El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte

ilustraciones, fotografías, graficas

Autores:
Villalobos Gonzalez, Leidy Constanza
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82074
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82074
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
NAD
RELACION HUESPED-PARASITO
Host-parasite relationships
NAD+
Parásitos extracelulares
NMNAT
Transportadores de nucleotidos
Extracellular parasites
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_451d655dd5cee2fd3f573142666192e8
oai_identifier_str oai:repositorio.unal.edu.co:unal/82074
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
dc.title.translated.eng.fl_str_mv NAD+ in extracellular parasites: Biosynthetic and transport processes
title El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
spellingShingle El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
540 - Química y ciencias afines
NAD
RELACION HUESPED-PARASITO
Host-parasite relationships
NAD+
Parásitos extracelulares
NMNAT
Transportadores de nucleotidos
Extracellular parasites
title_short El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
title_full El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
title_fullStr El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
title_full_unstemmed El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
title_sort El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte
dc.creator.fl_str_mv Villalobos Gonzalez, Leidy Constanza
dc.contributor.advisor.none.fl_str_mv Ramirez Hernandez, Maria Helena
dc.contributor.author.none.fl_str_mv Villalobos Gonzalez, Leidy Constanza
dc.contributor.researchgroup.spa.fl_str_mv Libbiq Un
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
NAD
RELACION HUESPED-PARASITO
Host-parasite relationships
NAD+
Parásitos extracelulares
NMNAT
Transportadores de nucleotidos
Extracellular parasites
dc.subject.other.none.fl_str_mv NAD
dc.subject.lemb.spa.fl_str_mv RELACION HUESPED-PARASITO
dc.subject.lemb.eng.fl_str_mv Host-parasite relationships
dc.subject.proposal.spa.fl_str_mv NAD+
Parásitos extracelulares
NMNAT
Transportadores de nucleotidos
dc.subject.proposal.eng.fl_str_mv Extracellular parasites
description ilustraciones, fotografías, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-24T16:58:56Z
dc.date.available.none.fl_str_mv 2022-08-24T16:58:56Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82074
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82074
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv I. Mesquita et al., “Exploring NAD+ metabolism in host-pathogen interactions,” Cell. Mol. Life Sci., vol. 73, no. 6, pp. 1225–1236, 2016, doi: 10.1007/s00018-015-2119-4.
C. Cantó, K. J. Menzies, and J. Auwerx, “NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus,” Cell Metab., vol. 22, no. 1, pp. 31–53, 2015, doi: 10.1016/j.cmet.2015.05.023.
WHO (World Health Organization), “Vector-borne diseases,” 2017.
N. Forero-Baena, D. Sánchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramírez-Hernández, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),” Biochim. Open, vol. 1, pp. 61–69, 2015, doi: 10.1016/j.biopen.2015.11.001
C. H. Niño, N. Forero-Baena, L. E. Contreras, D. Sánchez-Lancheros, K. Figarella, and M. H. Ramírez, “Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi,” Mem. Inst. Oswaldo Cruz, vol. 110, no. 7, pp. 890–897, 2015, doi: 10.1590/0074-02760150175.
L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, Nov. 2015, doi: 10.1016/j.pep.2015.08.022.
L. Rajman, K. Chwalek, and D. A. Sinclair, “Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence,” Cell Metab., vol. 27, no. 3, pp. 529–547, 2018, doi: 10.1016/j.cmet.2018.02.011.
S. ichiro Imai and L. Guarente, “NAD+ and sirtuins in aging and disease,” Trends Cell Biol., vol. 24, no. 8, pp. 464–471, 2014, doi: 10.1016/j.tcb.2014.04.002.
S. A. Trammell and C. Brenner, “Targeted, Lcms-Based Metabolomics for Quantitative Measurement of Nad + Metabolites,” Comput. Struct. Biotechnol. J., vol. 4, no. 5, p. e201301012, 2013, doi: 10.5936/csbj.201301012.
T. G. Demarest et al., “Assessment of NAD + metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle,” Anal. Biochem., vol. 572, no. February, pp. 1–8, 2019, doi: 10.1016/j.ab.2019.02.019.
K. Yaku, K. Okabe, and T. Nakagawa, “NAD metabolism: Implications in aging and longevity,” Ageing Res. Rev., vol. 47, no. May, pp. 1–17, 2018, doi: 10.1016/j.arr.2018.05.006.
S. ichiro Imai and S. Johnson, “NAD+ biosynthesis, aging, and disease,” F1000Research, vol. 7, no. 0, pp. 1–10, 2018, doi: 10.12688/f1000research.12120.1.
E. F. Fang et al., “NAD+ in Aging: Molecular Mechanisms and Translational Implications,” Trends Mol. Med., vol. 23, no. 10, pp. 899–916, 2017, doi: 10.1016/j.molmed.2017.08.001.
G. Noctor, J. Hager, and S. Li, Biosynthesis of NAD and its manipulation in plants, 1st ed., vol. 58. Elsevier Ltd., 2011.
Y. ; Yang and S. Anthony, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Dtsch. Krankenpflegez., vol. 44, no. 7, pp. 492–494, 2016, doi: 10.1016/j.bbapap.2016.06.014.NAD.
C. Lau, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. Volume, no. 14, p. 410, 2009, doi: 10.2741/3252.
I. Hanukoglu, “Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites,” Biochem. Mol. Biol. Educ., vol. 43, no. 3, pp. 206–209, 2015, doi: 10.1002/bmb.20849.
S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200.
F. Palmieri et al., “Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins,” J. Biol. Chem., vol. 284, no. 45, pp. 31249–31259, 2009, doi: 10.1074/jbc.M109.041830.
N. Linka et al., “Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes,” Gene, vol. 306, no. 1–2, pp. 27–35, 2003, doi: 10.1016/S0378-1119(03)00429-3.
F. Palmieri, C. L. Pierri, A. De Grassi, A. Nunes-Nesi, and A. R. Fernie, “Evolution, structure and function of mitochondrial carriers: A review with new insights,” Plant J., vol. 66, no. 1, pp. 161–181, 2011, doi: 10.1111/j.1365-313X.2011.04516.x.
S. Saari, A. Näreaho, and S. Nikander, “Protozoa,” Canine Parasites Parasit. Dis., pp. 5–34, 2019, doi: 10.1016/B978-0-12-814112-0.00002-7
A. Warren and G. F. Esteban, Protozoa, Fourth Edi. Elsevier, 2019.
C. Piña-Vázquez, M. Reyes-López, G. Ortíz-Estrada, M. de la Garza, and J. Serrano-Luna, “Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix,” J. Parasitol. Res., vol. 2012, pp. 1–24, 2012, doi: 10.1155/2012/748206.
B. Van Der Pol, Trichomonas vaginalis, Fifth Edit. Elsevier Inc., 2018.
F. Mercer and P. J. Johnson, “Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses,” Trends Parasitol., vol. 34, no. 8, pp. 683–693, 2018, doi: 10.1016/j.pt.2018.05.006.
H. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi: 10.1016/S0969-2126(01)00693-1.
C. H. Niño Rivers, “Identificación y caracterización de la Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) en Trypanosoma cruzi: Enzima clave en el metabolismo del NAD+ . Carlos Hernando Niño Riveros,” 2014.
J. K. O’Hara et al., “Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum,” PLoS One, vol. 9, no. 4, 2014, doi: 10.1371/journal.pone.0094061.
N. Forero-Baena, D. Sanchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramirez-Hernandez, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),”
L. Luo et al., “Regulation of mitochondrial NAD pool via NAD transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis,” 2019.
L. C. Villalobos Gonzalez, M. H. Ramirez, and A. Ayala Fajardo, “Estudio del metabolismo del NAD+ en protozoos de vida libre y parásitos,” 2018.
B. A. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Protein Identification and Analysis Tools on the ExPASy Server; Totowa, NJ: Humana Press, 2005.
Qiagen Digital Insights, “CLC Genomics Workbench.” 2021, [Online]. Available: http://www.clcbio.com/products/clc-genomics-workbench/.
J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, and O. Winther, “DeepLoc: prediction of protein subcellular localization using deep learning,” Bioinformatics, vol. 33, no. 21, pp. 3387–3395, Nov. 2017, doi: 10.1093/bioinformatics/btx431.
K.-C. Chou and H.-B. Shen, “A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0,” PLoS One, vol. 5, no. 4, p. e9931, Apr. 2010, doi: 10.1371/journal.pone.0009931.
W.-Z. Lin, J.-A. Fang, X. Xiao, and K.-C. Chou, “iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins,” Mol. Biosyst., vol. 9, no. 4, p. 634, 2013, doi: 10.1039/c3mb25466f.
C. Zhang, P. L. Freddolino, and Y. Zhang, “COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information,” Nucleic Acids Res., vol. 45, no. W1, pp. W291–W299, Jul. 2017, doi: 10.1093/nar/gkx366
L. Kiemer, J. D. Bendtsen, and N. Blom, “NetAcet: Prediction of N-terminal acetylation sites,” Bioinformatics, vol. 21, no. 7, pp. 1269–1270, 2005, doi: 10.1093/bioinformatics/bti130.
N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.,” J. Mol. Biol., vol. 294, no. 5, pp. 1351–62, Dec. 1999, doi: 10.1006/jmbi.1999.3310.
C. Wang et al., “GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins,” Genomics. Proteomics Bioinformatics, vol. 18, no. 1, pp. 72–80, Feb. 2020, doi: 10.1016/j.gpb.2020.01.001.
J. Ren, L. Wen, X. Gao, C. Jin, Y. Xue, and X. Yao, “CSS-Palm 2.0: An updated software for palmitoylation sites prediction,” Protein Eng. Des. Sel., vol. 21, no. 11, pp. 639–644, 2008, doi: 10.1093/protein/gzn039.
D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” J. Mol. Biol., vol. 292, pp. 195–202, 1999, doi: 10.1006/jmbi.1999.3091.
D. Xu and Y. Zhang, “Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization,” Biophysj, vol. 101, no. 10, pp. 2525–2534, 2011, doi: 10.1016/j.bpj.2011.10.024.
P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 10.1093/bioinformatics/btq662.
F. T. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, “UCSF Chimera--a visualization system for exploratory research and analysis.” .
S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/nar/gkaa971.
M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, no. 1, p. 17, Dec. 2012, doi: 10.1186/1758-2946-4-17.
J. Eberhardt, D. Santos-martins, A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” 2021, doi: 10.1021/acs.jcim.1c00203.
A. C. Wallace, R. A. Laskowski, and J. M. Thornton, “LIGPLOT : a program to generate schematic diagrams of protein-ligand interactions Clean up structure,” vol. 8, no. 2, pp. 127–134, 1995.
A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. M. Leunissen, “Primer3Plus, an enhanced web interface to Primer3,” Nucleic Acids Res., vol. 35, no. Web Server, pp. W71–W74, May 2007, doi: 10.1093/nar/gkm306.
Promega, “Pfu DNA Polymerase Product Information 9PIM774,” Promega, Corp., 2013.
Life Technologies (Invitrogen), “Champion pET SUMO Protein Expression System,” J. Chem. Inf. Model., vol. 5, no. January, pp. 1833–1839, 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15263846%0Ahttp://link.springer.com/10.1007/978-1-4939-7366-8.
PROMEGA, “pGEM(R)-T and pGEM(R)-T Easy Vector Systems Technical Manual TM042 - pgem-t and pgem-t easy vector systems protocol.pdf,” pGEM(R)-T pGEM(R)-T Easy Vector Syst. Tech. Man. TM042 - pgem-t pgem-t easy vector Syst. Protoc., 2010, [Online]. Available: https://www.promega.co.uk/~/media/files/resources/protocols/technical manuals/0/pgem-t and pgem-t easy vector systems protocol.pdf.
Insightful Science, “Software SnapGene.” 2021, [Online]. Available: https://www.snapgene.com/.
T. Sambrook, Joseph; Russell, David; Maniatis, Molecular Cloning. A laboratory manual, Thierth ed. 2001.
Invitrogen TM, “User Manual ChampionTM pET Directional TOPO® Expression Kits,” Invit. User Guid., no. 25, 2010.
P.-C. Yang, Z.-Q. Liu, and T. Mahmood, “Western blot: Technique, theory and trouble shooting,” N. Am. J. Med. Sci., vol. 6, no. 3, p. 160, 2014, doi: 10.4103/1947-2714.128482.
Gold Bio, “Affinity His-Tag Purification,” no. 800, pp. 4–8, 2019, [Online]. Available: https://www.goldbio.com/documents/1013/Affinity His-Tag Purification Troubleshooting.pdf.
E. Balducci et al., “Assay Methods for Nicotinamide Mononucleotide Adenylyltransferase of Wide Applicability,” Anal. Biochem., vol. 228, no. 1, pp. 64–68, Jun. 1995, doi: 10.1006/ABIO.1995.1315.
E. Balducci et al., “NMN adenylyltransferase from bull testis: Purification and properties,” Biochem. J., vol. 310, no. 2, pp. 395–400, 1995, doi: 10.1042/bj3100395.
W. A. Amro, W. Al-Qaisi, and F. Al-Razem, “Production and purification of IgY antibodies from chicken egg yolk,” J. Genet. Eng. Biotechnol., vol. 16, no. 1, pp. 99–103, Jun. 2018, doi: 10.1016/j.jgeb.2017.10.003.
W. E. Werner, “Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis,” Cereal Chem., vol. 72, no. 3, pp. 248–251, 1995.
A. Rath, F. Cunningham, and C. M. Deber, “Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 39, pp. 15668–15673, 2013, doi: 10.1073/pnas.1311305110.
S. M. Simon, F. J. R. Sousa, R. Mohana-Borges, and G. C. Walker, “Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products,” Proc. Natl. Acad. Sci., vol. 105, no. 4, pp. 1152–1157, Jan. 2008, doi: 10.1073/pnas.0706067105.
M. A. Ruggiero et al., “A higher level classification of all living organisms,” PLoS One, vol. 10, no. 4, pp. 1–60, 2015, doi: 10.1371/journal.pone.0119248.
T. Knudsen, B. Knudsen, “CLC Main Workbench 8.1.2.” 2020.
I. Erb and C. Notredame, “How should we measure proportionality on relative gene expression data?,” Theory Biosci., vol. 135, no. 1–2, pp. 21–36, 2016, doi: 10.1007/s12064-015-0220-8.
J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22, no. 22, pp. 4673–4680, 1994, doi: 10.1093/nar/22.22.4673.
A. Marchler-Bauer et al., “CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures,” Nucleic Acids Res., vol. 45, no. D1, pp. D200–D203, 2017, doi: 10.1093/nar/gkw1129.
J. Ma, J. Peng, S. Wang, and J. Xu, “A conditional neural fields model for protein threading,” Bioinformatics, vol. 28, no. 12, pp. 59–66, 2012, doi: 10.1093/bioinformatics/bts213.
J. Ma, S. Wang, F. Zhao, and J. Xu, “Protein threading using context-specific alignment potential,” Bioinformatics, vol. 29, no. 13, pp. 257–265, 2013, doi: 10.1093/bioinformatics/btt210
S. M. Cacciò, M. Lalle, and S. G. Svärd, “Host specificity in the Giardia duodenalis species complex,” Infect. Genet. Evol., vol. 66, no. October 2017, pp. 335–345, 2018, doi: 10.1016/j.meegid.2017.12.001.
A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey, “DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,” Bioinformatics, vol. 28, no. 15, pp. 2074–2075, Aug. 2012, doi: 10.1093/bioinformatics/bts310.
S. E. Wang, A. S. Amir, T. Nguyen, A. M. Poole, and A. Simoes-Barbosa, “Spliceosomal introns in Trichomonas vaginalis revisited,” Parasit. Vectors, vol. 11, no. 1, p. 607, Dec. 2018, doi: 10.1186/s13071-018-3196-7.
J. M. Carlton et al., “Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis,” Science (80-. )., vol. 315, no. 5809, pp. 207–212, Jan. 2007, doi: 10.1126/science.1132894.
C. Lau, C. Dölle, T. I. Gossmann, L. Agledal, M. Niere, and M. Ziegler, “Isoform-specific Targeting and Interaction Domains in Human Nicotinamide Mononucleotide Adenylyltransferases,” J. Biol. Chem., vol. 285, no. 24, pp. 18868–18876, Jun. 2010, doi: 10.1074/jbc.M110.107631.
K. Fujiwara, H. Toda, and M. Ikeguchi, “Dependence of α -helical and β -sheet amino acid propensities on the overall protein fold type,” pp. 6–15, 2012.
F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, Oct. 2005, doi: 10.1074/jbc.M508660200.
T. Croft, C. J. T. Raj, M. Salemi, B. S. Phinney, and S. J. Lin, “A functional link between NAD+ homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 293, no. 8, pp. 2927–2938, 2018, doi: 10.1074/jbc.M117.807214.
D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von Heijne,” J. Mol. Biol., vol. 292, no. 2, pp. 195–202, Sep. 1999, doi: 10.1006/jmbi.1999.3091.
I. Hanukoglu, “Rossmann Fold : A Beta-Alpha- Beta Fold at Dinucleotide Binding Sites,” pp. 206–209, 2014, doi: 10.1002/bmb.20849.
R. J. Anderson, Z. Weng, R. K. Campbell, and X. Jiang, “Main-Chain Conformational Tendencies of Amino Acids,” vol. 689, no. March, pp. 679–689, 2005, doi: 10.1002/prot.20530.
V. Saridakis, D. Christendat, M. S. Kimber, A. Dharamsi, A. M. Edwards, and E. F. Pai, “Insights into Ligand Binding and Catalysis of a Central Step in NAD ؉ Synthesis,” vol. 276, no. 10, pp. 7225–7232, 2001, doi: 10.1074/jbc.M008810200.
X. Zhang, O. V Kurnasov, S. Karthikeyan, N. V Grishin, A. L. Osterman, and H. Zhang, “Structural Characterization of a Human Cytosolic NMN / NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis * □,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi: 10.1074/jbc.M300073200.
J. Hon et al., “SoluProt: prediction of soluble protein expression in Escherichia coli,” Bioinformatics, vol. 37, no. 1, pp. 23–28, Apr. 2021, doi: 10.1093/bioinformatics/btaa1102.
C. A. Nieto Clavijo, N. Forero Baena, and M. H. Ramírez Hernández, “Diseño y producción de diversas proteínas fusión de la nicotinamida/nicotinato mononucleótido adenilil transferasa (NMNAT) de Plasmodium falciparum,” Rev. Colomb. Química, vol. 46, no. 3, pp. 5–10, Sep. 2017, doi: 10.15446/rev.colomb.quim.v46n3.63492.
M. Fakruddin, R. Mohammad Mazumdar, K. S. Bin Mannan, A. Chowdhury, and M. N. Hossain, “ Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli ,” ISRN Biotechnol., vol. 2013, no. 3, pp. 1–7, 2013, doi: 10.5402/2013/590587.
T. Panavas, C. Sanders, and T. R. Butt, “SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems,” vol. 497, no. 6, pp. 303–317, 2009, doi: 10.1007/978-1-59745-566-4.
H. Saitoh, J. Uwada, and A. Kawasaki, “Strategies for the Expression of SUMO-Modified Target Proteins in Escherichia coli,” vol. 497, pp. 211–221, 2009, doi: 10.1007/978-1-59745-566-4.
J. A. Bornhorst and J. J. Falke, “Purification of proteins using polyhistidine affinity tags,” 2000, pp. 245–254.
G. Orsomando et al., “Simultaneous Single-Sample Determination of NMNAT Isozyme Activities in Mouse Tissues,” PLoS One, vol. 7, no. 12, p. e53271, Dec. 2012, doi: 10.1371/journal.pone.0053271.
M. Kato and S. J. Lin, “YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 289, no. 22, pp. 15577–15587, 2014, doi: 10.1074/jbc.M114.558643.
W. Konigsberg, “Reduction of Disulfide Bonds in Proteins with Dithiothreitol,” Methods Enzymol., vol. 25, no. C, pp. 185–188, 1972, doi: 10.1016/S0076-6879(72)25015-7.
M. C. Alliegro, “Effects of dithiothreitol on protein activity unrelated to thiol- disulfide exchange: For consideration in the analysis of protein function with cleland’s reagent,” Anal. Biochem., vol. 282, no. 1, pp. 102–106, 2000, doi: 10.1006/abio.2000.4557.
N. Raffaelli, L. Sorci, A. Amici, M. Emanuelli, F. Mazzola, and G. Magni, “Identification of a novel human nicotinamide mononucleotide adenylyltransferase,” Biochem. Biophys. Res. Commun., vol. 297, no. 4, pp. 835–840, 2002, doi: 10.1016/S0006-291X(02)02285-4.
L. E. Contreras Rodríguez, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, p. e03733, Apr. 2020, doi: 10.1016/j.heliyon.2020.e03733.
J. Rodrigues, J. Caldeira, and B. Vaidya, “A Novel Intra-body Sensor for Vaginal Temperature Monitoring,” Sensors, vol. 9, no. 4, pp. 2797–2808, Apr. 2009, doi: 10.3390/s90402797.
G. Johnson and M. H. Trussell, “Physiology of Bacteria-free Trichomonas vaginalis. VII: Temperature in Relation to Survival and Generation Time.,” Exp. Biol. Med., vol. 57, no. 2, pp. 252–254, Nov. 1944, doi: 10.3181/00379727-57-14771.
S. M. Gelbart, J. L. Thomason, P. J. Osypowski, A. V Kellett, J. A. James, and F. F. Broekhuizen, “Growth of Trichomonas vaginalis in commercial culture media,” J. Clin. Microbiol., vol. 28, no. 5, pp. 962–964, May 1990, doi: 10.1128/jcm.28.5.962-964.1990.
A. Chang et al., “BRENDA, the ELIXIR core data resource in 2021: new developments and updates,” Nucleic Acids Res., vol. 49, no. D1, pp. D498–D508, Jan. 2021, doi: 10.1093/nar/gkaa1025.
J. J. Babcock and L. Brancaleon, “International Journal of Biological Macromolecules Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength,” Int. J. Biol. Macromol., vol. 53, pp. 42–53, 2013, doi: 10.1016/j.ijbiomac.2012.10.030.
R. Dro, “Lysozyme Oligomers as a Molecular Mass Standard for Sodium Dodecyl Gel Electrophoresis,” vol. 422, pp. 419–422, 1988.
R. Li, Z. Wu, Y. Wangb, L. Ding, and Y. Wang, “Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin,” Biotechnol. Reports, vol. 9, pp. 46–52, 2016, doi: 10.1016/j.btre.2016.01.002.
G. V Barnett, M. Drenski, V. Razinkov, W. F. Reed, and C. J. Roberts, Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering, vol. 511. 2017.
C. Seok, M. Baek, M. Steinegger, H. Park, G. R. Lee, and J. Won, “Accurate protein structure prediction: what comes next?,” BIODESIGN, vol. 9, no. 3, pp. 47–50, Sep. 2021, doi: 10.34184/kssb.2021.9.3.47.
K. Hashimoto and A. R. Panchenko, “Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states,” Proc. Natl. Acad. Sci., vol. 107, no. 47, pp. 20352–20357, Nov. 2010, doi: 10.1073/pnas.1012999107.
J. M. Brazill, C. Li, Y. Zhu, and R. G. Zhai, “NMNAT: It’s an NAD + synthase… It’s a chaperone… It’s a neuroprotector,” Curr. Opin. Genet. Dev., vol. 44, pp. 156–162, Jun. 2017, doi: 10.1016/j.gde.2017.03.014.
L. Skipper, “PROTEINS | Overview,” vol. 8, p. 101983, 2005.
W.-W. Zhang, “The use of gene-specific IgY antibodies for drug target discovery,” Drug Discov. Today, vol. 8, no. 8, pp. 364–371, Apr. 2003, doi: 10.1016/S1359-6446(03)02655-2.
Y. Xu et al., “Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review,” Biotechnol. Adv., vol. 29, no. 6, pp. 860–868, Nov. 2011, doi: 10.1016/j.biotechadv.2011.07.003.
D. Thirumalai, S. Visaga Ambi, R. S. Vieira-Pires, Z. Xiaoying, S. Sekaran, and U. Krishnan, “Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections – A review,” Int. J. Biol. Macromol., vol. 136, pp. 755–763, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.118.
E. P. V Pereira, M. F. Van Tilburg, E. O. P. T. Florean, and M. I. F. Guedes, “Egg yolk antibodies ( IgY ) and their applications in human and veterinary health : A review,” no. January, 2020.
Barella, “Chicken egg yolk antibodies (IgY) as an alternative to mammalian antibodies.,” بیماریهای داخلی, vol. 3, no. 4, p. 210, 2010, doi: 10.17485/ijst/2010/v3i4/29741.
D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation,” J. Vis. Exp., no. 51, May 2011, doi: 10.3791/3084.
D. M. Ostos Peña, “Aproximación a la regulación de algunas enzimas involucradas en el metábolismo del NAD+ en Giardia duodenalis.” pp. 1–128, 2019.
G. Garzón, “Estudio de un candidato a NAD quinasa en Leishmania spp,” Adv. Opt. Mater., vol. 10, no. 1, pp. 1–9, 2018.
S. E. Villamil-Silva, L. J. Ortiz-Joya, L. E. Contreras-Rodríguez, G. J. Díaz- Gonzalez, and M. H. Ramírez-Hernández, “Identificación de una triparedoxina peroxidasa citoplasmática en Leishmania braziliensis,” Rev. Colomb. Química, vol. 50, no. 2, pp. 3–14, Aug. 2021, doi: 10.15446/rev.colomb.quim.v50n2.91721
M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic Acids Res., vol. 45, no. W1, pp. W24–W29, Jul. 2017, doi: 10.1093/nar/gkx346.
D. S. Morales, L. E. Contreras, C. C. Rubiano, and M. H. R. Hern, “Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis ( Lb NDT1 ),” Helyion, vol. 6, no. June, pp. 0–9, 2020, doi: 10.1016/j.heliyon.2020.e04331.
V. S. Sharon Eliana, “Exploración de un transportador de NAD + y sus precursores en Leishmania.,” pp. 1–181, 2021.
J. J. Ruprecht et al., “The Molecular Mechanism of Transport by the Article The Molecular Mechanism of Transport by the Mitochondrial ADP / ATP Carrier,” pp. 435–447, 2019, doi: 10.1016/j.cell.2018.11.025.
A. Shiflett and P. Johnson, “Mitochondrion-related Organelles in Parasitic Eukaryotes,” no. 8, pp. 409–429, 2011, doi: 10.1146/annurev.micro.62.081307.162826.Mitochondrion-related.
T. Lithgow, “Evolution of macromolecular import pathways in mitochondria , hydrogenosomes and mitosomes,” pp. 799–817, 2010, doi: 10.1098/rstb.2009.0167.
M. S. King, M. Kerr, P. G. Crichton, R. Springett, and E. R. S. Kunji, “Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier,” Biochim. Biophys. Acta - Bioenerg., vol. 1857, no. 1, pp. 14–22, 2016, doi: 10.1016/J.BBABIO.2015.09.013.
R. E. Schneider et al., “The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes,” Int. J. Parasitol., vol. 41, no. 13–14, pp. 1421–1434, 2011, doi: 10.1016/j.ijpara.2011.10.001.
S. D. Dyall et al., “Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex,” vol. 28, pp. 1103–1107, 2004, doi: 10.1038/nature02918.1.
J. Kuan and M. H. Saier, “The Mitochondrial Carrier Family of Transport Proteins : Structural , Functional , and Evolutionary Relationships,” vol. 28, no. 3, pp. 209–233, 1993.
A. G. B. Simpson and Y. Eglit, “Protist Diversification,” Encycl. Evol. Biol., vol. 3, pp. 344–360, 2016, doi: 10.1016/B978-0-12-800049-6.00247-X.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 128 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82074/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82074/3/10160808222022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82074/4/10160808222022.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
655ec83852d36298597a42b7852c9659
fbf7a9ad9edc2388c76341ee8b94a53a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089371975942144
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez Hernandez, Maria Helena23769b65b300bd3f059c8c55ccb99266Villalobos Gonzalez, Leidy Constanzaa2ed785a0f3eb69b4eb7e905912c18acLibbiq Un2022-08-24T16:58:56Z2022-08-24T16:58:56Z2021https://repositorio.unal.edu.co/handle/unal/82074Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEl Dinucleótido de nicotinamida y adenina (NAD+/NADH) es una de las principales coenzimas en numerosos procesos de óxido-reducción celular, la cual se encuentra adicionalmente involucrada en la reparación del ADN, señalización celular, apoptosis, entre otras. La formación del NAD+ se da a partir del Mononucleótido de Nicotinamida (NMN) o el Mononucleótido del Ácido Nicotínico (NaMN) y Adenosín trifosfato (ATP); mediante la actividad catalítica de la Nicotinamida Mononucleótido Adenililtransferasa (NMNAT E.C. 2.7.7.1), presente en las dos rutas de biosíntesis del dinucleótido (Ruta de novo y de salvamento) [1][2]. Los parásitos protozoarios son causantes de enfermedades de alta incidencia en la salud pública, afectando a millones de personas por año. Actualmente algunas de estas enfermedades carecen de tratamientos efectivos, por lo cual es necesario identificar blancos terapéuticos para el control de estas [3]. La búsqueda de blancos farmacológicos se plantea a partir de un conocimiento racional de la biología molecular del parásito. En el laboratorio de Investigaciones Básicas en Bioquímica (LIBBIQ) se ha estudiado el metabolismo del NAD+ en parásitos intracelulares principalmente. El estudio de este proceso en parásitos extracelulares permitirá entender las relaciones parásito-hospedero y establecer los elementos relevantes de esta interacción [4]–[6]. En trabajos previos se ha encontrado una relación entre el número de enzimas de la familia NMNAT y la forma de vida parasitaria, caracterizada por la disminución de estas enzimas en organismos intracelulares con respecto a extracelulares. Por tanto, se realizó una aproximación experimental a la síntesis del NAD+ en parásitos extracelulares empleando como modelo Trichomonas vaginalis, para ello se implementaron estrategias de clonación y expresión de proteínas recombinantes, evaluando la actividad enzimática de dos isoenzimas generadoras de NAD+. Con lo cual, se identificaron dos NMNATs en T. vaginalis, siendo esta la primera aproximación al metabolismo del NAD+ de este dinucleótido de este parasito. Igualmente, se empleó una aproximación bioinformática en la búsqueda de candidatos a transportadores del NAD+ en parásitos extracelulares, con el propósito de establecer la relación síntesis/movilización del NAD+ en estos organismos. (Texto tomado de la fuente)Nicotinamide adenine dinucleotide (NAD + / NADH) is one of the main coenzymes in numerous cell oxidation-reduction processes, which is additionally involved in DNA repair, cell signaling, apoptosis, among others. The formation of NAD + occurs from nicotinamide mononucleotide (NMN) or nicotinic acid (NAMN) and adenosine triphosphate (ATP); through the catalytic activity of the Nicotinamide Mononucleotide Adenylyltransferase (NMNAT E.C. 2.7.7.1), present in the two dinucleotide biosynthesis pathways (de novo and salvage pathways) [1][2]. Protozoan parasites are the cause of diseases with a high incidence in public health, affecting millions of people per year. Currently some of these diseases lack effective treatments, which is why it is necessary to identify therapeutic targets to control them. [3]. The search for pharmacological targets arises from a rational knowledge of the molecular biology of the parasite. In the Laboratory of Basic Research in Biochemistry (LIBBIQ) the metabolism of NAD + has been studied mainly in intracellular parasites. The study of this process in extracellular parasites will make it possible to understand the parasite-host relationships and establish the relevant elements of this interaction. [4]–[6]. In previous works, a relationship has been found between the number of enzymes of the NMNAT family and the parasitic way of life, characterized by the decrease of these enzymes in intracellular organisms with respect to extracellular ones. Therefore, an experimental approach to the synthesis of NAD + in extracellular parasites was carried out using Trichomonas vaginalis as a model, for this, cloning and expression strategies of recombinant proteins were implemented, evaluating the enzymatic activity of two NAD + generating isoenzymes. Thus, two NMNATs were identified in T. vaginalis, this being the first approach to the metabolism of NAD + of this dinucleotide of this parasite. Likewise, a bioinformatic approach was used in the search for candidates for NAD + transporters in extracellular parasites, to establish the synthesis / mobilization relationship of NAD + in these organisms.MaestríaMagíster en Ciencias - BioquímicaMetabolismo energético del NAD+128 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesNADRELACION HUESPED-PARASITOHost-parasite relationshipsNAD+Parásitos extracelularesNMNATTransportadores de nucleotidosExtracellular parasitesEl NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporteNAD+ in extracellular parasites: Biosynthetic and transport processesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaI. Mesquita et al., “Exploring NAD+ metabolism in host-pathogen interactions,” Cell. Mol. Life Sci., vol. 73, no. 6, pp. 1225–1236, 2016, doi: 10.1007/s00018-015-2119-4.C. Cantó, K. J. Menzies, and J. Auwerx, “NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus,” Cell Metab., vol. 22, no. 1, pp. 31–53, 2015, doi: 10.1016/j.cmet.2015.05.023.WHO (World Health Organization), “Vector-borne diseases,” 2017.N. Forero-Baena, D. Sánchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramírez-Hernández, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),” Biochim. Open, vol. 1, pp. 61–69, 2015, doi: 10.1016/j.biopen.2015.11.001C. H. Niño, N. Forero-Baena, L. E. Contreras, D. Sánchez-Lancheros, K. Figarella, and M. H. Ramírez, “Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi,” Mem. Inst. Oswaldo Cruz, vol. 110, no. 7, pp. 890–897, 2015, doi: 10.1590/0074-02760150175.L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, Nov. 2015, doi: 10.1016/j.pep.2015.08.022.L. Rajman, K. Chwalek, and D. A. Sinclair, “Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence,” Cell Metab., vol. 27, no. 3, pp. 529–547, 2018, doi: 10.1016/j.cmet.2018.02.011.S. ichiro Imai and L. Guarente, “NAD+ and sirtuins in aging and disease,” Trends Cell Biol., vol. 24, no. 8, pp. 464–471, 2014, doi: 10.1016/j.tcb.2014.04.002.S. A. Trammell and C. Brenner, “Targeted, Lcms-Based Metabolomics for Quantitative Measurement of Nad + Metabolites,” Comput. Struct. Biotechnol. J., vol. 4, no. 5, p. e201301012, 2013, doi: 10.5936/csbj.201301012.T. G. Demarest et al., “Assessment of NAD + metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle,” Anal. Biochem., vol. 572, no. February, pp. 1–8, 2019, doi: 10.1016/j.ab.2019.02.019.K. Yaku, K. Okabe, and T. Nakagawa, “NAD metabolism: Implications in aging and longevity,” Ageing Res. Rev., vol. 47, no. May, pp. 1–17, 2018, doi: 10.1016/j.arr.2018.05.006.S. ichiro Imai and S. Johnson, “NAD+ biosynthesis, aging, and disease,” F1000Research, vol. 7, no. 0, pp. 1–10, 2018, doi: 10.12688/f1000research.12120.1.E. F. Fang et al., “NAD+ in Aging: Molecular Mechanisms and Translational Implications,” Trends Mol. Med., vol. 23, no. 10, pp. 899–916, 2017, doi: 10.1016/j.molmed.2017.08.001.G. Noctor, J. Hager, and S. Li, Biosynthesis of NAD and its manipulation in plants, 1st ed., vol. 58. Elsevier Ltd., 2011.Y. ; Yang and S. Anthony, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Dtsch. Krankenpflegez., vol. 44, no. 7, pp. 492–494, 2016, doi: 10.1016/j.bbapap.2016.06.014.NAD.C. Lau, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. Volume, no. 14, p. 410, 2009, doi: 10.2741/3252.I. Hanukoglu, “Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites,” Biochem. Mol. Biol. Educ., vol. 43, no. 3, pp. 206–209, 2015, doi: 10.1002/bmb.20849.S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200.F. Palmieri et al., “Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins,” J. Biol. Chem., vol. 284, no. 45, pp. 31249–31259, 2009, doi: 10.1074/jbc.M109.041830.N. Linka et al., “Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes,” Gene, vol. 306, no. 1–2, pp. 27–35, 2003, doi: 10.1016/S0378-1119(03)00429-3.F. Palmieri, C. L. Pierri, A. De Grassi, A. Nunes-Nesi, and A. R. Fernie, “Evolution, structure and function of mitochondrial carriers: A review with new insights,” Plant J., vol. 66, no. 1, pp. 161–181, 2011, doi: 10.1111/j.1365-313X.2011.04516.x.S. Saari, A. Näreaho, and S. Nikander, “Protozoa,” Canine Parasites Parasit. Dis., pp. 5–34, 2019, doi: 10.1016/B978-0-12-814112-0.00002-7A. Warren and G. F. Esteban, Protozoa, Fourth Edi. Elsevier, 2019.C. Piña-Vázquez, M. Reyes-López, G. Ortíz-Estrada, M. de la Garza, and J. Serrano-Luna, “Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix,” J. Parasitol. Res., vol. 2012, pp. 1–24, 2012, doi: 10.1155/2012/748206.B. Van Der Pol, Trichomonas vaginalis, Fifth Edit. Elsevier Inc., 2018.F. Mercer and P. J. Johnson, “Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses,” Trends Parasitol., vol. 34, no. 8, pp. 683–693, 2018, doi: 10.1016/j.pt.2018.05.006.H. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi: 10.1016/S0969-2126(01)00693-1.C. H. Niño Rivers, “Identificación y caracterización de la Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) en Trypanosoma cruzi: Enzima clave en el metabolismo del NAD+ . Carlos Hernando Niño Riveros,” 2014.J. K. O’Hara et al., “Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum,” PLoS One, vol. 9, no. 4, 2014, doi: 10.1371/journal.pone.0094061.N. Forero-Baena, D. Sanchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramirez-Hernandez, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),”L. Luo et al., “Regulation of mitochondrial NAD pool via NAD transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis,” 2019.L. C. Villalobos Gonzalez, M. H. Ramirez, and A. Ayala Fajardo, “Estudio del metabolismo del NAD+ en protozoos de vida libre y parásitos,” 2018.B. A. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Protein Identification and Analysis Tools on the ExPASy Server; Totowa, NJ: Humana Press, 2005.Qiagen Digital Insights, “CLC Genomics Workbench.” 2021, [Online]. Available: http://www.clcbio.com/products/clc-genomics-workbench/.J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, and O. Winther, “DeepLoc: prediction of protein subcellular localization using deep learning,” Bioinformatics, vol. 33, no. 21, pp. 3387–3395, Nov. 2017, doi: 10.1093/bioinformatics/btx431.K.-C. Chou and H.-B. Shen, “A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0,” PLoS One, vol. 5, no. 4, p. e9931, Apr. 2010, doi: 10.1371/journal.pone.0009931.W.-Z. Lin, J.-A. Fang, X. Xiao, and K.-C. Chou, “iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins,” Mol. Biosyst., vol. 9, no. 4, p. 634, 2013, doi: 10.1039/c3mb25466f.C. Zhang, P. L. Freddolino, and Y. Zhang, “COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information,” Nucleic Acids Res., vol. 45, no. W1, pp. W291–W299, Jul. 2017, doi: 10.1093/nar/gkx366L. Kiemer, J. D. Bendtsen, and N. Blom, “NetAcet: Prediction of N-terminal acetylation sites,” Bioinformatics, vol. 21, no. 7, pp. 1269–1270, 2005, doi: 10.1093/bioinformatics/bti130.N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.,” J. Mol. Biol., vol. 294, no. 5, pp. 1351–62, Dec. 1999, doi: 10.1006/jmbi.1999.3310.C. Wang et al., “GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins,” Genomics. Proteomics Bioinformatics, vol. 18, no. 1, pp. 72–80, Feb. 2020, doi: 10.1016/j.gpb.2020.01.001.J. Ren, L. Wen, X. Gao, C. Jin, Y. Xue, and X. Yao, “CSS-Palm 2.0: An updated software for palmitoylation sites prediction,” Protein Eng. Des. Sel., vol. 21, no. 11, pp. 639–644, 2008, doi: 10.1093/protein/gzn039.D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” J. Mol. Biol., vol. 292, pp. 195–202, 1999, doi: 10.1006/jmbi.1999.3091.D. Xu and Y. Zhang, “Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization,” Biophysj, vol. 101, no. 10, pp. 2525–2534, 2011, doi: 10.1016/j.bpj.2011.10.024.P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 10.1093/bioinformatics/btq662.F. T. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, “UCSF Chimera--a visualization system for exploratory research and analysis.” .S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/nar/gkaa971.M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, no. 1, p. 17, Dec. 2012, doi: 10.1186/1758-2946-4-17.J. Eberhardt, D. Santos-martins, A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” 2021, doi: 10.1021/acs.jcim.1c00203.A. C. Wallace, R. A. Laskowski, and J. M. Thornton, “LIGPLOT : a program to generate schematic diagrams of protein-ligand interactions Clean up structure,” vol. 8, no. 2, pp. 127–134, 1995.A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. M. Leunissen, “Primer3Plus, an enhanced web interface to Primer3,” Nucleic Acids Res., vol. 35, no. Web Server, pp. W71–W74, May 2007, doi: 10.1093/nar/gkm306.Promega, “Pfu DNA Polymerase Product Information 9PIM774,” Promega, Corp., 2013.Life Technologies (Invitrogen), “Champion pET SUMO Protein Expression System,” J. Chem. Inf. Model., vol. 5, no. January, pp. 1833–1839, 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15263846%0Ahttp://link.springer.com/10.1007/978-1-4939-7366-8.PROMEGA, “pGEM(R)-T and pGEM(R)-T Easy Vector Systems Technical Manual TM042 - pgem-t and pgem-t easy vector systems protocol.pdf,” pGEM(R)-T pGEM(R)-T Easy Vector Syst. Tech. Man. TM042 - pgem-t pgem-t easy vector Syst. Protoc., 2010, [Online]. Available: https://www.promega.co.uk/~/media/files/resources/protocols/technical manuals/0/pgem-t and pgem-t easy vector systems protocol.pdf.Insightful Science, “Software SnapGene.” 2021, [Online]. Available: https://www.snapgene.com/.T. Sambrook, Joseph; Russell, David; Maniatis, Molecular Cloning. A laboratory manual, Thierth ed. 2001.Invitrogen TM, “User Manual ChampionTM pET Directional TOPO® Expression Kits,” Invit. User Guid., no. 25, 2010.P.-C. Yang, Z.-Q. Liu, and T. Mahmood, “Western blot: Technique, theory and trouble shooting,” N. Am. J. Med. Sci., vol. 6, no. 3, p. 160, 2014, doi: 10.4103/1947-2714.128482.Gold Bio, “Affinity His-Tag Purification,” no. 800, pp. 4–8, 2019, [Online]. Available: https://www.goldbio.com/documents/1013/Affinity His-Tag Purification Troubleshooting.pdf.E. Balducci et al., “Assay Methods for Nicotinamide Mononucleotide Adenylyltransferase of Wide Applicability,” Anal. Biochem., vol. 228, no. 1, pp. 64–68, Jun. 1995, doi: 10.1006/ABIO.1995.1315.E. Balducci et al., “NMN adenylyltransferase from bull testis: Purification and properties,” Biochem. J., vol. 310, no. 2, pp. 395–400, 1995, doi: 10.1042/bj3100395.W. A. Amro, W. Al-Qaisi, and F. Al-Razem, “Production and purification of IgY antibodies from chicken egg yolk,” J. Genet. Eng. Biotechnol., vol. 16, no. 1, pp. 99–103, Jun. 2018, doi: 10.1016/j.jgeb.2017.10.003.W. E. Werner, “Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis,” Cereal Chem., vol. 72, no. 3, pp. 248–251, 1995.A. Rath, F. Cunningham, and C. M. Deber, “Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 39, pp. 15668–15673, 2013, doi: 10.1073/pnas.1311305110.S. M. Simon, F. J. R. Sousa, R. Mohana-Borges, and G. C. Walker, “Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products,” Proc. Natl. Acad. Sci., vol. 105, no. 4, pp. 1152–1157, Jan. 2008, doi: 10.1073/pnas.0706067105.M. A. Ruggiero et al., “A higher level classification of all living organisms,” PLoS One, vol. 10, no. 4, pp. 1–60, 2015, doi: 10.1371/journal.pone.0119248.T. Knudsen, B. Knudsen, “CLC Main Workbench 8.1.2.” 2020.I. Erb and C. Notredame, “How should we measure proportionality on relative gene expression data?,” Theory Biosci., vol. 135, no. 1–2, pp. 21–36, 2016, doi: 10.1007/s12064-015-0220-8.J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22, no. 22, pp. 4673–4680, 1994, doi: 10.1093/nar/22.22.4673.A. Marchler-Bauer et al., “CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures,” Nucleic Acids Res., vol. 45, no. D1, pp. D200–D203, 2017, doi: 10.1093/nar/gkw1129.J. Ma, J. Peng, S. Wang, and J. Xu, “A conditional neural fields model for protein threading,” Bioinformatics, vol. 28, no. 12, pp. 59–66, 2012, doi: 10.1093/bioinformatics/bts213.J. Ma, S. Wang, F. Zhao, and J. Xu, “Protein threading using context-specific alignment potential,” Bioinformatics, vol. 29, no. 13, pp. 257–265, 2013, doi: 10.1093/bioinformatics/btt210S. M. Cacciò, M. Lalle, and S. G. Svärd, “Host specificity in the Giardia duodenalis species complex,” Infect. Genet. Evol., vol. 66, no. October 2017, pp. 335–345, 2018, doi: 10.1016/j.meegid.2017.12.001.A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey, “DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,” Bioinformatics, vol. 28, no. 15, pp. 2074–2075, Aug. 2012, doi: 10.1093/bioinformatics/bts310.S. E. Wang, A. S. Amir, T. Nguyen, A. M. Poole, and A. Simoes-Barbosa, “Spliceosomal introns in Trichomonas vaginalis revisited,” Parasit. Vectors, vol. 11, no. 1, p. 607, Dec. 2018, doi: 10.1186/s13071-018-3196-7.J. M. Carlton et al., “Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis,” Science (80-. )., vol. 315, no. 5809, pp. 207–212, Jan. 2007, doi: 10.1126/science.1132894.C. Lau, C. Dölle, T. I. Gossmann, L. Agledal, M. Niere, and M. Ziegler, “Isoform-specific Targeting and Interaction Domains in Human Nicotinamide Mononucleotide Adenylyltransferases,” J. Biol. Chem., vol. 285, no. 24, pp. 18868–18876, Jun. 2010, doi: 10.1074/jbc.M110.107631.K. Fujiwara, H. Toda, and M. Ikeguchi, “Dependence of α -helical and β -sheet amino acid propensities on the overall protein fold type,” pp. 6–15, 2012.F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, Oct. 2005, doi: 10.1074/jbc.M508660200.T. Croft, C. J. T. Raj, M. Salemi, B. S. Phinney, and S. J. Lin, “A functional link between NAD+ homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 293, no. 8, pp. 2927–2938, 2018, doi: 10.1074/jbc.M117.807214.D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von Heijne,” J. Mol. Biol., vol. 292, no. 2, pp. 195–202, Sep. 1999, doi: 10.1006/jmbi.1999.3091.I. Hanukoglu, “Rossmann Fold : A Beta-Alpha- Beta Fold at Dinucleotide Binding Sites,” pp. 206–209, 2014, doi: 10.1002/bmb.20849.R. J. Anderson, Z. Weng, R. K. Campbell, and X. Jiang, “Main-Chain Conformational Tendencies of Amino Acids,” vol. 689, no. March, pp. 679–689, 2005, doi: 10.1002/prot.20530.V. Saridakis, D. Christendat, M. S. Kimber, A. Dharamsi, A. M. Edwards, and E. F. Pai, “Insights into Ligand Binding and Catalysis of a Central Step in NAD ؉ Synthesis,” vol. 276, no. 10, pp. 7225–7232, 2001, doi: 10.1074/jbc.M008810200.X. Zhang, O. V Kurnasov, S. Karthikeyan, N. V Grishin, A. L. Osterman, and H. Zhang, “Structural Characterization of a Human Cytosolic NMN / NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis * □,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi: 10.1074/jbc.M300073200.J. Hon et al., “SoluProt: prediction of soluble protein expression in Escherichia coli,” Bioinformatics, vol. 37, no. 1, pp. 23–28, Apr. 2021, doi: 10.1093/bioinformatics/btaa1102.C. A. Nieto Clavijo, N. Forero Baena, and M. H. Ramírez Hernández, “Diseño y producción de diversas proteínas fusión de la nicotinamida/nicotinato mononucleótido adenilil transferasa (NMNAT) de Plasmodium falciparum,” Rev. Colomb. Química, vol. 46, no. 3, pp. 5–10, Sep. 2017, doi: 10.15446/rev.colomb.quim.v46n3.63492.M. Fakruddin, R. Mohammad Mazumdar, K. S. Bin Mannan, A. Chowdhury, and M. N. Hossain, “ Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli ,” ISRN Biotechnol., vol. 2013, no. 3, pp. 1–7, 2013, doi: 10.5402/2013/590587.T. Panavas, C. Sanders, and T. R. Butt, “SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems,” vol. 497, no. 6, pp. 303–317, 2009, doi: 10.1007/978-1-59745-566-4.H. Saitoh, J. Uwada, and A. Kawasaki, “Strategies for the Expression of SUMO-Modified Target Proteins in Escherichia coli,” vol. 497, pp. 211–221, 2009, doi: 10.1007/978-1-59745-566-4.J. A. Bornhorst and J. J. Falke, “Purification of proteins using polyhistidine affinity tags,” 2000, pp. 245–254.G. Orsomando et al., “Simultaneous Single-Sample Determination of NMNAT Isozyme Activities in Mouse Tissues,” PLoS One, vol. 7, no. 12, p. e53271, Dec. 2012, doi: 10.1371/journal.pone.0053271.M. Kato and S. J. Lin, “YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 289, no. 22, pp. 15577–15587, 2014, doi: 10.1074/jbc.M114.558643.W. Konigsberg, “Reduction of Disulfide Bonds in Proteins with Dithiothreitol,” Methods Enzymol., vol. 25, no. C, pp. 185–188, 1972, doi: 10.1016/S0076-6879(72)25015-7.M. C. Alliegro, “Effects of dithiothreitol on protein activity unrelated to thiol- disulfide exchange: For consideration in the analysis of protein function with cleland’s reagent,” Anal. Biochem., vol. 282, no. 1, pp. 102–106, 2000, doi: 10.1006/abio.2000.4557.N. Raffaelli, L. Sorci, A. Amici, M. Emanuelli, F. Mazzola, and G. Magni, “Identification of a novel human nicotinamide mononucleotide adenylyltransferase,” Biochem. Biophys. Res. Commun., vol. 297, no. 4, pp. 835–840, 2002, doi: 10.1016/S0006-291X(02)02285-4.L. E. Contreras Rodríguez, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, p. e03733, Apr. 2020, doi: 10.1016/j.heliyon.2020.e03733.J. Rodrigues, J. Caldeira, and B. Vaidya, “A Novel Intra-body Sensor for Vaginal Temperature Monitoring,” Sensors, vol. 9, no. 4, pp. 2797–2808, Apr. 2009, doi: 10.3390/s90402797.G. Johnson and M. H. Trussell, “Physiology of Bacteria-free Trichomonas vaginalis. VII: Temperature in Relation to Survival and Generation Time.,” Exp. Biol. Med., vol. 57, no. 2, pp. 252–254, Nov. 1944, doi: 10.3181/00379727-57-14771.S. M. Gelbart, J. L. Thomason, P. J. Osypowski, A. V Kellett, J. A. James, and F. F. Broekhuizen, “Growth of Trichomonas vaginalis in commercial culture media,” J. Clin. Microbiol., vol. 28, no. 5, pp. 962–964, May 1990, doi: 10.1128/jcm.28.5.962-964.1990.A. Chang et al., “BRENDA, the ELIXIR core data resource in 2021: new developments and updates,” Nucleic Acids Res., vol. 49, no. D1, pp. D498–D508, Jan. 2021, doi: 10.1093/nar/gkaa1025.J. J. Babcock and L. Brancaleon, “International Journal of Biological Macromolecules Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength,” Int. J. Biol. Macromol., vol. 53, pp. 42–53, 2013, doi: 10.1016/j.ijbiomac.2012.10.030.R. Dro, “Lysozyme Oligomers as a Molecular Mass Standard for Sodium Dodecyl Gel Electrophoresis,” vol. 422, pp. 419–422, 1988.R. Li, Z. Wu, Y. Wangb, L. Ding, and Y. Wang, “Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin,” Biotechnol. Reports, vol. 9, pp. 46–52, 2016, doi: 10.1016/j.btre.2016.01.002.G. V Barnett, M. Drenski, V. Razinkov, W. F. Reed, and C. J. Roberts, Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering, vol. 511. 2017.C. Seok, M. Baek, M. Steinegger, H. Park, G. R. Lee, and J. Won, “Accurate protein structure prediction: what comes next?,” BIODESIGN, vol. 9, no. 3, pp. 47–50, Sep. 2021, doi: 10.34184/kssb.2021.9.3.47.K. Hashimoto and A. R. Panchenko, “Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states,” Proc. Natl. Acad. Sci., vol. 107, no. 47, pp. 20352–20357, Nov. 2010, doi: 10.1073/pnas.1012999107.J. M. Brazill, C. Li, Y. Zhu, and R. G. Zhai, “NMNAT: It’s an NAD + synthase… It’s a chaperone… It’s a neuroprotector,” Curr. Opin. Genet. Dev., vol. 44, pp. 156–162, Jun. 2017, doi: 10.1016/j.gde.2017.03.014.L. Skipper, “PROTEINS | Overview,” vol. 8, p. 101983, 2005.W.-W. Zhang, “The use of gene-specific IgY antibodies for drug target discovery,” Drug Discov. Today, vol. 8, no. 8, pp. 364–371, Apr. 2003, doi: 10.1016/S1359-6446(03)02655-2.Y. Xu et al., “Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review,” Biotechnol. Adv., vol. 29, no. 6, pp. 860–868, Nov. 2011, doi: 10.1016/j.biotechadv.2011.07.003.D. Thirumalai, S. Visaga Ambi, R. S. Vieira-Pires, Z. Xiaoying, S. Sekaran, and U. Krishnan, “Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections – A review,” Int. J. Biol. Macromol., vol. 136, pp. 755–763, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.118.E. P. V Pereira, M. F. Van Tilburg, E. O. P. T. Florean, and M. I. F. Guedes, “Egg yolk antibodies ( IgY ) and their applications in human and veterinary health : A review,” no. January, 2020.Barella, “Chicken egg yolk antibodies (IgY) as an alternative to mammalian antibodies.,” بیماریهای داخلی, vol. 3, no. 4, p. 210, 2010, doi: 10.17485/ijst/2010/v3i4/29741.D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation,” J. Vis. Exp., no. 51, May 2011, doi: 10.3791/3084.D. M. Ostos Peña, “Aproximación a la regulación de algunas enzimas involucradas en el metábolismo del NAD+ en Giardia duodenalis.” pp. 1–128, 2019.G. Garzón, “Estudio de un candidato a NAD quinasa en Leishmania spp,” Adv. Opt. Mater., vol. 10, no. 1, pp. 1–9, 2018.S. E. Villamil-Silva, L. J. Ortiz-Joya, L. E. Contreras-Rodríguez, G. J. Díaz- Gonzalez, and M. H. Ramírez-Hernández, “Identificación de una triparedoxina peroxidasa citoplasmática en Leishmania braziliensis,” Rev. Colomb. Química, vol. 50, no. 2, pp. 3–14, Aug. 2021, doi: 10.15446/rev.colomb.quim.v50n2.91721M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic Acids Res., vol. 45, no. W1, pp. W24–W29, Jul. 2017, doi: 10.1093/nar/gkx346.D. S. Morales, L. E. Contreras, C. C. Rubiano, and M. H. R. Hern, “Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis ( Lb NDT1 ),” Helyion, vol. 6, no. June, pp. 0–9, 2020, doi: 10.1016/j.heliyon.2020.e04331.V. S. Sharon Eliana, “Exploración de un transportador de NAD + y sus precursores en Leishmania.,” pp. 1–181, 2021.J. J. Ruprecht et al., “The Molecular Mechanism of Transport by the Article The Molecular Mechanism of Transport by the Mitochondrial ADP / ATP Carrier,” pp. 435–447, 2019, doi: 10.1016/j.cell.2018.11.025.A. Shiflett and P. Johnson, “Mitochondrion-related Organelles in Parasitic Eukaryotes,” no. 8, pp. 409–429, 2011, doi: 10.1146/annurev.micro.62.081307.162826.Mitochondrion-related.T. Lithgow, “Evolution of macromolecular import pathways in mitochondria , hydrogenosomes and mitosomes,” pp. 799–817, 2010, doi: 10.1098/rstb.2009.0167.M. S. King, M. Kerr, P. G. Crichton, R. Springett, and E. R. S. Kunji, “Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier,” Biochim. Biophys. Acta - Bioenerg., vol. 1857, no. 1, pp. 14–22, 2016, doi: 10.1016/J.BBABIO.2015.09.013.R. E. Schneider et al., “The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes,” Int. J. Parasitol., vol. 41, no. 13–14, pp. 1421–1434, 2011, doi: 10.1016/j.ijpara.2011.10.001.S. D. Dyall et al., “Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex,” vol. 28, pp. 1103–1107, 2004, doi: 10.1038/nature02918.1.J. Kuan and M. H. Saier, “The Mitochondrial Carrier Family of Transport Proteins : Structural , Functional , and Evolutionary Relationships,” vol. 28, no. 3, pp. 209–233, 1993.A. G. B. Simpson and Y. Eglit, “Protist Diversification,” Encycl. Evol. Biol., vol. 3, pp. 344–360, 2016, doi: 10.1016/B978-0-12-800049-6.00247-X.EstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/82074/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINAL10160808222022.pdf10160808222022.pdfTesis de Maestría en Bioquímicaapplication/pdf7485041https://repositorio.unal.edu.co/bitstream/unal/82074/3/10160808222022.pdf655ec83852d36298597a42b7852c9659MD53THUMBNAIL10160808222022.pdf.jpg10160808222022.pdf.jpgGenerated Thumbnailimage/jpeg4440https://repositorio.unal.edu.co/bitstream/unal/82074/4/10160808222022.pdf.jpgfbf7a9ad9edc2388c76341ee8b94a53aMD54unal/82074oai:repositorio.unal.edu.co:unal/820742023-08-05 23:04:28.428Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK