Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen

ilustraciones, diagramas, fotografías

Autores:
Andrade Martínez, William Javier
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79711
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79711
https://repositorio.unal.edu.co/
Palabra clave:
690 - Construcción de edificios::691 - Materiales de construcción
Concrete
Aggregates
Fluids
Hormigón
Agregados
Fluidos
Reología
Tixotropía
Trabajabilidad
Bingham
Esfuerzo de fluencia
Viscosidad
Veleta portátil
Concreto autocompactante
Rheology
Thixotropy
Workability
Yield Strees
Viscosity
Portable vane
SCC
Self compacting concrete
Materiales de construcción
Tecnología de materiales
Roca sedimentaria
Building materials
Materials engineering
Sedimentary rocks
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_44c3649a6fe9170bca7715320d49b996
oai_identifier_str oai:repositorio.unal.edu.co:unal/79711
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
dc.title.translated.eng.fl_str_mv Bases for the rheological specification for self compacting concretes with sands of different origin
title Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
spellingShingle Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
690 - Construcción de edificios::691 - Materiales de construcción
Concrete
Aggregates
Fluids
Hormigón
Agregados
Fluidos
Reología
Tixotropía
Trabajabilidad
Bingham
Esfuerzo de fluencia
Viscosidad
Veleta portátil
Concreto autocompactante
Rheology
Thixotropy
Workability
Yield Strees
Viscosity
Portable vane
SCC
Self compacting concrete
Materiales de construcción
Tecnología de materiales
Roca sedimentaria
Building materials
Materials engineering
Sedimentary rocks
title_short Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
title_full Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
title_fullStr Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
title_full_unstemmed Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
title_sort Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen
dc.creator.fl_str_mv Andrade Martínez, William Javier
dc.contributor.advisor.spa.fl_str_mv Lizarazo Marriaga, Juan Manuel
dc.contributor.author.spa.fl_str_mv Andrade Martínez, William Javier
dc.subject.ddc.spa.fl_str_mv 690 - Construcción de edificios::691 - Materiales de construcción
topic 690 - Construcción de edificios::691 - Materiales de construcción
Concrete
Aggregates
Fluids
Hormigón
Agregados
Fluidos
Reología
Tixotropía
Trabajabilidad
Bingham
Esfuerzo de fluencia
Viscosidad
Veleta portátil
Concreto autocompactante
Rheology
Thixotropy
Workability
Yield Strees
Viscosity
Portable vane
SCC
Self compacting concrete
Materiales de construcción
Tecnología de materiales
Roca sedimentaria
Building materials
Materials engineering
Sedimentary rocks
dc.subject.lemb.eng.fl_str_mv Concrete
Aggregates
Fluids
dc.subject.lemb.spa.fl_str_mv Hormigón
Agregados
Fluidos
dc.subject.proposal.spa.fl_str_mv Reología
Tixotropía
Trabajabilidad
Bingham
Esfuerzo de fluencia
Viscosidad
Veleta portátil
Concreto autocompactante
dc.subject.proposal.eng.fl_str_mv Rheology
Thixotropy
Workability
Yield Strees
Viscosity
Portable vane
SCC
Self compacting concrete
dc.subject.unesco.spa.fl_str_mv Materiales de construcción
Tecnología de materiales
Roca sedimentaria
dc.subject.unesco.eng.fl_str_mv Building materials
Materials engineering
Sedimentary rocks
description ilustraciones, diagramas, fotografías
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-24T18:04:16Z
dc.date.available.none.fl_str_mv 2021-06-24T18:04:16Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79711
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79711
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ACI Committee 237. (2007). Self-Consolidating Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/CndTtUH
ACI, Committee 238. (2008). Report on Measurements of Workability and Rheology of Fresh Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/AndYjIf
Ahari, R. S., Erdem, T. K., & Ramyar, K. (2015, May). Ahari, R. S., Erdem, T. K., & Ramyar, K. (2015). Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cement Concrete Composites, 59, 26-37. Retrieved from https://doi.org/10.1016/j.cemconcomp.2015.03.009
ASOCRETO. (2010). Tecnología del concreto y sus componentes (Vol. I). Nomos Impresores.
ASTM C1621 / C1621M - 17. (s.f). Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. Retrieved from https://www.astm.org/Standards/C1621
Botella, R. M. (2005). Reología de suspensiones cerámicas (Vol. 17). Madrid: CSIC-CSIC Press.
Chen, J., Xie, H., Guo, J., Chen, B., & Liu, F. (2019, December ). Preliminarily experimental research on local pressure loss of fresh concrete during pumping. Measurement, 147.doi:https://doi.org/10.1016/j.measurement.2019.106897
Choi, M. S., Lee, J. S., Ryu, K. S., Koh, K.-T., & Kwon, S. H. (2016, March). Estimation of rheological properties of UHPC using mini slump test. Construction and Building Materials, 632-639. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.106
Clark, V. L., & Creswell, J. W. (2014). Understanding research: A consumers guide (Segunda ed ed.). Pearson Higher.
Corinaldesi, V. (2012). Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete. (36), 758-764. doi:10.1016/j.conbuildmat.2012.04.129
Corinaldesi, V., Monosi, S., & Ruello, M. L. (2012, May). Influence of inorganic pigments’ addition on the performance of coloured SCC. Construction and Building Materials, 30, 289-293.doi:https://doi.org/10.1016/j.conbuildmat.2011.12.037
Cu, Y. T., Tran, M. V., Ho, C. H., & Nguyen, P. H. (2020). Relationship between workability and rheological parameters of self-compacting concrete used for vertical pump up to supertall buildings. Journal of Building Engineering. doi:ttps://doi.org/10.1016/j.jobe.2020.101786
Da Silva, M. A., Pepe, M., De Andrade, R. G., M, Pfeil, M. S., & Toledo Filho, R. D. (2017, September 30). Rheological and mechanical behavior of high strength steel fiber-river gravel self compacting concrete. Construction Building Materials, 150, 606-618.doi:https://doi.org/10.1016/j.conbuildmat.2017.06.030
Da Silva, W. R., Fryda, H., Bousseau, J.-N., Andreani, P.-A., & Andersen, T. J. (2019). Evaluation of early-age concrete structural build-up for 3d concrete printing by oscillatory rheometry. In A. 2019:, International Conference on Applied Human Factors and Ergonomics (pp. 35-47). Retrieved from https://cutt.ly/Pnf4bfA
Daczko, J. (2012). Self-consolidating concrete: Applying what we know (Primera ed.). CRC Press. Retrieved from https://cutt.ly/Jnf7lTZ
De la Cruz, C. J. (2009). Desarrollo de hormigones autocompactables de resistencia media (HAC RM) en Colombia. Medellín: Universidad Nacional de Colombia . Retrieved from https://cutt.ly/mnf6vKm
De la Cruz, C., & Tamayo, A. (2018). Desarrollo de hormigones autocompactables de resistencia media (HAC-RM) en Colombia. Congresos de la Universitat Politècnica de València, HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales, 639-648. doi:DOI:10.4995/HAC2018.2018.5548
De Larrard, F., & Roussel, N. (2011). Flow Simulation of fresh concrete under a slipform machine. Road materials pavement design, 12(3), 547-566. Retrieved from DOI:10.1080/14680629.2011.9695260
Dinkgreve, M., Paredes, J., Denn, M. M., & Bonn, D. (2016). On different ways of measuring “the” yield stress. Journal of non-Newtonian fluid mechanics, 238, 233-241. Retrieved from https://doi.org/10.1016/j.jnnfm.2016.11.001
Duarte, C. A., & Niño, J. R. (2004). Introducción a la mecánica de fluidos (Primera ed.). Universidad Nacional de Colombia.
Ferraris, C. F. (1999). Measurement of the rheological properties of high performance concrete: state of the art report. Journal of Research of the National Institute of Standards and Technology, 104(5), 461-478. doi: doi: 10.6028/jres.104.028
Feys, D. K.-S. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement Concrete Composites, 40-52. doi:https://doi.org/10.1016/j.cemconcomp.2014.05.008
Feys, D., De Schutter, G., Khayat, K. H., & Verhoeven, R. (2016). Changes in rheology of self consolidating concrete induced by pumping. Materials structures, 4657-4677. doi:DOI:10.1617/S11527-016-0815-7
Feys, D., Khayat, K. H., & Khatib, R. (2015). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement Concrete Composites, 38-46. doi:10.1016/j.cemconcomp.2015.11.002
Garzón Amórtegui, J. F. (2014). Desarrollo y evaluación de un concreto autocompactante adicionado con ceniza volante colombiana. Revista Técnica, 18-29. Retrieved from https://cutt.ly/rnggIYW
Germann Instruments . (2017). ICAR PLUS Concrete Rheometer Manual. In. Retrieved from https://cutt.ly/Xngu2zb
Ghoddousi, P., & Salehi, A. M. (2017). The evaluation of self compacting concrete robustness based on the rheology parameters. International Journal of Civil Engineering, 15(8), 1097-1106. doi:https://doi.org/10.1007/s40999-017-0239-y
Gmaslab. (2014). Análisis de difracción de rayos X (DRX). Retrieved from https://cutt.ly/inhgqcF
González Taboada, I., González Fonteboa, B., Eiras López, J., López, R., & G. (2017). Tools for the study of self-compacting recycled concrete fresh behaviour: Workability and rheology. Journal of Cleaner Production, 156, 1-18. doi:https://doi.org/10.1016/j.jclepro.2017.04.045
González Taboada, I., González Fonteboa, B., Martínez Abella, F., & Carro López, D. (2017). Self-compacting recycled concrete: Relationships between empirical and rheological parameters and proposal of a workability box. Construction Building Materials, 143, 537-546. doi:DOI:10.1016/j.conbuildmat.2017.03.156
González Taboada, I., González Fonteboa, B., Martínez Abella, F., & Roussel, N. (2017). Robustness of self-compacting recycled concrete: analysis of sensitivity parameters. Materials structures, 51(1), 1-10. doi:https://doi.org/10.1617/s11527-017-1136-1
Güneyisi, E., Gesoglu, M., Algın, Z., & Yazıcı, H. (2016). Rheological and fresh properties of self compacting concretes containing coarse and fine recycled concrete aggregates. Construction Building Materials, 113, 622-630. doi:10.1016/j.conbuildmat.2016.03.073
Güneyisi, E., Gesoglu, M., Naji, N., & İpek, S. (2015). Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models. Archives of civil mechanical engineering, 16( ), 9-19. Retrieved from https://cutt.ly/JnggiNY
Gutiérrez Pulido, H., & De la Vara Salazar, R. (2008). Análisis y diseño de experimentos (Segunda ed.). México D.F: M. G. Hill.
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (Sexta ed.). México D.F: M G. Hill. Retrieved from https://cutt.ly/znghvdO
Ibarrola, E. L. (2009). Introducción a los fluidos no newtonianos: Cátedra de Mecánica de los Fluidos - UNCor. Retrieved from https://cutt.ly/QnhdMm9
Irving, S. (1995). Mecánica de fluidos. McGraw-Hill.
Khan, M., Mourad, S. M., & Charif, A. (2016). Utilization of Supplementary Cementitious Materials in HPC: From rheology to pore structure. Journal of Civil Engineering, 889-899. doi:https://doi.org/10.1007/s12205-016-1781-x
Khayat, K., Omran, A. F., Naji, S., Billberg, P., & Yahia, A. (2012). Field-oriented test methods to evaluate structural build-up at rest of flowable mortar and concrete. Materials structures, 45(10), 1547-1564. doi:10.1617/s11527-012-9856-8
Kim, J. S., Kwon, S. H., Jang, K. P., & Choi, M. S. (2018). Concrete pumping prediction considering different measurement of the rheological properties. Construction Building Materials, 171, 493-503. doi:https://doi.org/10.1016/j.conbuildmat.2018.03.194
Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2005). A new, portable rheometer for fresh self-consolidating concrete. ACI materials journal, 233. Retrieved from https://cutt.ly/fngPfYH
Lecompte, T., & Perrot, A. (2016). Non-linear modeling of yield stress increase due to SCC structural build-up at rest. Cement Concrete Research, 92, 92-97. doi:10.1016/j.cemconres.2016.11.020
Long, W.-J., Khayat, K. H., Yahia, A., & Xing, F. (2017). Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cement Concrete Composites, 82, 105-116. doi:https://doi.org/10.1016/j.cemconcomp.2017.05.008
Mechtcherine, V., Nerella, V. N., & Kasten, K. (2013). Testing pumpability of concrete using Sliding Pipe Rheometer. Construction Building Materials, 53, 312-323. doi:https://doi.org/10.1016/j.conbuildmat.2013.11.037
Megid, W. A., & Khayat, K. H. (2019). Variations in surface quality of self-consolidation and highly workable concretes with formwork material. Construction Building Materials, 238. doi:https://doi.org/10.1016/j.conbuildmat.2019.117638
Mohan, M. K., Rahul, A., Van Tittelboom, K., & De Schutter, G. (2020). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement Concrete Research, 139. doi:https://doi.org/10.1016/j.cemconres.2020.106258
Navidi, W. (2006). Estadística para ingenieros. McGraw Hill Interamericana.
Okamura, H., & Ouchi, M. (1998). Self‐compacting high performance concrete. Electronic Concrete International, 1 (4), 378-383. doi:https://doi.org/10.1002/pse.2260010406
Omran, A. F., & Khayat, K. H. (2014). Choice of thixotropic index to evaluate formwork pressure characteristics of self-consolidating concrete. ACI MATERIALS, 63, 89-97. doi:https://doi.org/10.1016/j.cemconres.2014.05.005
Omran, A. F., & Naji, S. &. (2011). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. Aci Materials Journal, 108(6 ). Retrieved from https://cutt.ly/cngC0lE
Omran, A. F., Naji, S., & Khayat, K. H. (2011a). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. ACI MATERIALS, 108(M67). Retrieved from https://cutt.ly/NngXDAo
Ouchi, M., Hibino, M., & Okamura, H. (1997). Effect of superplasticizer on self-compactability of fresh concrete. 1574(1), 37-40. doi:https://doi.org/10.3141/1574-05
Ozawa, K., Sakata, N., & Okamura, H. (1994). Evaluation of self-compactability of fresh concrete using the funnel test. J-STAGE , 1994(490), 61-70. doi:https://doi.org/10.2208/jscej.1994.490_61
Özel, C., & Yücel, K. T. (2011). Effect of cement content, fibers, chemical admixtures and aggregate shape on rheological parameters of pumping concrete. Arab J for Scie Eng, 30, 1059-1074. doi:https://doi.org/10.1007/s13369-012-0345-8
Roberts, G., Barnes, H., & Mackie, C. (2001). Using the microsoft excelsolvertool to perform non linear curve fitting, using a range of non-newtonian flow curves as examples. Applied Rheology, 11(5), 271-276. doi:https://doi.org/10.1515/arh-2001-0016
Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. (M. Rosental, & P. Iudin, Eds.) Uruguay: Ediciones pueblos unido.
Roussel, N. (2012). Understanding the rheology of concrete. Woodhead Publishing.
Rubio-Hernández, F., Velázquez-Navarro, J., & Ordóñez-Belloc, L. (2012). Rheology of concrete: a study case based upon the use of the concrete equivalent mortar. Materials structures, 587-605. doi:https://doi.org/10.1617/s11527-012-9915-1
Sánchez de Guzmán, D. (2001). Tecnología del concreto y del mortero. Bogotá: Pontificia Universidad Javeriana.
Sanjayan, J., Jayathilakage, R., & Rajeev, P. (2020). Vibration induced active rheology control for 3D concrete printing. Cement Concrete Research, 140. doi:https://doi.org/10.1016/j.cemconres.2020.106293
Secrieru, E., Fataei, S., Schröfl, C., & Mechtcherine, V. (2017). Study on concrete pumpability combining different laboratory tools and linkage to rheology. Construction Building Materials, 144, 451-461. Retrieved from 10.1016/j.conbuildmat.2017.03.199
Secrieru, E., Mechtcherine, V., Schröfl, C., & Borin, D. (2016). Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatur. 581-594. doi:10.1016/j.conbuildmat.2016.02.161
Secrieru, E., Mohamed, W., Fataei, S., & Mechtcherine, V. (2019). Assessment and prediction of concrete flow and pumping pressure in pipeline. Cement Concrete Composites, 107. doi:https://doi.org/10.1016/j.cemconcomp.2019.103495
Shin, T. Y., Kim, J., & Han, S. (2017). Rheological properties considering the effect of aggregates on concrete slump flow. Materials structures, 50(6), 1-11. doi:DOI:10.1016/B978-0-12-817369-5.00002-7
Siddique, R., & Jahandari, S. (2019). Self-Compacting Concrete: Materials, Properties and Applications. Woodhead Publishing Series in Civil and Structural Engineering.
Streeter, V. L., Wylie, E. B., Bedford, K. W., & Saldarriaga, J. G. (1988). Mecánica de los fluidos.
Streeter, V., Wylie, B., & Bedford, K. (1999). Mecánica de fluidos. España: Mc Graw Hill.
Taibi, H., & Messelmi, F. (2017). Effect of yield stress on the behavior of rigid zones during the laminar flow of Herschel-Bulkley fluid. Alexandria Engineering Journal, 57(2), 1109-1115. doi:https://doi.org/10.1016/j.aej.2017.01.001
Tan, Y., Cao, G., Zhang, H., Wang, J., Deng, R., Xiao, X., & Wu, B. (2015). Study on the thixotropy of the fresh concrete using DEM. Procedia engineering, 102, 1944-1950. Retrieved from https://doi.org/10.1016/j.proeng.2015.06.138
Tattersall, G. H. (1954). Structural breakdown of cement paste at constant rate of shear. Nature, 175, 166. doi:https://doi.org/10.1038/175166a0
Tattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete. Boston : Pitman Advanced Pub. Program. Retrieved from https://cutt.ly/KnghBEa
Xie, H., Liu, F., Fan, Y., Yang, H., Chen, J., Zhang, J., & Zuo, C. (2013). Workability and proportion design of pumping concrete based on rheological parameters. Construction Building Materials, 44, 267-275. doi:https://doi.org/10.1016/j.conbuildmat.2013.02.051
Yun, K.-K., Choi, P., & Yeon, J. H. (2018). Rheological characteristics of wet-mix shotcrete mixtures with crushed aggregates and mineral admixtures. Journal of Civil Engineering, 22(7), 2469-2479. doi:https://doi.org/10.1007/s12205-017-0198-5
Zerbino, R., Barragán, B. E., Agulló Fité, L., García Vicente, T., & Gettu, R. (2006). Reología de hormigones autocompactables. Ciencia y Tecnología del Hormigón, 13, 51-64. Retrieved from https://cutt.ly/Knges0E
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 333 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Artes - Maestría en Construcción
dc.publisher.department.spa.fl_str_mv Escuela de Arquitectura y Urbanismo
dc.publisher.faculty.spa.fl_str_mv Facultad de Artes
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79711/2/1075235488.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79711/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79711/3/1075235488.2021.pdf.jpg
bitstream.checksum.fl_str_mv 4b06e8f06b6ee27da4a25d1ce1e126f0
cccfe52f796b7c63423298c2d3365fc6
995136b7f3df76a5f0033c0c80fcf2ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089697295597568
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Marriaga, Juan Manuel5773f81a6037772a79e67aad79a143d9Andrade Martínez, William Javier2b678e87ab58af7c1f2b20e961f4a1402021-06-24T18:04:16Z2021-06-24T18:04:16Z2021https://repositorio.unal.edu.co/handle/unal/79711Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEsta investigación tuvo como propósito establecer las bases para la especificación reológica de concretos autocompactantes (CAC), con materiales locales. Lo anterior se logró partiendo del análisis de 33 mezclas de concreto autocompactante elaboradas con 3 tipos de arena (La Sierra, Nacionales y Goliat) de uso comercial en Colombia. Se analizaron propiedades en estado fresco como temperatura, contenido de aire, densidad, flujo libre, bloqueo con Anillo J, capacidad de llenado a través de embudo V, capacidad de paso a través de Caja en L, esfuerzo de fluencia con reómetro ICAR y con Veleta Portátil, viscosidad plástica y en estado endurecido resistencia a compresión a 28 días. También se analizó la influencia del tiempo y la variación de la arena sobre las propiedades reológicas del CAC. Se establecieron correlaciones entre algunas propiedades, se determinó la tixotropía del CAC con cada arena y se evaluó la trabajabilidad mediante metodología estadística ANOVA, cajas simultáneas y la interpretación del coeficiente de correlación de Pearson. Al finalizar se presenta el análisis de la estabilidad estática mediante la interpretación gráfica de la resistencia del concreto a la segregación, la capacidad de paso y la velocidad de exudación. Esta investigación aportó la base metodológica para evaluar los concretos autocompactantes con materiales locales teniendo en cuenta el comportamiento y las correlaciones más relevantes e influyentes de las propiedades reológicas. (Texto tomado de la fuente).The purpose of the investigation was to establish the bases for the rheological specification of self-compacting concrete (SCC) with local materials. This study was based on the analysis of 33 SCC concrete mixtures made with 3 types of sands (La Sierra, Nacionales and Goliath) used in the commercial sector in Colombia. The properties in the fresh state were analyzed by temperature, air content, density, Slump flow, flow and blocking with J-Ring, filling ability with V-funnel, passing ability with L-Box test, ICAR Yield Stress, Potable vane Yield Stress, Bingham plastic viscosity and for hardened state was used strength test at 28 days. Also, the influence of time and the variation of the sand on the rheological properties of CAC was considered. The correlations were established between some properties, the thixotropy of the CAC with each sand was determined and the workability was evaluated by means of the statistical methodology ANOVA, simultaneous boxes and the interpretation of the Pearson correlation coefficient. At the end, the analysis of the static stability is presented through of graphic interpretation of the resistance of the concrete to segregation, passing ability, bleeding. This investigation provided the methodological basis for evaluating self-compacting concretes with local materials, taking into account the behavior and the most relevant and influential correlations of rheological properties.MaestríaMagíster en ConstrucciónMaterialesArquitectura y Urbanismoxviii, 333 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Artes - Maestría en ConstrucciónEscuela de Arquitectura y UrbanismoFacultad de ArtesBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá690 - Construcción de edificios::691 - Materiales de construcciónConcreteAggregatesFluidsHormigónAgregadosFluidosReologíaTixotropíaTrabajabilidadBinghamEsfuerzo de fluenciaViscosidadVeleta portátilConcreto autocompactanteRheologyThixotropyWorkabilityYield StreesViscosityPortable vaneSCCSelf compacting concreteMateriales de construcciónTecnología de materialesRoca sedimentariaBuilding materialsMaterials engineeringSedimentary rocksBases para la especificación reológica para concretos autocompactantes con arenas de distinto origenBases for the rheological specification for self compacting concretes with sands of different originTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMACI Committee 237. (2007). Self-Consolidating Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/CndTtUHACI, Committee 238. (2008). Report on Measurements of Workability and Rheology of Fresh Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/AndYjIfAhari, R. S., Erdem, T. K., & Ramyar, K. (2015, May). Ahari, R. S., Erdem, T. K., & Ramyar, K. (2015). Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cement Concrete Composites, 59, 26-37. Retrieved from https://doi.org/10.1016/j.cemconcomp.2015.03.009ASOCRETO. (2010). Tecnología del concreto y sus componentes (Vol. I). Nomos Impresores.ASTM C1621 / C1621M - 17. (s.f). Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. Retrieved from https://www.astm.org/Standards/C1621Botella, R. M. (2005). Reología de suspensiones cerámicas (Vol. 17). Madrid: CSIC-CSIC Press.Chen, J., Xie, H., Guo, J., Chen, B., & Liu, F. (2019, December ). Preliminarily experimental research on local pressure loss of fresh concrete during pumping. Measurement, 147.doi:https://doi.org/10.1016/j.measurement.2019.106897Choi, M. S., Lee, J. S., Ryu, K. S., Koh, K.-T., & Kwon, S. H. (2016, March). Estimation of rheological properties of UHPC using mini slump test. Construction and Building Materials, 632-639. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.106Clark, V. L., & Creswell, J. W. (2014). Understanding research: A consumers guide (Segunda ed ed.). Pearson Higher.Corinaldesi, V. (2012). Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete. (36), 758-764. doi:10.1016/j.conbuildmat.2012.04.129Corinaldesi, V., Monosi, S., & Ruello, M. L. (2012, May). Influence of inorganic pigments’ addition on the performance of coloured SCC. Construction and Building Materials, 30, 289-293.doi:https://doi.org/10.1016/j.conbuildmat.2011.12.037Cu, Y. T., Tran, M. V., Ho, C. H., & Nguyen, P. H. (2020). Relationship between workability and rheological parameters of self-compacting concrete used for vertical pump up to supertall buildings. Journal of Building Engineering. doi:ttps://doi.org/10.1016/j.jobe.2020.101786Da Silva, M. A., Pepe, M., De Andrade, R. G., M, Pfeil, M. S., & Toledo Filho, R. D. (2017, September 30). Rheological and mechanical behavior of high strength steel fiber-river gravel self compacting concrete. Construction Building Materials, 150, 606-618.doi:https://doi.org/10.1016/j.conbuildmat.2017.06.030Da Silva, W. R., Fryda, H., Bousseau, J.-N., Andreani, P.-A., & Andersen, T. J. (2019). Evaluation of early-age concrete structural build-up for 3d concrete printing by oscillatory rheometry. In A. 2019:, International Conference on Applied Human Factors and Ergonomics (pp. 35-47). Retrieved from https://cutt.ly/Pnf4bfADaczko, J. (2012). Self-consolidating concrete: Applying what we know (Primera ed.). CRC Press. Retrieved from https://cutt.ly/Jnf7lTZDe la Cruz, C. J. (2009). Desarrollo de hormigones autocompactables de resistencia media (HAC RM) en Colombia. Medellín: Universidad Nacional de Colombia . Retrieved from https://cutt.ly/mnf6vKmDe la Cruz, C., & Tamayo, A. (2018). Desarrollo de hormigones autocompactables de resistencia media (HAC-RM) en Colombia. Congresos de la Universitat Politècnica de València, HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales, 639-648. doi:DOI:10.4995/HAC2018.2018.5548De Larrard, F., & Roussel, N. (2011). Flow Simulation of fresh concrete under a slipform machine. Road materials pavement design, 12(3), 547-566. Retrieved from DOI:10.1080/14680629.2011.9695260Dinkgreve, M., Paredes, J., Denn, M. M., & Bonn, D. (2016). On different ways of measuring “the” yield stress. Journal of non-Newtonian fluid mechanics, 238, 233-241. Retrieved from https://doi.org/10.1016/j.jnnfm.2016.11.001Duarte, C. A., & Niño, J. R. (2004). Introducción a la mecánica de fluidos (Primera ed.). Universidad Nacional de Colombia.Ferraris, C. F. (1999). Measurement of the rheological properties of high performance concrete: state of the art report. Journal of Research of the National Institute of Standards and Technology, 104(5), 461-478. doi: doi: 10.6028/jres.104.028Feys, D. K.-S. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement Concrete Composites, 40-52. doi:https://doi.org/10.1016/j.cemconcomp.2014.05.008Feys, D., De Schutter, G., Khayat, K. H., & Verhoeven, R. (2016). Changes in rheology of self consolidating concrete induced by pumping. Materials structures, 4657-4677. doi:DOI:10.1617/S11527-016-0815-7Feys, D., Khayat, K. H., & Khatib, R. (2015). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement Concrete Composites, 38-46. doi:10.1016/j.cemconcomp.2015.11.002Garzón Amórtegui, J. F. (2014). Desarrollo y evaluación de un concreto autocompactante adicionado con ceniza volante colombiana. Revista Técnica, 18-29. Retrieved from https://cutt.ly/rnggIYWGermann Instruments . (2017). ICAR PLUS Concrete Rheometer Manual. In. Retrieved from https://cutt.ly/Xngu2zbGhoddousi, P., & Salehi, A. M. (2017). The evaluation of self compacting concrete robustness based on the rheology parameters. International Journal of Civil Engineering, 15(8), 1097-1106. doi:https://doi.org/10.1007/s40999-017-0239-yGmaslab. (2014). Análisis de difracción de rayos X (DRX). Retrieved from https://cutt.ly/inhgqcFGonzález Taboada, I., González Fonteboa, B., Eiras López, J., López, R., & G. (2017). Tools for the study of self-compacting recycled concrete fresh behaviour: Workability and rheology. Journal of Cleaner Production, 156, 1-18. doi:https://doi.org/10.1016/j.jclepro.2017.04.045González Taboada, I., González Fonteboa, B., Martínez Abella, F., & Carro López, D. (2017). Self-compacting recycled concrete: Relationships between empirical and rheological parameters and proposal of a workability box. Construction Building Materials, 143, 537-546. doi:DOI:10.1016/j.conbuildmat.2017.03.156González Taboada, I., González Fonteboa, B., Martínez Abella, F., & Roussel, N. (2017). Robustness of self-compacting recycled concrete: analysis of sensitivity parameters. Materials structures, 51(1), 1-10. doi:https://doi.org/10.1617/s11527-017-1136-1Güneyisi, E., Gesoglu, M., Algın, Z., & Yazıcı, H. (2016). Rheological and fresh properties of self compacting concretes containing coarse and fine recycled concrete aggregates. Construction Building Materials, 113, 622-630. doi:10.1016/j.conbuildmat.2016.03.073Güneyisi, E., Gesoglu, M., Naji, N., & İpek, S. (2015). Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models. Archives of civil mechanical engineering, 16( ), 9-19. Retrieved from https://cutt.ly/JnggiNYGutiérrez Pulido, H., & De la Vara Salazar, R. (2008). Análisis y diseño de experimentos (Segunda ed.). México D.F: M. G. Hill.Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (Sexta ed.). México D.F: M G. Hill. Retrieved from https://cutt.ly/znghvdOIbarrola, E. L. (2009). Introducción a los fluidos no newtonianos: Cátedra de Mecánica de los Fluidos - UNCor. Retrieved from https://cutt.ly/QnhdMm9Irving, S. (1995). Mecánica de fluidos. McGraw-Hill.Khan, M., Mourad, S. M., & Charif, A. (2016). Utilization of Supplementary Cementitious Materials in HPC: From rheology to pore structure. Journal of Civil Engineering, 889-899. doi:https://doi.org/10.1007/s12205-016-1781-xKhayat, K., Omran, A. F., Naji, S., Billberg, P., & Yahia, A. (2012). Field-oriented test methods to evaluate structural build-up at rest of flowable mortar and concrete. Materials structures, 45(10), 1547-1564. doi:10.1617/s11527-012-9856-8Kim, J. S., Kwon, S. H., Jang, K. P., & Choi, M. S. (2018). Concrete pumping prediction considering different measurement of the rheological properties. Construction Building Materials, 171, 493-503. doi:https://doi.org/10.1016/j.conbuildmat.2018.03.194Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2005). A new, portable rheometer for fresh self-consolidating concrete. ACI materials journal, 233. Retrieved from https://cutt.ly/fngPfYHLecompte, T., & Perrot, A. (2016). Non-linear modeling of yield stress increase due to SCC structural build-up at rest. Cement Concrete Research, 92, 92-97. doi:10.1016/j.cemconres.2016.11.020Long, W.-J., Khayat, K. H., Yahia, A., & Xing, F. (2017). Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cement Concrete Composites, 82, 105-116. doi:https://doi.org/10.1016/j.cemconcomp.2017.05.008Mechtcherine, V., Nerella, V. N., & Kasten, K. (2013). Testing pumpability of concrete using Sliding Pipe Rheometer. Construction Building Materials, 53, 312-323. doi:https://doi.org/10.1016/j.conbuildmat.2013.11.037Megid, W. A., & Khayat, K. H. (2019). Variations in surface quality of self-consolidation and highly workable concretes with formwork material. Construction Building Materials, 238. doi:https://doi.org/10.1016/j.conbuildmat.2019.117638Mohan, M. K., Rahul, A., Van Tittelboom, K., & De Schutter, G. (2020). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement Concrete Research, 139. doi:https://doi.org/10.1016/j.cemconres.2020.106258Navidi, W. (2006). Estadística para ingenieros. McGraw Hill Interamericana.Okamura, H., & Ouchi, M. (1998). Self‐compacting high performance concrete. Electronic Concrete International, 1 (4), 378-383. doi:https://doi.org/10.1002/pse.2260010406Omran, A. F., & Khayat, K. H. (2014). Choice of thixotropic index to evaluate formwork pressure characteristics of self-consolidating concrete. ACI MATERIALS, 63, 89-97. doi:https://doi.org/10.1016/j.cemconres.2014.05.005Omran, A. F., & Naji, S. &. (2011). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. Aci Materials Journal, 108(6 ). Retrieved from https://cutt.ly/cngC0lEOmran, A. F., Naji, S., & Khayat, K. H. (2011a). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. ACI MATERIALS, 108(M67). Retrieved from https://cutt.ly/NngXDAoOuchi, M., Hibino, M., & Okamura, H. (1997). Effect of superplasticizer on self-compactability of fresh concrete. 1574(1), 37-40. doi:https://doi.org/10.3141/1574-05Ozawa, K., Sakata, N., & Okamura, H. (1994). Evaluation of self-compactability of fresh concrete using the funnel test. J-STAGE , 1994(490), 61-70. doi:https://doi.org/10.2208/jscej.1994.490_61Özel, C., & Yücel, K. T. (2011). Effect of cement content, fibers, chemical admixtures and aggregate shape on rheological parameters of pumping concrete. Arab J for Scie Eng, 30, 1059-1074. doi:https://doi.org/10.1007/s13369-012-0345-8Roberts, G., Barnes, H., & Mackie, C. (2001). Using the microsoft excelsolvertool to perform non linear curve fitting, using a range of non-newtonian flow curves as examples. Applied Rheology, 11(5), 271-276. doi:https://doi.org/10.1515/arh-2001-0016Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. (M. Rosental, & P. Iudin, Eds.) Uruguay: Ediciones pueblos unido.Roussel, N. (2012). Understanding the rheology of concrete. Woodhead Publishing.Rubio-Hernández, F., Velázquez-Navarro, J., & Ordóñez-Belloc, L. (2012). Rheology of concrete: a study case based upon the use of the concrete equivalent mortar. Materials structures, 587-605. doi:https://doi.org/10.1617/s11527-012-9915-1Sánchez de Guzmán, D. (2001). Tecnología del concreto y del mortero. Bogotá: Pontificia Universidad Javeriana.Sanjayan, J., Jayathilakage, R., & Rajeev, P. (2020). Vibration induced active rheology control for 3D concrete printing. Cement Concrete Research, 140. doi:https://doi.org/10.1016/j.cemconres.2020.106293Secrieru, E., Fataei, S., Schröfl, C., & Mechtcherine, V. (2017). Study on concrete pumpability combining different laboratory tools and linkage to rheology. Construction Building Materials, 144, 451-461. Retrieved from 10.1016/j.conbuildmat.2017.03.199Secrieru, E., Mechtcherine, V., Schröfl, C., & Borin, D. (2016). Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatur. 581-594. doi:10.1016/j.conbuildmat.2016.02.161Secrieru, E., Mohamed, W., Fataei, S., & Mechtcherine, V. (2019). Assessment and prediction of concrete flow and pumping pressure in pipeline. Cement Concrete Composites, 107. doi:https://doi.org/10.1016/j.cemconcomp.2019.103495Shin, T. Y., Kim, J., & Han, S. (2017). Rheological properties considering the effect of aggregates on concrete slump flow. Materials structures, 50(6), 1-11. doi:DOI:10.1016/B978-0-12-817369-5.00002-7Siddique, R., & Jahandari, S. (2019). Self-Compacting Concrete: Materials, Properties and Applications. Woodhead Publishing Series in Civil and Structural Engineering.Streeter, V. L., Wylie, E. B., Bedford, K. W., & Saldarriaga, J. G. (1988). Mecánica de los fluidos.Streeter, V., Wylie, B., & Bedford, K. (1999). Mecánica de fluidos. España: Mc Graw Hill.Taibi, H., & Messelmi, F. (2017). Effect of yield stress on the behavior of rigid zones during the laminar flow of Herschel-Bulkley fluid. Alexandria Engineering Journal, 57(2), 1109-1115. doi:https://doi.org/10.1016/j.aej.2017.01.001Tan, Y., Cao, G., Zhang, H., Wang, J., Deng, R., Xiao, X., & Wu, B. (2015). Study on the thixotropy of the fresh concrete using DEM. Procedia engineering, 102, 1944-1950. Retrieved from https://doi.org/10.1016/j.proeng.2015.06.138Tattersall, G. H. (1954). Structural breakdown of cement paste at constant rate of shear. Nature, 175, 166. doi:https://doi.org/10.1038/175166a0Tattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete. Boston : Pitman Advanced Pub. Program. Retrieved from https://cutt.ly/KnghBEaXie, H., Liu, F., Fan, Y., Yang, H., Chen, J., Zhang, J., & Zuo, C. (2013). Workability and proportion design of pumping concrete based on rheological parameters. Construction Building Materials, 44, 267-275. doi:https://doi.org/10.1016/j.conbuildmat.2013.02.051Yun, K.-K., Choi, P., & Yeon, J. H. (2018). Rheological characteristics of wet-mix shotcrete mixtures with crushed aggregates and mineral admixtures. Journal of Civil Engineering, 22(7), 2469-2479. doi:https://doi.org/10.1007/s12205-017-0198-5Zerbino, R., Barragán, B. E., Agulló Fité, L., García Vicente, T., & Gettu, R. (2006). Reología de hormigones autocompactables. Ciencia y Tecnología del Hormigón, 13, 51-64. Retrieved from https://cutt.ly/Knges0EGeneralInvestigadoresEstudiantesPúblico generalORIGINAL1075235488.2021.pdf1075235488.2021.pdfTesis de Maestría en Construcciónapplication/pdf6802581https://repositorio.unal.edu.co/bitstream/unal/79711/2/1075235488.2021.pdf4b06e8f06b6ee27da4a25d1ce1e126f0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79711/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51THUMBNAIL1075235488.2021.pdf.jpg1075235488.2021.pdf.jpgGenerated Thumbnailimage/jpeg3927https://repositorio.unal.edu.co/bitstream/unal/79711/3/1075235488.2021.pdf.jpg995136b7f3df76a5f0033c0c80fcf2efMD53unal/79711oai:repositorio.unal.edu.co:unal/797112024-02-15 15:19:29.434Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==