Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana

ilustraciones, gráficas

Autores:
Veloza Diaz, Diego
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81146
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81146
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Thermodynamics
Markov processes
Quantum field theory
Termodinámica
Procesos de Markov
Teoría del campo cuántico
Control de retroalimentación cuántico
Teoría de retroalimentación
Control de error
Efectos de decoherencia
Canales cuánticos
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_44fd8a47df7368957fc4f7db0cd0be77
oai_identifier_str oai:repositorio.unal.edu.co:unal/81146
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
dc.title.translated.eng.fl_str_mv Protection and optimization of adiabatic protocols via Markovian feedback
title Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
spellingShingle Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
530 - Física::539 - Física moderna
Thermodynamics
Markov processes
Quantum field theory
Termodinámica
Procesos de Markov
Teoría del campo cuántico
Control de retroalimentación cuántico
Teoría de retroalimentación
Control de error
Efectos de decoherencia
Canales cuánticos
title_short Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
title_full Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
title_fullStr Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
title_full_unstemmed Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
title_sort Protección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación Markoviana
dc.creator.fl_str_mv Veloza Diaz, Diego
dc.contributor.advisor.spa.fl_str_mv Viviescas Ramírez, Carlos Leonardo
dc.contributor.author.spa.fl_str_mv Veloza Diaz, Diego
dc.contributor.researchgroup.spa.fl_str_mv Caos y Complejidad
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Thermodynamics
Markov processes
Quantum field theory
Termodinámica
Procesos de Markov
Teoría del campo cuántico
Control de retroalimentación cuántico
Teoría de retroalimentación
Control de error
Efectos de decoherencia
Canales cuánticos
dc.subject.lemb.eng.fl_str_mv Thermodynamics
Markov processes
Quantum field theory
dc.subject.lemb.spa.fl_str_mv Termodinámica
Procesos de Markov
Teoría del campo cuántico
dc.subject.proposal.spa.fl_str_mv Control de retroalimentación cuántico
Teoría de retroalimentación
Control de error
Efectos de decoherencia
Canales cuánticos
description ilustraciones, gráficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-08T02:26:20Z
dc.date.available.none.fl_str_mv 2022-03-08T02:26:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81146
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81146
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv G. Agarwal. Control of decoherence and relaxation by frequency modulation of a heat bath. Physical Review A - Atomic, Molecular, and Optical Physics, 61:138091–138095, 2000
D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating the jones polynomial. In Proceedings of the Annual ACM Symposium on Theory of Computing, volume 2006, pages 427–436, 2006.
R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534(7606):222–226, 2016.
M. V. Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36), 2009.
J. D. Biamonte, V. Bergholm, J. D. Whitfield, J. Fitzsimons, and A. Aspuru-Guzik. Adiabatic quantum simulators. AIP Advances, 1(2), 2011.
A. Blais, J. Gambetta, A.Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 75:032329, Mar 2007.
A. Chia and H. Wiseman. Complete parametrizations of diffusive quantum monitoring. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.
A. Chia and H. M. Wiseman. Quantum theory of multiple-input-multiple-output markovian feedback with diffusive measurements. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.
A. M. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum computation. Physical Review A.Atomic, Molecular, and Optical Physics, 65(1):123221–1232210, 2002.
D. I. Cutress. Intel’s manufacturing roadmap from 2019 to 2029: Back porting, 7nm, 5nm, 3nm, 2nm, and 1.4 nm. anandtech.
A. J. a. Dariusz Chru´sci´nski. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics 36. Birkh¨auser Basel, 1 edition, 2004.
A. Del Campo. Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 2013.
M. Demirplak and S. A. Rice. Adiabatic population transfer with control fields. Journal of Physical Chemistry A, 107(46):9937–9945, 2003.
A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.
X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, 2017.
F. Haake, S. Tan, and D. Walls. Photon noise reduction in lasers. Physical Review A, 40:7121–7132, 1989.
G. J. M. Howard M. Wiseman. Quantum Measurement and Control. Cambridge University Press, 1 edition, 2009.
S. . Huang, H. . Goan, X. . Li, and G. J. Milburn. Generation and stabilization of a three-qubit entangled w state in circuit qed via quantum feedback control. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6), 2013.
D. A. Lidar, A. T. Rezakhani, and A. Hamma. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics, 50(10):102106, 2009.
G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119–130, 1976.
E. P. Peter E. Kloeden. Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability. Springer, corrected edition, 1995.
F. Petiziol, B. Dive, S. Carretta, R. Mannella, F. Mintert, and S. Wimberger. Accelerating adiabatic protocols for entangling two qubits in circuit qed. Physical Review A, 99(4), 2019.
F. Petiziol, B. Dive, F. Mintert, and S. Wimberger. Fast adiabatic evolution by oscillating initial hamiltonians. Physical Review A, 98(4), 2018.
A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi. Quantum adiabatic brachistochrone. Phys. Rev. Lett., 103:080502, Aug 2009.
J. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A, 65:042308, Mar 2002.
A. C. Santos, B. C¸ akmak, S. Campbell, and N. T. Zinner. Stable adiabatic quantum batteries. Physical Review E, 100(3), 2019.
J. Shapiro, G. Saplakoglu, S.-T. Ho, B. Saleh, and M. Teich. Theory of light detection in the presence of feedback. Journal of the Optical Society of America B: Optical Physics, 4:1604–1620, 1987.
P. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52, 1995.
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.
M. Theisen, F. Petiziol, S. Carretta, P. Santini, and S. Wimberger. Superadiabatic driving of a three-level quantum system. Phys. Rev. A, 96:013431, Jul 2017.
E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, and J. G. Muga. Shortcuts to adiabaticity: Fast-forward approach. Physical Review A - Atomic, Molecular, and Optical Physics, 86(1), 2012.
A. Trabesinger. Quantum simulation. Nature Physics, 8, 4 2012.
T. Villazon, A. Polkovnikov, and A. Chandran. Swift heat transfer by fast-forward driving in open quantum systems. Physical Review A, 100(1), 2019.
H. Wiseman. Quantum theory of continuous feedback. Physical Review A, 49:2133–2150, 1994.
H. Wiseman and L. Di´osi. Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chemical Physics, 268(1):91–104, 2001.
H. Wiseman and G. Milburn. Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70:548–551, 1993.
H. M. Wiseman. Quantum theory of continuous feedback. Phys. Rev. A, 49:2133–2150, Mar 1994.
H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47:642–662, Jan 1993.
W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75:715–775, May 2003.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 58 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81146/3/1022426916.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81146/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81146/5/1022426916.2021.pdf.jpg
bitstream.checksum.fl_str_mv 650d7bf745e9f1b4e5f844710f7a94c7
8153f7789df02f0a4c9e079953658ab2
ea08d660251e7d13cd84e18ca305ccad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090102768402432
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Viviescas Ramírez, Carlos Leonardo5b30aa603ec28676fe215dfba86e3d61Veloza Diaz, Diegocd2327b2038512a2ec66ed0d1bf4b23cCaos y Complejidad2022-03-08T02:26:20Z2022-03-08T02:26:20Z2021https://repositorio.unal.edu.co/handle/unal/81146Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasEl entrelazamiento corresponde a uno de los recursos cuánticos cruciales del cual dependen muchas de las tecnologáas cuánticas que prometen superar a sus contrapartes clásicas y plantear un nuevo paradigma tecnológico. Proteger este recurso de los efectos de decoherencia y fuentes de ruido varias, sin perder la posibilidad de tener tiempos de ejecución prácticos, se convierte en una tarea de suma importancia. Es en este contexto que se plantea la posibilidad de controlar los efectos de decoherencia mediante un proceso de retroalimentación Markoviana para un sistema de dos qubits en un circuito QED, además de explorar la compatibilidad de este esquema de control con un método de optimización de tiempos de ejecución para un protocolo adiabático de preparación de estados entrelazados. (Texto tomado de la fuente).Entanglement corresponds to one of the crucial quantum resources, from which a large number of quantum technologies depend on, that promise to outperform their classical counterparts and impose a new technological paradigm. Protecting this resource from the effects of decoherence and other noise sources, without losing the possibility of having practical execution times becomes an extremely important task. It is in this context that the possibility of controlling decoherence effects through a Markovian feedback action for a two-qubit system in a QED circuit is proposed, in addition has explored the compatibility of this scheme of control with the optimization method for the execution times for an adiabatic protocol of preparation of entangled states explored in the same reference.Incluye anexosMaestríaMagíster en Ciencias - FísicaTrajectorias cuanticas y control cuantico58 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaThermodynamicsMarkov processesQuantum field theoryTermodinámicaProcesos de MarkovTeoría del campo cuánticoControl de retroalimentación cuánticoTeoría de retroalimentaciónControl de errorEfectos de decoherenciaCanales cuánticosProtección y optimizacion de protocolos adiabáticos mediante el uso de retroalimentación MarkovianaProtection and optimization of adiabatic protocols via Markovian feedbackTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMG. Agarwal. Control of decoherence and relaxation by frequency modulation of a heat bath. Physical Review A - Atomic, Molecular, and Optical Physics, 61:138091–138095, 2000D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating the jones polynomial. In Proceedings of the Annual ACM Symposium on Theory of Computing, volume 2006, pages 427–436, 2006.R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 534(7606):222–226, 2016.M. V. Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36), 2009.J. D. Biamonte, V. Bergholm, J. D. Whitfield, J. Fitzsimons, and A. Aspuru-Guzik. Adiabatic quantum simulators. AIP Advances, 1(2), 2011.A. Blais, J. Gambetta, A.Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 75:032329, Mar 2007.A. Chia and H. Wiseman. Complete parametrizations of diffusive quantum monitoring. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.A. Chia and H. M. Wiseman. Quantum theory of multiple-input-multiple-output markovian feedback with diffusive measurements. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1), 2011.A. M. Childs, E. Farhi, and J. Preskill. Robustness of adiabatic quantum computation. Physical Review A.Atomic, Molecular, and Optical Physics, 65(1):123221–1232210, 2002.D. I. Cutress. Intel’s manufacturing roadmap from 2019 to 2029: Back porting, 7nm, 5nm, 3nm, 2nm, and 1.4 nm. anandtech.A. J. a. Dariusz Chru´sci´nski. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics 36. Birkh¨auser Basel, 1 edition, 2004.A. Del Campo. Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 2013.M. Demirplak and S. A. Rice. Adiabatic population transfer with control fields. Journal of Physical Chemistry A, 107(46):9937–9945, 2003.A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, 2017.F. Haake, S. Tan, and D. Walls. Photon noise reduction in lasers. Physical Review A, 40:7121–7132, 1989.G. J. M. Howard M. Wiseman. Quantum Measurement and Control. Cambridge University Press, 1 edition, 2009.S. . Huang, H. . Goan, X. . Li, and G. J. Milburn. Generation and stabilization of a three-qubit entangled w state in circuit qed via quantum feedback control. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6), 2013.D. A. Lidar, A. T. Rezakhani, and A. Hamma. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics, 50(10):102106, 2009.G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119–130, 1976.E. P. Peter E. Kloeden. Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability. Springer, corrected edition, 1995.F. Petiziol, B. Dive, S. Carretta, R. Mannella, F. Mintert, and S. Wimberger. Accelerating adiabatic protocols for entangling two qubits in circuit qed. Physical Review A, 99(4), 2019.F. Petiziol, B. Dive, F. Mintert, and S. Wimberger. Fast adiabatic evolution by oscillating initial hamiltonians. Physical Review A, 98(4), 2018.A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi. Quantum adiabatic brachistochrone. Phys. Rev. Lett., 103:080502, Aug 2009.J. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A, 65:042308, Mar 2002.A. C. Santos, B. C¸ akmak, S. Campbell, and N. T. Zinner. Stable adiabatic quantum batteries. Physical Review E, 100(3), 2019.J. Shapiro, G. Saplakoglu, S.-T. Ho, B. Saleh, and M. Teich. Theory of light detection in the presence of feedback. Journal of the Optical Society of America B: Optical Physics, 4:1604–1620, 1987.P. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52, 1995.P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.M. Theisen, F. Petiziol, S. Carretta, P. Santini, and S. Wimberger. Superadiabatic driving of a three-level quantum system. Phys. Rev. A, 96:013431, Jul 2017.E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt, and J. G. Muga. Shortcuts to adiabaticity: Fast-forward approach. Physical Review A - Atomic, Molecular, and Optical Physics, 86(1), 2012.A. Trabesinger. Quantum simulation. Nature Physics, 8, 4 2012.T. Villazon, A. Polkovnikov, and A. Chandran. Swift heat transfer by fast-forward driving in open quantum systems. Physical Review A, 100(1), 2019.H. Wiseman. Quantum theory of continuous feedback. Physical Review A, 49:2133–2150, 1994.H. Wiseman and L. Di´osi. Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chemical Physics, 268(1):91–104, 2001.H. Wiseman and G. Milburn. Quantum theory of optical feedback via homodyne detection. Physical Review Letters, 70:548–551, 1993.H. M. Wiseman. Quantum theory of continuous feedback. Phys. Rev. A, 49:2133–2150, Mar 1994.H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47:642–662, Jan 1993.W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75:715–775, May 2003.InvestigadoresPúblico generalORIGINAL1022426916.2021.pdf1022426916.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1524475https://repositorio.unal.edu.co/bitstream/unal/81146/3/1022426916.2021.pdf650d7bf745e9f1b4e5f844710f7a94c7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81146/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1022426916.2021.pdf.jpg1022426916.2021.pdf.jpgGenerated Thumbnailimage/jpeg4357https://repositorio.unal.edu.co/bitstream/unal/81146/5/1022426916.2021.pdf.jpgea08d660251e7d13cd84e18ca305ccadMD55unal/81146oai:repositorio.unal.edu.co:unal/811462023-08-02 23:04:03.762Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK