 2609.Towler, G. and Sinnott, R., 2013. Chapter 9. Economic Evaluation of Projects, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 389-429.Towler, G. and Sinnott, R., 2013. Chapter 7. Capital Cost Estimating, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 307-354.Towler, G. and Sinnott, R., 2013. Chapter 8. Estimating Revenues and Production Costs, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 355-387.Douglas, J.M., 1988. Conceptual Design of Chemical Processes. Bradley, J.W. (Ed). McGraw-Hill New York, USA. p. 1-601.Silla, H., 2003. Chapter 2. Production and Capital Cost Estimation, in Chemical Process Engineering: Design and Economics. Silla, H. (Ed). CRC Press, New York, USA. p. 41-94.Dodane, P.-H., Mbéguéré, M., Sow, O., and Strande, L. 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in dakar, Senegal. Environmental Science & Technology, 46(7): p. 3705-3711.Khoshgoftar-Manesh, M.H., Abadi, S.K., Amidpour, M., and Hamedi, M.H. 2013. A new targeting method for estimation of cogeneration potential and total annualized cost in process industries. Chemical Engineering Research and Design, 91(6): p. 1039-1049.Bashar, R., Gungor, K., Karthikeyan, K.G., and Barak, P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197: p. 280-290.Mahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003.Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.Russo, D. 2021. Kinetic modeling of advanced oxidation processes using microreactors: Challenges and opportunities for Scale-Up. Applied Sciences, 11(3): p. 1-19.Donati, G. and Paludetto, R. 1997. Scale up of chemical reactors. Catalysis Today, 34(3): p. 483-533.Zlokarnik, M., 2006. Scale-Up in Chemical Engineering. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296.Zlokarnik, M., 2010. Scale-Up of Chemical and Biotechnological Processes. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296.Elliott, L.D., Knowles, J.P., Stacey, C.S., Klauber, D.J., and Booker-Milburn, K.I. 2018. Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. Reaction Chemistry & Engineering, 3(1): p. 86-93.Toulouse, C., Cezerac, J., Cabassud, M., Le Lann, M.V., and Casamatta, G. 1996. Optimisation and scale-up of batch chemical reactors: Impact of safety constraints. Chemical Engineering Science, 51(10): p. 2243-2252.Rueda Márquez, J.J., Levchuk, I., and Sillanpää, M. 2018. Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12): p. 1-18.SAC, ONG Servicios Ambientales de Caldas, Corpocaldas, Informe red de monitoreo quebrada Manizales–I Semestre (2015), Manizales, Colombia. p. 1-204UTP, Universidad Tecnológica de Pereira, Selección de alternativas para el tratamiento de aguas residuales del interceptor quebrada Manizales, incluyendo la estabilización, tratamiento y disposicion adecuada de lodos fase 1, Corpocaldas. p. 1-226Gutiérrez, D.L., El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338Seshadri, S., Bishop, P.L., and Agha, A.M. 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2): p. 127-137.Yaseen, D.A. and Scholz, M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16(2): p. 1193-1226.Al Prol, A.E. 2019. Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian Journal of Fisheries Aquatic Research, 3(2): p. 1-18.Turton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., 2008. Capítulo 3. Batch Processing, in Analysis, Synthesis and Design of Chemical Processes. Turton, R. (Ed). Pearson Education, Massachusetts, USA. p. 106-135.Couper, J.R., 2003. Chapter 4. Estimation of Capital Requirements, in Process Engineering Economics. Heinemann, H. (Ed). Marcel Dekker Inc, Miami, USA. p. 65-134.Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press.Vicente, M.A., Gil, A., and Bergaya, F., 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier, Oxford, UK. p. 523-557.Moreno, S., Gutiérrez, E., Alvarez, A., Papayannakos, N.G., and Poncelet, G. 1997. Al-pillared clays: From lab syntheses to pilot scale production characterisation and catalytic properties. Applied Catalysis A: General, 165(1): p. 103-114.Aouad, A., Mandalia, T., and Bergaya, F. 2005. A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Applied Clay Science, 28(1-4): p. 175-182.Ikehata, K., Gamal El-Din, M., and Snyder, S.A. 2008. Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater. Ozone: Science & Engineering, 30(1): p. 21-26.Sanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33.Cañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420.dos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16.Hassan, H. and Hameed, B. 2011. Decolorization of acid red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst. International Conference on Environment Science and Engineering 8: p. 232-236.Ochoa-Gutiérrez, K.S. and Mueses, M.A. 2014. Experimental and mathematical evaluation of molecular adsorption models for organic pollutants on TiO2-P25 particles. Ingeniería y Competitividad, 16(2): p. 309-320.Anirudhan, T.S. and Ramachandran, M. 2015. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95: p. 215-225.Convocatoria 757 de 2016MincienciasColfuturoBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1053777983.2021.pdf1053777983.2021.pdfTesis de Doctorado en Ingeniería – Ingeniería Químicaapplication/pdf7707083https://repositorio.unal.edu.co/bitstream/unal/81694/1/1053777983.2021.pdf8bd78e3efd9d25dc8652a9158149f472MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81694/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1053777983.2021.pdf.jpg1053777983.2021.pdf.jpgGenerated Thumbnailimage/jpeg4973https://repositorio.unal.edu.co/bitstream/unal/81694/3/1053777983.2021.pdf.jpg63e516de91506cab0dbe6c2069a0fe4cMD53unal/81694oai:repositorio.unal.edu.co:unal/816942024-08-07 23:10:22.085Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |