Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)

ilustraciones, graficas

Autores:
Duarte Castro, Viviana Astrid
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81504
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81504
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
SBR
Lodo granular aerobio
Lodo activo
Tiempo de sedimentación
Secuential Batch Reactor (SBR)
Aerobic granular sludge
Active sludge
Settling time
Agua residual
Tratamiento del agua
Waste water
Water treatment
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_454b5891e6558aba93ef185500d8d5b5
oai_identifier_str oai:repositorio.unal.edu.co:unal/81504
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
dc.title.translated.eng.fl_str_mv Development of an aerobic granular sludge for water treatment in a sequential batch reactor (SBR)
title Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
spellingShingle Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
SBR
Lodo granular aerobio
Lodo activo
Tiempo de sedimentación
Secuential Batch Reactor (SBR)
Aerobic granular sludge
Active sludge
Settling time
Agua residual
Tratamiento del agua
Waste water
Water treatment
title_short Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
title_full Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
title_fullStr Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
title_full_unstemmed Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
title_sort Desarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)
dc.creator.fl_str_mv Duarte Castro, Viviana Astrid
dc.contributor.advisor.none.fl_str_mv Bustos-López, Martha Cristina
Algecira Enciso, Néstor Ariel
dc.contributor.author.none.fl_str_mv Duarte Castro, Viviana Astrid
dc.contributor.researchgroup.spa.fl_str_mv Resiliencia y Saneamiento Resa
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
topic 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
SBR
Lodo granular aerobio
Lodo activo
Tiempo de sedimentación
Secuential Batch Reactor (SBR)
Aerobic granular sludge
Active sludge
Settling time
Agua residual
Tratamiento del agua
Waste water
Water treatment
dc.subject.proposal.none.fl_str_mv SBR
dc.subject.proposal.spa.fl_str_mv Lodo granular aerobio
Lodo activo
Tiempo de sedimentación
dc.subject.proposal.eng.fl_str_mv Secuential Batch Reactor (SBR)
Aerobic granular sludge
Active sludge
Settling time
dc.subject.unesco.spa.fl_str_mv Agua residual
Tratamiento del agua
dc.subject.unesco.eng.fl_str_mv Waste water
Water treatment
description ilustraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-03T18:42:04Z
dc.date.available.none.fl_str_mv 2022-06-03T18:42:04Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81504
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81504
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adav, Sunil S., Duu Jong Lee, Kuan Yeow Show, and Joo Hwa Tay. 2008. “Aerobic Granular Sludge: Recent Advances.” Biotechnology Advances 26(5): 411–23.
Antioquia, Gobernación de. 2017. “No Title.” Secreteria Seccional de Salud y Proteción Social. http://diagnosticosalud.dssa.gov.co/0-capitulo-1-salud-y-ambiente/pagina-6-capitulo-1-salud-y-ambiente/ (November 8, 2019).
APHA, AMERICAN PUBLIC HEALTH ASSOCIATION. 2017. Standard Methods for the Examination of Water and Wastewater. 23 ed. Washington: APHA. https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=31546 (January 23, 2022).
Awang, Nik Azimatolakma, and Md Ghazaly Shaaban. 2016. “Effect of Reactor Height/Diameter Ratio and Organic Loading Rate on Formation of Aerobic Granular Sludge in Sewage Treatment.” International Biodeterioration and Biodegradation 112: 1–11. http://dx.doi.org/10.1016/j.ibiod.2016.04.028.
Bassin, João Paulo. 2017. “Aerobic Granular Sludge Technology.” In Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques, Springer International Publishing, 78–142.
Beun, J. J. et al. 1999. “Aerobic Granulation in a Sequencing Batch Reactor.” Water Research 33(10): 2283–90.
de Bruin, L. M.M. et al. 2004. “Aerobic Granular Sludge Technology: An Alternative to Activated Sludge?” Water Science and Technology 49(11–12): 1–7.
Cardona Farias, Ana María, and Angie Liseth Parada Parra. 2018. Universidad Distrital Franciso Jose de Caldas “Diagnóstico Base Para El Análisis Histórico Ambiental En El Municipio de Cajicá - Cundinamarca.” Universidad Distrital Francisco José de Caldas. https://repository.udistrital.edu.co/bitstream/handle/11349/14004/AguilarRiveraSergioAndres&DiazAriasJulianAndres2018.pdf?sequence=1%0Ahttp://repository.udistrital.edu.co/bitstream/11349/13996/1/MartinezFonsecaYennyAlexandra2018.pdf.
Chan, Yi Jing, Mei Fong Chong, Chung Lim Law, and D. G. Hassell. 2009. “A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater.” Chemical Engineering Journal 155(1–2): 1–18.
del Coso, Víctor. 2004. “Disseny de Tractaments SBR d’aigües Residuals.” Escola Universitária D’Enginyeria Técnica Industrial de Barcelona.
Dangcong, Peng, Nicolas Bernet, Jean Philippe Delgenes, and Rene Moletta. 1999. “Aerobic Granular Sludge - A Case Report.” Water Research 33(3): 890–93.
Dohare, D, and Nupur Kesharwani. 2014. “A Review on Wastewater Treatment Using Sequential Batchreactor.” International Journal of Scientific Engineering and Technology 1138(9): 2277–1581.
Franca, Rita D.G., Helena M. Pinheiro, Mark C.M. van Loosdrecht, and Nídia D. Lourenço. 2018. “Stability of Aerobic Granules during Long-Term Bioreactor Operation.” Biotechnology Advances 36(1): 228–46. https://doi.org/10.1016/j.biotechadv.2017.11.005.
Giesen, Andreas et al. 2016. “Aerobic Granular Biomass Technology: Recent Performance Data, Lessons Learnt and Retrofitting Conventional Treatment Infrastructure.” WEFTEC 2016 - 89th Water Environment Federation Annual Technical Exhibition and Conference 3: 1913–23.
Guest, R. K., and D. W. Smith. 2002. “A Potential New Role for Fungi in a Wastewater MBR Biological Nitrogen Reduction System.” Journal of Environmental Engineering and Science 1(6): 433–37.
Han, Keehyun, and Octave Levenspiel. 1988. “Extended Monod Kinetics for Substrate, Product, and Cell Inhibition.” Biotechnology and Bioengineering 32(4): 430–47. https://onlinelibrary.wiley.com/doi/10.1002/bit.260320404.
Kaewsuk, Jutamas, Worachat Thorasampan, Monthon Thanuttamavong, and Gyu Tae Seo. 2010. “Kinetic Development and Evaluation of Membrane Sequencing Batch Reactor (MSBR) with Mixed Cultures Photosynthetic Bacteria for Dairy Wastewater Treatment.” Journal of Environmental Management 91(5): 1161–68.
Keller, R G, Paul C Burrell, and Linda L Blackall. 1998. “Microbiology of a Nitrite-Oxidizing Bioreactor.” 64(5): 1878–83.
Ketchum, Lloyd H. 1997. “Design and Physical Features of Sequencing Batch Reactors.” Water Science and Technology 35(1): 11–18. http://dx.doi.org/10.1016/S0273-1223(96)00873-6.
Kim, Hyungu, Jitae Kim, and Daehee Ahn. 2020. “Effects of Carbon to Nitrogen Ratio on the Performance and Stability of Aerobic Granular Sludge.” Environmental Engineering Research 26(1): 1–8.
Lili, Liu et al. 2005. “Investigation on the Formation and Kinetics of Glucose-Fed Aerobic Granular Sludge.” Enzyme and Microbial Technology 36(4): 487–91.
Linlin, Hu, Wang Jianlong, Wen Xianghua, and Qian Yi. 2005. “The Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactor (SBR) by Seeding Anaerobic Granules.” Process Biochemistry 40(1): 5–11.
Liu, Q. S., J. H. Tay, and Y. Liu. 2003. “Substrate Concentration-Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor.” Environmental Technology (United Kingdom) 24(10): 1235–42.
Liu, Yong Qiang, and Joo Hwa Tay. 2006. “Variable Aeration in Sequencing Batch Reactor with Aerobic Granular Sludge.” Journal of Biotechnology 124(2): 338–46.
Liu, Yu et al. 2005. “Selection Pressure-Driven Aerobic Granulation in a Sequencing Batch Reactor.” Applied Microbiology and Biotechnology 67(1): 26–32.
Liu, Yu, and Qi-shan Liu. 2006. “Causes and Control of Filamentous Growth in Aerobic Granular Sludge Sequencing Batch Reactors.” 24: 115–27.
Liu, Yu, and Joo Hwa Tay. 2004. “State of the Art of Biogranulation Technology for Wastewater Treatment.” Biotechnology Advances 22(7): 533–63.
Lv, Yi et al. 2014. “Microbial Communities of Aerobic Granules: Granulation Mechanisms.” Bioresource Technology 169: 344–51.
M C M van, Loosdrecht et al. 1995. “Biofilm Structures.” Water Science and Technology 32(8): 35–43. http://ezproxy.unal.edu.co/scholarly-journals/biofilm-structures/docview/1943326097/se-2?accountid=137090.
Mace, S., and J. Mata-Alvarez. 2002. “Utilization of SBR Technology for Wastewater Treatment: An Overview.” Industrial and Engineering Chemistry Research 41(23): 5539–53.
Martínez, M. David Antonio, and B. Oscar González. 2010. “Influencia Del Tiempo de Aireación En La Formación de Gránulos Aerobios En Un Reactor Secuencial Por Lotes.” UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO. http://python-compiler-unam2011-2.googlecode.com/svn-history/r4/trunk/proyecto1/Readme.pdf.
Metcalf & Eddy, George Tchobanoglous, Franklin L. Burton, and H. David Stensel. 2003. XVIII Wastewater Engineering: Treatment and Reuse. Cuarta. McGraw-Hill series in civil and environmental engineering).
Metcalf, and Eddy. 1995. Tratamiento, Vertido Y Reutilización , Volumen I Ingenieria De Las Aguas Residuales.
Muñoz Paredes, J.F., Ramos Ramos, M. 2014. “Sequential Batch Reactors: A Versatile Technology For Wastewater Treatment.” Ciencia e Ingeniería Neogranadina 24(1): 49–66. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81702014000100003&lng=en&nrm=iso&tlng=.
Nancharaiah, Y. V., and G. Kiran Kumar Reddy. 2018. “Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications.” Bioresource Technology 247(September 2017): 1128–43. http://dx.doi.org/10.1016/j.biortech.2017.09.131.
Nicolau, Ana, Nicolina Dias, Manuel Mota, and Nelson Lima. 2001. “Trends in the Use of Protozoa in the Assessment of Wastewater Treatment.” Research in Microbiology 152(7): 621–30.
Noyola, Adalberto. 1996. “Anaerobic Technology as a Tool for the Sustainable Environment: The Context of Mexico.” Institute of Engineering UNAM: 169–72.
Okpokwasili, G. C., and C. O. Nweke. 2006. “Microbial Growth and Substrate Utilization Kinetics.” African Journal of Biotechnology 5(4): 305–17.
OMS. 2019. Organización mundial de salud Guías Para El Saneamiento y La Salud. Licencia: Ginebra. https://apps.who.int/iris/bitstream/handle/10665/330097/9789243514703-spa.pdf.
Pan, S., J. H. Tay, Y. X. He, and S. T.L. Tay. 2004. “The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules.” Letters in Applied Microbiology 38(2): 158–63.
Peyong, Yet Nee, Yan Zhou, Ahmad Zuhairi Abdullah, and Vel Vadivelu. 2012. “The Effect of Organic Loading Rates and Nitrogenous Compounds on the Aerobic Granules Developed Using Low Strength Wastewater.” Biochemical Engineering Journal 67: 52–59. http://dx.doi.org/10.1016/j.bej.2012.05.009.
Poltak, Ronald F. 2005. “Sequencing Batch Reactor Design and Operational Considerations Manual.” New England Interstate Water Pollution Control Commission: Massachusetts, USA (September): 27.
Pronk, M. et al. 2015. “Full Scale Performance of the Aerobic Granular Sludge Process for Sewage Treatment.” Water Research 84: 207–17. http://dx.doi.org/10.1016/j.watres.2015.07.011.
Qin, Lei, Yu Liu, and Joo Hwa Tay. 2004. “Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor.” Biochemical Engineering Journal 21(1): 47–52.
Qin, Lei, Joo Hwa Tay, and Yu Liu. 2004. “Selection Pressure Is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors.” Process Biochemistry 39(5): 579–84.
Raschid-sally, Liqa, and Priyantha Jayakody. 2008. Drivers and Characteristics of Wastewater Agriculture in Developing Countries:
Rittmann, Bruce E, and Perry L. McCarty. 2001. “Environmental Biotechnology : Principles and Applications.” Current Opinion in Biotechnology 7(3): 357–65. http://www.sciencedirect.com/science/article/pii/S0958166996800474.
Rollemberg, Silvio Luiz de Sousa, Tasso Jorge Tavares Ferreira, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2020. “Impact of Cycle Type on Aerobic Granular Sludge Formation, Stability, Removal Mechanisms and System Performance.” Journal of Environmental Management 256(December 2019).
Romero Rojas, Jairo Alberto. 1999. Tratamiento-de-Aguas-Residuales: Teoría y Principios de Diseño. Escuela Co. ed. Escuela Colombiana de Ingeniería. Bogotá D.C.: Escuela Colombiana de Ingeniería.
Salgot, Miquel, and Montserrat Folch. 2018. “Wastewater Treatment and Water Reuse.” Current Opinion in Environmental Science and Health 2: 64–74. https://doi.org/10.1016/j.coesh.2018.03.005.
Show, Kuan-Yeow. 2006. “Mechanisms and Models for Anaerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, Elsevier Ltd, 24–58.
Show, Kuan Yeow, Duu Jong Lee, and Joo Hwa Tay. 2012. “Aerobic Granulation: Advances and Challenges.” Applied Biochemistry and Biotechnology 167(6): 1622–40.
de Sousa Rollemberg, Silvio Luiz, Antônio Ricardo Mendes Barros, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2018. “Aerobic Granular Sludge: Cultivation Parameters and Removal Mechanisms.” Bioresource Technology 270(August): 678–88. https://doi.org/10.1016/j.biortech.2018.08.130.
Von Sperling, Marcos. 2014. Principios Del Tratamiento Biológico de Aguas Residuales. ed. San Juan de Pasto: Universidad de Nariño. Pasto.
SSPD, Superintendencia de Servicios Públicos Domiciliarios. 2019. Estudio Sectorial de Los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado.
Surampalli, Rao Y., R. D. Tyagi, O. Karl Scheible, and James A. Heidman. 1997. “Nitrification, Denitrification and Phosphorus Removal in Sequential Batch Reactors.” Bioresource Technology 61(2): 151–57.
Tay, J. H., Q. S. Liu, and Y. Liu. 2001. “The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules.” Applied Microbiology and Biotechnology 57(1–2): 227–33.
———. 2002. “Aerobic Granulation in Sequential Sludge Blanket Reactor.” Water Science and Technology 46(4–5): 13–18.
Tay, Joo-Hwa, Shun Pan, Yanxin He, and Stephen Tiong Lee Tay. 2004. “Effect of Organic Loading Rate on Aerobic Granulation. II: Characteristics of Aerobic Granules.” Journal of Environmental Engineering 130(10): 1102–9.
Toh, S. K. et al. 2003. “Size-Effect on the Physical Characteristics of the Aerobic Granule in a SBR.” Applied Microbiology and Biotechnology 60(6): 687–95.
Tsuneda, Satoshi et al. 2003. “Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor.” Water Research 37(20): 4965–73.
U.S. EPA. 1999. EPA 832-F- office of Water Washington, D.C. Folleto Informativo de Tecnología de Aguas Residuales Reactores Secuenciales Por Tandas.
UNESCO. 2017. 8 Ecos de Economía: A Latin American Journal of Applied Economics Aguas Residuales: El Recurso Desaprovechado. Informe Mundial de Las Naciones Unidas Sobre El Desarrollo de Los Recursos Hídricos 2017. https://unesdoc.unesco.org/ark:/48223/pf0000247647.
Wang, Li et al. 2018. “Recent Advances on Biosorption by Aerobic Granular Sludge.” Journal of Hazardous Materials 357(May): 253–70. https://doi.org/10.1016/j.jhazmat.2018.06.010.
Wang, Qiang, Guocheng Du, and Jian Chen. 2004. “Aerobic Granular Sludge Cultivated under the Selective Pressure as a Driving Force.” Process Biochemistry 39(5): 557–63.
Wang Yu Liu Joo-Hwa Tay, Zhi-Wu. 2005. “APPLIED MICROBIAL AND CELL PHYSIOLOGY Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules.” Appl Microbiol Biotechnol 69: 469–73.
Wang, Zhi-Wu, and Yu Liu. 2008. Wastewater Purification: Aerobic Granulation in Sequencing Batch Reactors (Brief Article)(Book Review). ed. Inc. Ringgold. https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=edscpi&AN=edscpi.A175905484&lang=es&site=eds-live.
Weber, S D, W Ludwig, K.-H Schleifer, and J Fried. 2007. “Microbial Composition and Structure of Aerobic Granular Sewage Biofilms.” APPLIED AND ENVIRONMENTAL MICROBIOLOGY 73(19): 6233–40. https://journals.asm.org/journal/aem.
Wilderer, P.A.; Irvine, R.L; Goronszy, M.C. 2001. Sequencing Batch Reactor Technology. London. www.iwapublishing.com.
Winkler, M. K.H. et al. 2013. “Microbial Diversity Differences within Aerobic Granular Sludge and Activated Sludge Flocs.” Applied Microbiology and Biotechnology 97(16): 7447–58.
Yang, Shu Fang, Joo Hwa Tay, and Yu Liu. 2003. “A Novel Granular Sludge Sequencing Batch Reactor for Removal of Organic and Nitrogen from Wastewater.” Journal of Biotechnology 106(1): 77–86.
Yu, Liu. 2006. “Mechanisms of Aerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, ed. Elsevier. , 308. http://www.sciencedirect.com/science/article/pii/S0713274306801066%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S0713274306801066.
Yu Liu, Joo-Hwa Tay. 2002. “The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge.” Water Research 36: 1653–65.
Zhu, Jianrong, and Peter A. Wilderer. 2003. “Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge.” Water Research 37(9): 2013–18.
Zhu, Liang et al. 2013. “Optimization of Selective Sludge Discharge Mode for Enhancing the Stability of Aerobic Granular Sludge Process.” Chemical Engineering Journal 217: 442–46. http://dx.doi.org/10.1016/j.cej.2012.11.132
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 105 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81504/3/53039060.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81504/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81504/5/53039060.2022.pdf.jpg
bitstream.checksum.fl_str_mv 1ced40bd5941487ade4fbecbff5d760b
8153f7789df02f0a4c9e079953658ab2
34a46b4aa97eefa6150ee76f4dc15a10
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089802160537600
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bustos-López, Martha Cristinac39767de233a526f0017a4f7bfe00fbc600Algecira Enciso, Néstor Ariel7e5c64906bba9ec89eddc4ec2f5f2e95Duarte Castro, Viviana Astrid9ec5ed1624d57341d60ef2896f40f02fResiliencia y Saneamiento Resa2022-06-03T18:42:04Z2022-06-03T18:42:04Z2022https://repositorio.unal.edu.co/handle/unal/81504Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl presente trabajo tiene como meta principal evaluar la formación de un lodo granular aerobio a partir de un lodo activo en un Reactor Discontinuo Secuencial (SBR), propone un procedimiento que describe la experimentación para la formación de gránulos aerobios y determina la remoción de materia orgánica por medio de la DQOs del afluente y el efluente. La experimentación se desarrolló en tres fases. En la primera, se hizo el montaje del reactor con un volumen de trabajo de 5 litros, un Radio de Intercambio Volumétrico-RIV de 60% y la automatización del sistema, se inoculó con lodo activo y agua residual sintética de 600 mg/l de DQO y la puesta en marcha del proceso, inició con un tiempo de operación de ciclo de 12 horas. En la segunda fase se llevó a cabo el acondicionamiento del sistema, operando a una COV promedio de 1,4 kg DQO/m3∙d, un tiempo de ciclo de 6 horas y se disminuyó el tiempo de sedimentación de 30 minutos hasta 5 minutos, alcanzando (Vs)min de 7,2 m/h generando mayor estrés cortante como factor relevante para la granulación. En la última fase se controlaron las variables operacionales manteniendo la concentración de SST del licor de mezcla en 2100 mg/l, hasta lograr la formación de gránulos aerobios con IVL30 de 47 ml/gSST y IVL5 71ml/gSST y tamaños de 0,3mm, en esta etapa de granulación se obtuvieron eficiencias en remoción de DQOs promedio de 94%. (Texto tomado de la fuente)The present work has a main goal, to evaluate the formation of an aerobic granular sludge from an active sludge in a Sequential Batch Reactor (SBR). A procedure proposed describes the experimentation for the formation of aerobic granules and determines a removal of organic matter by means of the CODs of the influent and the effluent. The experimentation took place in three phases, in the first one the assembly of the reactor was made with a working volume of 5 liters, a RIV of 60% and the automation of the system, it was inoculated with activated sludge and synthetic residual water of 600 mg/ l of COD; the adequacy of the process started with a cycle operation time of 12 hours.; In the second phase, the conditioning of the process was carried out, operating at an average OLR of 1.4 kg COD/m3∙d, a cycle time of 6 hours and the sedimentation time was reduced from 30 minutes to operating at 5 minutes. reaching (Vs)min of 7.2 m/h, generating greater shear stress as a relevant factor for granulation, in the last phase the operational variables were controlled, maintaining the concentration of TSS in the mixed liquor at 2100 mg/l, until achieving the formation of aerobic granules with IVL30 of 47 ml/gTSS and IVL5 71ml/gTSS and sizes of 0.3mm, in this granulation stage average COD removal efficiencies of 94% were obtained.MaestríaMagíster en Ingeniería - Ingeniería AmbientalSaneamiento Ambiental y Calidad del Agua105 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaSBRLodo granular aerobioLodo activoTiempo de sedimentaciónSecuential Batch Reactor (SBR)Aerobic granular sludgeActive sludgeSettling timeAgua residualTratamiento del aguaWaste waterWater treatmentDesarrollo de un lodo granular aerobio para el tratamiento de aguas en un reactor discontinuo secuencial (SBR)Development of an aerobic granular sludge for water treatment in a sequential batch reactor (SBR)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdav, Sunil S., Duu Jong Lee, Kuan Yeow Show, and Joo Hwa Tay. 2008. “Aerobic Granular Sludge: Recent Advances.” Biotechnology Advances 26(5): 411–23.Antioquia, Gobernación de. 2017. “No Title.” Secreteria Seccional de Salud y Proteción Social. http://diagnosticosalud.dssa.gov.co/0-capitulo-1-salud-y-ambiente/pagina-6-capitulo-1-salud-y-ambiente/ (November 8, 2019).APHA, AMERICAN PUBLIC HEALTH ASSOCIATION. 2017. Standard Methods for the Examination of Water and Wastewater. 23 ed. Washington: APHA. https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=31546 (January 23, 2022).Awang, Nik Azimatolakma, and Md Ghazaly Shaaban. 2016. “Effect of Reactor Height/Diameter Ratio and Organic Loading Rate on Formation of Aerobic Granular Sludge in Sewage Treatment.” International Biodeterioration and Biodegradation 112: 1–11. http://dx.doi.org/10.1016/j.ibiod.2016.04.028.Bassin, João Paulo. 2017. “Aerobic Granular Sludge Technology.” In Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques, Springer International Publishing, 78–142.Beun, J. J. et al. 1999. “Aerobic Granulation in a Sequencing Batch Reactor.” Water Research 33(10): 2283–90.de Bruin, L. M.M. et al. 2004. “Aerobic Granular Sludge Technology: An Alternative to Activated Sludge?” Water Science and Technology 49(11–12): 1–7.Cardona Farias, Ana María, and Angie Liseth Parada Parra. 2018. Universidad Distrital Franciso Jose de Caldas “Diagnóstico Base Para El Análisis Histórico Ambiental En El Municipio de Cajicá - Cundinamarca.” Universidad Distrital Francisco José de Caldas. https://repository.udistrital.edu.co/bitstream/handle/11349/14004/AguilarRiveraSergioAndres&DiazAriasJulianAndres2018.pdf?sequence=1%0Ahttp://repository.udistrital.edu.co/bitstream/11349/13996/1/MartinezFonsecaYennyAlexandra2018.pdf.Chan, Yi Jing, Mei Fong Chong, Chung Lim Law, and D. G. Hassell. 2009. “A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater.” Chemical Engineering Journal 155(1–2): 1–18.del Coso, Víctor. 2004. “Disseny de Tractaments SBR d’aigües Residuals.” Escola Universitária D’Enginyeria Técnica Industrial de Barcelona.Dangcong, Peng, Nicolas Bernet, Jean Philippe Delgenes, and Rene Moletta. 1999. “Aerobic Granular Sludge - A Case Report.” Water Research 33(3): 890–93.Dohare, D, and Nupur Kesharwani. 2014. “A Review on Wastewater Treatment Using Sequential Batchreactor.” International Journal of Scientific Engineering and Technology 1138(9): 2277–1581.Franca, Rita D.G., Helena M. Pinheiro, Mark C.M. van Loosdrecht, and Nídia D. Lourenço. 2018. “Stability of Aerobic Granules during Long-Term Bioreactor Operation.” Biotechnology Advances 36(1): 228–46. https://doi.org/10.1016/j.biotechadv.2017.11.005.Giesen, Andreas et al. 2016. “Aerobic Granular Biomass Technology: Recent Performance Data, Lessons Learnt and Retrofitting Conventional Treatment Infrastructure.” WEFTEC 2016 - 89th Water Environment Federation Annual Technical Exhibition and Conference 3: 1913–23.Guest, R. K., and D. W. Smith. 2002. “A Potential New Role for Fungi in a Wastewater MBR Biological Nitrogen Reduction System.” Journal of Environmental Engineering and Science 1(6): 433–37.Han, Keehyun, and Octave Levenspiel. 1988. “Extended Monod Kinetics for Substrate, Product, and Cell Inhibition.” Biotechnology and Bioengineering 32(4): 430–47. https://onlinelibrary.wiley.com/doi/10.1002/bit.260320404.Kaewsuk, Jutamas, Worachat Thorasampan, Monthon Thanuttamavong, and Gyu Tae Seo. 2010. “Kinetic Development and Evaluation of Membrane Sequencing Batch Reactor (MSBR) with Mixed Cultures Photosynthetic Bacteria for Dairy Wastewater Treatment.” Journal of Environmental Management 91(5): 1161–68.Keller, R G, Paul C Burrell, and Linda L Blackall. 1998. “Microbiology of a Nitrite-Oxidizing Bioreactor.” 64(5): 1878–83.Ketchum, Lloyd H. 1997. “Design and Physical Features of Sequencing Batch Reactors.” Water Science and Technology 35(1): 11–18. http://dx.doi.org/10.1016/S0273-1223(96)00873-6.Kim, Hyungu, Jitae Kim, and Daehee Ahn. 2020. “Effects of Carbon to Nitrogen Ratio on the Performance and Stability of Aerobic Granular Sludge.” Environmental Engineering Research 26(1): 1–8.Lili, Liu et al. 2005. “Investigation on the Formation and Kinetics of Glucose-Fed Aerobic Granular Sludge.” Enzyme and Microbial Technology 36(4): 487–91.Linlin, Hu, Wang Jianlong, Wen Xianghua, and Qian Yi. 2005. “The Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactor (SBR) by Seeding Anaerobic Granules.” Process Biochemistry 40(1): 5–11.Liu, Q. S., J. H. Tay, and Y. Liu. 2003. “Substrate Concentration-Independent Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor.” Environmental Technology (United Kingdom) 24(10): 1235–42.Liu, Yong Qiang, and Joo Hwa Tay. 2006. “Variable Aeration in Sequencing Batch Reactor with Aerobic Granular Sludge.” Journal of Biotechnology 124(2): 338–46.Liu, Yu et al. 2005. “Selection Pressure-Driven Aerobic Granulation in a Sequencing Batch Reactor.” Applied Microbiology and Biotechnology 67(1): 26–32.Liu, Yu, and Qi-shan Liu. 2006. “Causes and Control of Filamentous Growth in Aerobic Granular Sludge Sequencing Batch Reactors.” 24: 115–27.Liu, Yu, and Joo Hwa Tay. 2004. “State of the Art of Biogranulation Technology for Wastewater Treatment.” Biotechnology Advances 22(7): 533–63.Lv, Yi et al. 2014. “Microbial Communities of Aerobic Granules: Granulation Mechanisms.” Bioresource Technology 169: 344–51.M C M van, Loosdrecht et al. 1995. “Biofilm Structures.” Water Science and Technology 32(8): 35–43. http://ezproxy.unal.edu.co/scholarly-journals/biofilm-structures/docview/1943326097/se-2?accountid=137090.Mace, S., and J. Mata-Alvarez. 2002. “Utilization of SBR Technology for Wastewater Treatment: An Overview.” Industrial and Engineering Chemistry Research 41(23): 5539–53.Martínez, M. David Antonio, and B. Oscar González. 2010. “Influencia Del Tiempo de Aireación En La Formación de Gránulos Aerobios En Un Reactor Secuencial Por Lotes.” UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO. http://python-compiler-unam2011-2.googlecode.com/svn-history/r4/trunk/proyecto1/Readme.pdf.Metcalf & Eddy, George Tchobanoglous, Franklin L. Burton, and H. David Stensel. 2003. XVIII Wastewater Engineering: Treatment and Reuse. Cuarta. McGraw-Hill series in civil and environmental engineering).Metcalf, and Eddy. 1995. Tratamiento, Vertido Y Reutilización , Volumen I Ingenieria De Las Aguas Residuales.Muñoz Paredes, J.F., Ramos Ramos, M. 2014. “Sequential Batch Reactors: A Versatile Technology For Wastewater Treatment.” Ciencia e Ingeniería Neogranadina 24(1): 49–66. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81702014000100003&lng=en&nrm=iso&tlng=.Nancharaiah, Y. V., and G. Kiran Kumar Reddy. 2018. “Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications.” Bioresource Technology 247(September 2017): 1128–43. http://dx.doi.org/10.1016/j.biortech.2017.09.131.Nicolau, Ana, Nicolina Dias, Manuel Mota, and Nelson Lima. 2001. “Trends in the Use of Protozoa in the Assessment of Wastewater Treatment.” Research in Microbiology 152(7): 621–30.Noyola, Adalberto. 1996. “Anaerobic Technology as a Tool for the Sustainable Environment: The Context of Mexico.” Institute of Engineering UNAM: 169–72.Okpokwasili, G. C., and C. O. Nweke. 2006. “Microbial Growth and Substrate Utilization Kinetics.” African Journal of Biotechnology 5(4): 305–17.OMS. 2019. Organización mundial de salud Guías Para El Saneamiento y La Salud. Licencia: Ginebra. https://apps.who.int/iris/bitstream/handle/10665/330097/9789243514703-spa.pdf.Pan, S., J. H. Tay, Y. X. He, and S. T.L. Tay. 2004. “The Effect of Hydraulic Retention Time on the Stability of Aerobically Grown Microbial Granules.” Letters in Applied Microbiology 38(2): 158–63.Peyong, Yet Nee, Yan Zhou, Ahmad Zuhairi Abdullah, and Vel Vadivelu. 2012. “The Effect of Organic Loading Rates and Nitrogenous Compounds on the Aerobic Granules Developed Using Low Strength Wastewater.” Biochemical Engineering Journal 67: 52–59. http://dx.doi.org/10.1016/j.bej.2012.05.009.Poltak, Ronald F. 2005. “Sequencing Batch Reactor Design and Operational Considerations Manual.” New England Interstate Water Pollution Control Commission: Massachusetts, USA (September): 27.Pronk, M. et al. 2015. “Full Scale Performance of the Aerobic Granular Sludge Process for Sewage Treatment.” Water Research 84: 207–17. http://dx.doi.org/10.1016/j.watres.2015.07.011.Qin, Lei, Yu Liu, and Joo Hwa Tay. 2004. “Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor.” Biochemical Engineering Journal 21(1): 47–52.Qin, Lei, Joo Hwa Tay, and Yu Liu. 2004. “Selection Pressure Is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors.” Process Biochemistry 39(5): 579–84.Raschid-sally, Liqa, and Priyantha Jayakody. 2008. Drivers and Characteristics of Wastewater Agriculture in Developing Countries:Rittmann, Bruce E, and Perry L. McCarty. 2001. “Environmental Biotechnology : Principles and Applications.” Current Opinion in Biotechnology 7(3): 357–65. http://www.sciencedirect.com/science/article/pii/S0958166996800474.Rollemberg, Silvio Luiz de Sousa, Tasso Jorge Tavares Ferreira, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2020. “Impact of Cycle Type on Aerobic Granular Sludge Formation, Stability, Removal Mechanisms and System Performance.” Journal of Environmental Management 256(December 2019).Romero Rojas, Jairo Alberto. 1999. Tratamiento-de-Aguas-Residuales: Teoría y Principios de Diseño. Escuela Co. ed. Escuela Colombiana de Ingeniería. Bogotá D.C.: Escuela Colombiana de Ingeniería.Salgot, Miquel, and Montserrat Folch. 2018. “Wastewater Treatment and Water Reuse.” Current Opinion in Environmental Science and Health 2: 64–74. https://doi.org/10.1016/j.coesh.2018.03.005.Show, Kuan-Yeow. 2006. “Mechanisms and Models for Anaerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, Elsevier Ltd, 24–58.Show, Kuan Yeow, Duu Jong Lee, and Joo Hwa Tay. 2012. “Aerobic Granulation: Advances and Challenges.” Applied Biochemistry and Biotechnology 167(6): 1622–40.de Sousa Rollemberg, Silvio Luiz, Antônio Ricardo Mendes Barros, Paulo Igor Milen Firmino, and André Bezerra dos Santos. 2018. “Aerobic Granular Sludge: Cultivation Parameters and Removal Mechanisms.” Bioresource Technology 270(August): 678–88. https://doi.org/10.1016/j.biortech.2018.08.130.Von Sperling, Marcos. 2014. Principios Del Tratamiento Biológico de Aguas Residuales. ed. San Juan de Pasto: Universidad de Nariño. Pasto.SSPD, Superintendencia de Servicios Públicos Domiciliarios. 2019. Estudio Sectorial de Los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado.Surampalli, Rao Y., R. D. Tyagi, O. Karl Scheible, and James A. Heidman. 1997. “Nitrification, Denitrification and Phosphorus Removal in Sequential Batch Reactors.” Bioresource Technology 61(2): 151–57.Tay, J. H., Q. S. Liu, and Y. Liu. 2001. “The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules.” Applied Microbiology and Biotechnology 57(1–2): 227–33.———. 2002. “Aerobic Granulation in Sequential Sludge Blanket Reactor.” Water Science and Technology 46(4–5): 13–18.Tay, Joo-Hwa, Shun Pan, Yanxin He, and Stephen Tiong Lee Tay. 2004. “Effect of Organic Loading Rate on Aerobic Granulation. II: Characteristics of Aerobic Granules.” Journal of Environmental Engineering 130(10): 1102–9.Toh, S. K. et al. 2003. “Size-Effect on the Physical Characteristics of the Aerobic Granule in a SBR.” Applied Microbiology and Biotechnology 60(6): 687–95.Tsuneda, Satoshi et al. 2003. “Characterization of Nitrifying Granules Produced in an Aerobic Upflow Fluidized Bed Reactor.” Water Research 37(20): 4965–73.U.S. EPA. 1999. EPA 832-F- office of Water Washington, D.C. Folleto Informativo de Tecnología de Aguas Residuales Reactores Secuenciales Por Tandas.UNESCO. 2017. 8 Ecos de Economía: A Latin American Journal of Applied Economics Aguas Residuales: El Recurso Desaprovechado. Informe Mundial de Las Naciones Unidas Sobre El Desarrollo de Los Recursos Hídricos 2017. https://unesdoc.unesco.org/ark:/48223/pf0000247647.Wang, Li et al. 2018. “Recent Advances on Biosorption by Aerobic Granular Sludge.” Journal of Hazardous Materials 357(May): 253–70. https://doi.org/10.1016/j.jhazmat.2018.06.010.Wang, Qiang, Guocheng Du, and Jian Chen. 2004. “Aerobic Granular Sludge Cultivated under the Selective Pressure as a Driving Force.” Process Biochemistry 39(5): 557–63.Wang Yu Liu Joo-Hwa Tay, Zhi-Wu. 2005. “APPLIED MICROBIAL AND CELL PHYSIOLOGY Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules.” Appl Microbiol Biotechnol 69: 469–73.Wang, Zhi-Wu, and Yu Liu. 2008. Wastewater Purification: Aerobic Granulation in Sequencing Batch Reactors (Brief Article)(Book Review). ed. Inc. Ringgold. https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=edscpi&AN=edscpi.A175905484&lang=es&site=eds-live.Weber, S D, W Ludwig, K.-H Schleifer, and J Fried. 2007. “Microbial Composition and Structure of Aerobic Granular Sewage Biofilms.” APPLIED AND ENVIRONMENTAL MICROBIOLOGY 73(19): 6233–40. https://journals.asm.org/journal/aem.Wilderer, P.A.; Irvine, R.L; Goronszy, M.C. 2001. Sequencing Batch Reactor Technology. London. www.iwapublishing.com.Winkler, M. K.H. et al. 2013. “Microbial Diversity Differences within Aerobic Granular Sludge and Activated Sludge Flocs.” Applied Microbiology and Biotechnology 97(16): 7447–58.Yang, Shu Fang, Joo Hwa Tay, and Yu Liu. 2003. “A Novel Granular Sludge Sequencing Batch Reactor for Removal of Organic and Nitrogen from Wastewater.” Journal of Biotechnology 106(1): 77–86.Yu, Liu. 2006. “Mechanisms of Aerobic Granulation.” In Biogranulation Technologies for Wastewater Treatment, ed. Elsevier. , 308. http://www.sciencedirect.com/science/article/pii/S0713274306801066%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S0713274306801066.Yu Liu, Joo-Hwa Tay. 2002. “The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge.” Water Research 36: 1653–65.Zhu, Jianrong, and Peter A. Wilderer. 2003. “Effect of Extended Idle Conditions on Structure and Activity of Granular Activated Sludge.” Water Research 37(9): 2013–18.Zhu, Liang et al. 2013. “Optimization of Selective Sludge Discharge Mode for Enhancing the Stability of Aerobic Granular Sludge Process.” Chemical Engineering Journal 217: 442–46. http://dx.doi.org/10.1016/j.cej.2012.11.132Evaluación de tratamientos para la remoción de fármacos presentes en aguas utilizadas para riego en La Ramada y caracterización de la contaminación por microorganismos de interés en Salud PúblicaDirección de investigaciones de la sede Bogotá - DIEBEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL53039060.2022.pdf53039060.2022.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf3692213https://repositorio.unal.edu.co/bitstream/unal/81504/3/53039060.2022.pdf1ced40bd5941487ade4fbecbff5d760bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81504/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL53039060.2022.pdf.jpg53039060.2022.pdf.jpgGenerated Thumbnailimage/jpeg5414https://repositorio.unal.edu.co/bitstream/unal/81504/5/53039060.2022.pdf.jpg34a46b4aa97eefa6150ee76f4dc15a10MD55unal/81504oai:repositorio.unal.edu.co:unal/815042023-08-04 23:04:45.445Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK