Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation

ilustraciones, diagramas

Autores:
Vargas Calderón, Vladimir
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84294
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84294
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
FISICA CUANTICA
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Quantum physical
Quantum physics
Machine learning
Data science
Quantum computing
Física cuántica
Ciencia de datos
Computación cuántica
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_44893e1a038e71ed6ab96ca05521692d
oai_identifier_str oai:repositorio.unal.edu.co:unal/84294
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
dc.title.translated.spa.fl_str_mv Simbiosis entre la física cuántica y el machine learning: Aplicaciones en ciencia de datos, física de muchos cuerpos y computación cuántica
title Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
spellingShingle Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
530 - Física
FISICA CUANTICA
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Quantum physical
Quantum physics
Machine learning
Data science
Quantum computing
Física cuántica
Ciencia de datos
Computación cuántica
title_short Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
title_full Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
title_fullStr Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
title_full_unstemmed Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
title_sort Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation
dc.creator.fl_str_mv Vargas Calderón, Vladimir
dc.contributor.advisor.none.fl_str_mv Vinck Posada, Herbert
González Osorio, Fabio Augusto
dc.contributor.author.none.fl_str_mv Vargas Calderón, Vladimir
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Óptica E Información Cuántica
Superconductividad y Nanotecnología
dc.contributor.orcid.spa.fl_str_mv Vladimir Vargas-Calderón [0000000154763300]
dc.contributor.researchgate.spa.fl_str_mv Vladimir Vargas-Calderón [Vladimir-Vargas-Calderon]
dc.contributor.googlescholar.spa.fl_str_mv Vladimir Vargas-Calderón [SfLRhYcAAAAJ]
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
FISICA CUANTICA
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
Quantum physical
Quantum physics
Machine learning
Data science
Quantum computing
Física cuántica
Ciencia de datos
Computación cuántica
dc.subject.lemb.spa.fl_str_mv FISICA CUANTICA
APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
dc.subject.lemb.eng.fl_str_mv Quantum physical
dc.subject.proposal.eng.fl_str_mv Quantum physics
Machine learning
Data science
Quantum computing
dc.subject.proposal.spa.fl_str_mv Física cuántica
Ciencia de datos
Computación cuántica
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-01
dc.date.accessioned.none.fl_str_mv 2023-07-26T19:20:31Z
dc.date.available.none.fl_str_mv 2023-07-26T19:20:31Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84294
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84294
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., and Woerner, S. (2021). The power of quantum neural networks. Nature Computational Science, 1(6):403–409.
Adambukulam, C., Sewani, V., Stemp, H., Asaad, S., Madzik, M., Morello, A., and Laucht, A. (2021). An ultra-stable 1.5 t permanent magnet assembly for qubit experiments at cryogenic temperatures. Review of Scientific Instruments, 92(8):085106.
Akbay, M. A., Kalayci, C. B., and Polat, O. (2020). A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained port- folio optimization. Knowledge-Based Systems, 198:105944.
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next- generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Albert, V. V. and Jiang, L. (2014). Symmetries and conserved quantities in lindblad master equations. Physical Review A, 89(2):022118.
Alcazar, J., Vakili, M. G., Kalayci, C. B., and Perdomo-Ortiz, A. (2021). Geo: Enhanc- ing combinatorial optimization with classical and quantum generative models.
Alhambra,A ́.M.(2022).Quantummany-bodysystemsinthermalequilibrium.
Anschuetz, E. R. and Kiani, B. T. (2022). Beyond barren plateaus: Quantum varia- tional algorithms are swamped with traps.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M. P., Hartmann, M. J., Ho, A., Hoffmann, M., Huang, T., Humble, T. S., Isakov, S. V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P. V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandra`, S., McClean, J. R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M. Y., Ostby, E., Petukhov, A., Platt, J. C., Quintana, C., Rieffel, E. G., Roushan, P., Rubin, N. C., Sank, D., Satzinger, K. J., Smelyanskiy, V., Sung, K. J., Trevithick, M. D., Vainsencher, A., Villalonga, B., White, T., Yao, Z. J., Yeh, P., Zalcman, A., Neven, H., and Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510.
Ballentine, L. E. (2014). Quantum mechanics: a modern development. World Scientific Publishing Company.
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quan- tum computation. Phys. Rev. A, 52:3457–3467.
Barison, S., Vicentini, F., Cirac, I., and Carleo, G. (2022). Variational dynamics as a ground-state problem on a quantum computer. arXiv preprint arXiv:2204.03454.
Barker, J. A. and O’Reilly, E. P. (2000). Theoretical analysis of electron-hole align- ment in inas-gaas quantum dots. Phys. Rev. B, 61:13840–13851.
Barontini, G., Labouvie, R., Stubenrauch, F., Vogler, A., Guarrera, V., and Ott, H. (2013). Controlling the dynamics of an open many-body quantum system with localized dissipation. Physical review letters, 110(3):035302.
Barrett, T. D., Malyshev, A., and Lvovsky, A. I. (2022). Autoregressive neural- network wavefunctions for ab initio quantum chemistry. Nature Machine In- telligence, 4(4):351–358.
Batrouni, G. G. and Scalettar, R. T. (1992). World-line quantum monte carlo algo- rithm for a one-dimensional bose model. Phys. Rev. B, 46:9051–9062.
Batrouni, G. G., Scalettar, R. T., and Zimanyi, G. T. (1990). Quantum critical phe- nomena in one-dimensional bose systems. Phys. Rev. Lett., 65:1765–1768.
Baumgartner, B. and Narnhofer, H. (2008). Analysis of quantum semigroups with gks–lindblad generators: Ii. general. Journal of Physics A: Mathematical and Theo- retical, 41(39):395303.
Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., and Scha ̈fer, F. (2002). Fine structure of neutral and charged excitons in self-assembled in(ga)as/(al)gaas quantum dots. Phys. Rev. B, 65:195315.
Becca, F. and Sorella, S. (2017). Quantum Monte Carlo approaches for correlated systems. Cambridge University Press.
Berg, E. v. d., Minev, Z. K., Kandala, A., and Temme, K. (2022). Probabilistic error cancellation with sparse pauli-lindblad models on noisy quantum processors. arXiv preprint arXiv:2201.09866.
Bergstra, J., Bardenet, R., Bengio, Y., and Ke ́gl, B. (2011). Algorithms for hyper- parameter optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.
Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J. S., Menke, T., Mok, W.-K., Sim, S., Kwek, L.-C., and Aspuru-Guzik, A. (2022). Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004.
Bin, Q., Lu ̈, X.-Y., Laussy, F. P., Nori, F., and Wu, Y. (2020). N-phonon bundle emission via the stokes process. Physical review letters, 124(5):053601.
Bir, G. L., Pikus, G. E., et al. (1974). Symmetry and strain-induced effects in semiconduc- tors, volume 484. Wiley New York.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from carto- graphic variables. Computers and Electronics in Agriculture, 24(3):131–151.
Bloch, F. (1946). Nuclear induction. Phys. Rev., 70:460–474.
Bogdanov, Y. I., Chernyavskiy, A. Y., Holevo, A., Lukichev, V. F., and Orlikovsky, A. A. (2013). Modeling of quantum noise and the quality of hardware com- ponents of quantum computers. In Orlikovsky, A. A., editor, International Con- ference Micro- and Nano-Electronics 2012, volume 8700, pages 404 – 415. Interna- tional Society for Optics and Photonics, SPIE.
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Nec- ula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs.
Breuer, H.-P., Petruccione, F., et al. (2002). The theory of open quantum systems. Oxford University Press on Demand.
Brown, R. H. and Twiss, R. Q. (1956). Correlation between photons in two coherent beams of light. Nature, 177(4497):27–29.
Caha, L., Landau, Z., and Nagaj, D. (2018). Clocks in feynman’s computer and kitaev’s local hamiltonian: Bias, gaps, idling, and pulse tuning. Phys. Rev. A, 97:062306.
Carleo, G., Choo, K., Hofmann, D., Smith, J. E., Westerhout, T., Alet, F., Davis, E. J., Efthymiou, S., Glasser, I., Lin, S.-H., et al. (2019a). Netket: A machine learning toolkit for many-body quantum systems. SoftwareX, 10:100311.
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborova ́, L. (2019b). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4):045002.
Carleo, G. and Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606. Carrasquilla, J. (2020). Machine learning for quantum matter. Advances in Physics: X, 5(1):1797528.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Mc- Clean, J. R., Mitarai, K., Yuan, X., Cincio, L., and Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644.
Chang, T.-J., Meade, N., Beasley, J., and Sharaiha, Y. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers Operations Research, 27(13):1271– 1302.
Chatterjee, R. and Yu, T. (2017). Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Information and Communica- tion, 17:1292.
Chen, A., Choo, K., Astrakhantsev, N., and Neupert, T. (2022). Neural network evolution strategy for solving quantum sign structures. Phys. Rev. Research, 4:L022026.
Cheng, J., Wang, Z., and Pollastri, G. (2008). A neural network approach to ordinal regression. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 1279–1284.
Cheng, S., Chen, J., and Wang, L. (2018). Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy, 20(8).
Choo, K., Neupert, T., and Carleo, G. (2019). Two-dimensional frustrated J1 − J2 model studied with neural network quantum states. Phys. Rev. B, 100:125124.
Chow, J. M., Srinivasan, S. J., Magesan, E., Co ́rcoles, A. D., Abraham, D. W., Gam- betta, J. M., and Steffen, M. (2015). Characterizing a four-qubit planar lattice for arbitrary error detection. In Donkor, E., Pirich, A. R., and Hayduk, M., ed- itors, Quantum Information and Computation XIII, volume 9500, pages 315 – 323. International Society for Optics and Photonics, SPIE.
Cirac, J. I., Pe ́rez-Garc ́ıa, D., Schuch, N., and Verstraete, F. (2021). Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003.
Crooker, S., Barrick, T., Hollingsworth, J., and Klimov, V. (2003). Multiple temper- ature regimes of radiative decay in cdse nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 82(17):2793–2795.
Cura, T. (2021). A rapidly converging artificial bee colony algorithm for portfolio optimization. Knowledge-Based Systems, 233:107505. Daley, A. J. (2014). Quantum trajectories and open many-body quantum systems. Advances in Physics, 63(2):77–149.
Dalibard, J., Castin, Y., and Mølmer, K. (1992). Wave-function approach to dissipa- tive processes in quantum optics. Phys. Rev. Lett., 68:580–583.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38.
Deng, D.-L., Li, X., and Das Sarma, S. (2017). Quantum entanglement in neural network states. Phys. Rev. X, 7:021021.
Deng, W.-Y., Zheng, Q.-H., Lian, S., Chen, L., and Wang, X. (2010). Ordinal extreme learning machine. Neurocomputing, 74(1):447–456. Artificial Brains.
Deutsch, D. and Jozsa, R. (1992). Rapid solution of problems by quantum computa- tion. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558.
Ding, Z.-H., Cui, J.-M., Huang, Y.-F., Li, C.-F., Tu, T., and Guo, G.-C. (2019). Fast high-fidelity readout of a single trapped-ion qubit via machine-learning meth- ods. Phys. Rev. Applied, 12:014038.
Dogra, N., Landini, M., Kroeger, K., Hruby, L., Donner, T., and Esslinger, T. (2019). Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science, 366(6472):1496–1499.
Dong, D., Wu, C., Chen, C., Qi, B., Petersen, I. R., and Nori, F. (2016). Learn- ing robust pulses for generating universal quantum gates. Scientific Reports, 6(1):36090.
Dua, D. and Graff, C. (2017). UCI machine learning repository.
Eisele, H., Lenz, A., Heitz, R., Timm, R., Da ̈hne, M., Temko, Y., Suzuki, T., and Jacobi, K. (2008). Change of inas/gaas quantum dot shape and composition during capping. Journal of Applied Physics, 104(12):124301.
Ejima, S., Fehske, H., and Gebhard, F. (2011). Dynamic properties of the one- dimensional bose-hubbard model. EPL (Europhysics Letters), 93(3):30002.
Ejima, S., Fehske, H., Gebhard, F., zu Mu ̈nster, K., Knap, M., Arrigoni, E., and von der Linden, W. (2012). Characterization of mott-insulating and superfluid phases in the one-dimensional bose-hubbard model. Phys. Rev. A, 85:053644.
Elstner, N. and Monien, H. (1999). Dynamics and thermodynamics of the bose- hubbard model. Phys. Rev. B, 59:12184–12187.
Evans, D. E. (1976). Irreducible quantum dynamical semigroups. Preprint series: Pure mathematics http://urn. nb. no/URN: NBN: no-8076.
Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys, 21(6/7).
Feynman, R. P. (1985). Quantum mechanical computers. Optics News, 11(2):11–20.
Feynman, R. P., Vernon, F. L., and Hellwarth, R. W. (1957). Geometrical representa- tion of the schro ̈dinger equation for solving maser problems. Journal of Applied Physics, 28(1):49–52.
Fine, A. (1973). Probability and the interpretation of quantum mechanics. The British Journal for the Philosophy of Science, 24(1):1–37.
Fisher, M. P., Weichman, P. B., Grinstein, G., and Fisher, D. S. (1989). Boson localiza- tion and the superfluid-insulator transition. Physical Review B, 40(1):546–570.
Fox, A. M., Fox, M., et al. (2006). Quantum optics: an introduction, volume 15. Oxford university press.
Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Adaptive Computation and Machine Learning. The MIT Press.
Frey, P. W. and Slate, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Machine Learning, 6(2):161–182.
Gambetta, J. M., Motzoi, F., Merkel, S. T., and Wilhelm, F. K. (2011). Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A, 83:012308.
Gent, I. P. and Walsh, T. (1996). The tsp phase transition. Artificial Intelligence, 88(1- 2):349–358.
Gerry, C., Knight, P., and Knight, P. L. (2005). Introductory quantum optics. Cambridge university press.
Giamarchi, T. (2003). Quantum physics in one dimension, volume 121. Clarendon press.
Gini, C. (1912). Variabilita` e mutabilita`: contributo allo studio delle distribuzioni e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.
Giuntini, R., Freytes, H., Park, D. K., Blank, C., Holik, F., Chow, K. L., and Sergioli, G. (2021). Quantum state discrimination for supervised classification.
Glauber, R. J. (1963). The quantum theory of optical coherence. Phys. Rev., 130:2529– 2539.
Gonza ́lez, F. A., Gallego, A., Toledo-Corte ́s, S., and Vargas-Caldero ́n, V. (2021a). Learning with density matrices and random features. arXiv preprint arXiv:2102.04394.
Gonza ́lez, F. A., Vargas-Caldero ́n, V., and Vinck-Posada, H. (2021b). Classifi- cation with quantum measurements. Journal of the Physical Society of Japan, 90(4):044002.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.
Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. (1976). Completely posi- tive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821–825.
Greiner, M., Mandel, O., Rom, T., Altmeyer, A., Widera, A., Ha ̈nsch, T. W., and Bloch, I. (2003). Quantum phase transition from a superfluid to a Mott insulator in an ultracold gas of atoms. Physica B: Condensed Matter, 329-333:11–12.
Guvenir, H. A. and Uysal, I. (2000). Bilkent university function approximation repos- itory.
Guyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider, G., and Uhr, M. (2007). Com- petitive baseline methods set new standards for the nips 2003 feature selection benchmark. Pattern Recognition Letters, 28(12):1438–1444.
Han, Z.-Y., Wang, J., Fan, H., Wang, L., and Zhang, P. (2018). Unsupervised genera- tive modeling using matrix product states. Phys. Rev. X, 8:031012.
Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81–102.
Hartmann, M. J. and Carleo, G. (2019). Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett., 122:250502.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109.
Hatano, N. and Petrosky, T. (2015). Eigenvalue problem of the liouvillian of open quantum systems. AIP Conference Proceedings, 1648(1):200005.
Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the theory of neural computation. Santa Fe Institute Studies in the Sciences of Complexity; Lecture Notes.
Heyl, M. (2018). Dynamical quantum phase transitions: a review. Reports on Progress in Physics, 81(5):054001.
Heyl, M., Polkovnikov, A., and Kehrein, S. (2013). Dynamical quantum phase tran- sitions in the transverse-field ising model. Phys. Rev. Lett., 110:135704.
Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G., and Carrasquilla, J. (2020). Recurrent neural network wave functions. Physical Review Research, 2(2):023358.
Huang, Y. (2019). Approximating local properties by tensor network states with constant bond dimension.
Hull, J. (1994). A database for handwritten text recognition research. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 16(5):550–554. Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2018). Polarization switch in an elliptical micropillar – quantum dot system induced by a magnetic field in faraday configuration. Physics Letters A, 382(44):3216–3219.
Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020a). Magnetic and temperature control in the emission of a quantum dot strongly coupled to a microcavity. Physica B: Condensed Matter, 592:412215.
Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020b). Strong cou- pling of two quantum dots with a microcavity in the presence of an external and tilted magnetic field. Physica B: Condensed Matter, 585:412070.
Jime ́nez-Orjuela, C. A., Vinck-Posada, H., and Villas-Boˆas, J. M. (2017). Dark exci- tons in a quantum-dot–cavity system under a tilted magnetic field. Phys. Rev. B, 96:125303.
Johansson, J., Nation, P., and Nori, F. (2013). Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184(4):1234–1240.
Jonsson, B., Bauer, B., and Carleo, G. (2018). Neural-network states for the classical simulation of quantum computing.
Kalayci, C. B., Ertenlice, O., Akyer, H., and Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration pro- cedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85:61–75.
Kalayci, C. B., Polat, O., and Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolu- tionary Computation, 54:100662.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2019). Ana- lyzing and improving the image quality of stylegan.
Kashurnikov, V. A., Krasavin, A. V., and Svistunov, B. V. (1996). Mott-insulator- superfluid-liquid transition in a one-dimensional bosonic hubbard model: Quantum monte carlo method. Journal of Experimental and Theoretical Physics Letters, 64(2):99–104.
Kastner, M. A. (2005). Prospects for quantum dot implementation of adiabatic quan- tum computers for intractable problems. Proceedings of the IEEE, 93(10):1765– 1771.
Kibler, D., Aha, D. W., and Albert, M. K. (1989). Instance-based prediction of real- valued attributes. Computational Intelligence, 5(2):51–57.
King, R. D., Hirst, J. D., and Sternberg, M. J. E. (1995). Comparison of artificial intelligence methods for modeling pharmaceutical qsars. Applied Artificial Intel- ligence, 9(2):213–233.
Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.
Koller, W. and Dupuis, N. (2006). Variational cluster perturbation theory for bose- hubbard models. Journal of Physics: Condensed Matter, 18(41):9525–9540.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Krol, A. M., Sarkar, A., Ashraf, I., Al-Ars, Z., and Bertels, K. (2022). Efficient de- composition of unitary matrices in quantum circuit compilers. Applied Sciences, 12(2).
Ku ̈hner,T.D.andMonien,H.(1998).Phasesoftheone-dimensionalbose-hubbard model. Phys. Rev. B, 58:R14741–R14744.
Ku ̈hner,T.D.,White,S.R.,andMonien,H.(2000).One-dimensionalbose-hubbard model with nearest-neighbor interaction. Phys. Rev. B, 61:12474–12489.
Labouvie, R., Santra, B., Heun, S., and Ott, H. (2016). Bistability in a driven- dissipative superfluid. Physical review letters, 116(23):235302.
Larry, J. and Shibin, Q. (2005). Prediction for compound activity in large drug datasets using efficient machine learning approaches.
Le Bellac, M. (2011). Quantum physics. Cambridge University Press.
Le Boite ́, A., Orso, G., and Ciuti, C. (2013). Steady-state phases and tunneling- induced instabilities in the driven dissipative bose-hubbard model. Physical review letters, 110(23):233601.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. Li, C.-K., Roberts, R., and Yin, X. (2013). Decomposition of unitary matrices and quantum gates. International Journal of Quantum Information, 11(01):1350015.
Linares, M., Vinck-Posada, H., and Go ́mez, E. A. (2021). Magnetic control of biexci- tons in a quantum dot-cavity system. Physics Letters A, 409:127512.
Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Commu- nications in Mathematical Physics, 48(2):119–130. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., and Killoran, N. (2020). Quantum embed- dings for machine learning.
Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization.
Lucas, A. (2014). Ising formulations of many np problems. Frontiers in Physics, 2:5. Luo, S. L. (2005). Quantum versus classical uncertainty. Theoretical and Mathematical Physics, 143(2):681–688.
Lwin, K. and Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2):251–266.
Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F. F., Miatto, F. M., Neuhaus, L., Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam, S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., and Lavoie, J. (2022). Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75–81.
Mangasarian, O. L., Street, W. N., and Wolberg, W. H. (1995). Breast cancer diagno- sis and prognosis via linear programming. Operations Research, 43(4):570–577.
Manzano, D. and Hurtado, P. (2018). Harnessing symmetry to control quantum transport. Advances in Physics, 67(1):1–67.
McBrian, K., Carleo, G., and Khatami, E. (2019). Ground state phase diagram of the one-dimensional bose-hubbard model from restricted boltzmann machines. In Journal of Physics: Conference Series, volume 1290, page 012005. IOP Publishing.
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H. (2018). Barren plateaus in quantum neural network training landscapes. Nature Com- munications, 9(1):4812.
McClean, J. R., Parkhill, J. A., and Aspuru-Guzik, A. (2013). Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics. Proceedings of the National Academy of Sciences, 110(41):E3901–E3909.
Minamisawa, A., Iimura, R., and Kawahara, T. (2019). High-speed sparse ising model on fpga. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pages 670–673. IEEE.
Minganti, F., Biella, A., Bartolo, N., and Ciuti, C. (2018). Spectral theory of liouvil- lians for dissipative phase transitions. Physical Review A, 98(4):042118. Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K. (2018). Quantum circuit learn- ing. Phys. Rev. A, 98:032309.
Mollow, B. R. (1969). Power spectrum of light scattered by two-level systems. Phys. Rev., 188:1969–1975.
Mølmer, K., Castin, Y., and Dalibard, J. (1993). Monte carlo wave-function method in quantum optics. JOSA B, 10(3):524–538.
Mo ̈tto ̈nen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M. M. (2004). Quantum circuits for general multiqubit gates. Phys. Rev. Lett., 93:130502.
Motzoi, F., Gambetta, J. M., Rebentrost, P., and Wilhelm, F. K. (2009). Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 103:110501.
Mozafari, M., Jolai, F., and Tafazzoli, S. (2011). A new ipso-sa approach for car- dinality constrained portfolio optimization. International Journal of Industrial Engineering Computations, 2(2):249–262.
Mun ̃oz, C. S., Del Valle, E., Tudela, A. G., Mu ̈ller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J., and Laussy, F. (2014). Emitters of n-photon bundles. Nature photonics, 8(7):550–555.
Nagy, A. and Savona, V. (2019). Variational quantum monte carlo method with a neural-network ansatz for open quantum systems. Physical review letters, 122(25):250501.
Neumann, M., Kappe, F., Bracht, T. K., Cosacchi, M., Seidelmann, T., Axt, V. M., Weihs, G., and Reiter, D. E. (2021). Optical stark shift to control the dark exciton occupation of a quantum dot in a tilted magnetic field. Phys. Rev. B, 104:075428.
Nielsen, M. A. and Chuang, I. (2002). Quantum computation and quantum infor- mation.
Nomura, S., Segawa, Y., and Kobayashi, T. (1994). Confined excitons in a semicon- ductor quantum dot in a magnetic field. Phys. Rev. B, 49:13571–13582.
Pan, F., Chen, K., and Zhang, P. (2021). Solving the sampling problem of the sycamore quantum supremacy circuits. arXiv preprint arXiv:2111.03011.
Pascual Winter, M. F., Rozas, G., Fainstein, A., Jusserand, B., Perrin, B., Huynh, A., Vaccaro, P. O., and Saravanan, S. (2007). Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett., 98:265501.
Perea, J., Porras, D., and Tejedor, C. (2004). Dynamics of the excitations of a quan- tum dot in a microcavity. Physical Review B, 70(11):115304.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru- Guzik, A., and O’Brien, J. L. (2014). A variational eigenvalue solver on a pho- tonic quantum processor. Nature Communications, 5(1):4213.
Petrosky, T. (2010). Complex Spectral Representation of the Liouvillian and Kinetic Theory in Nonequilibrium Physics. Progress of Theoretical Physics, 123(3):395– 420.
Petrosky, T. and Prigogine, I. (1996). The Liouville Space Extension of Quantum Me- chanics, pages 1–120. John Wiley & Sons, Ltd. Pikus, G. and Bir, G. (1971). Exchange interaction in excitons in semiconductors. Sov. Phys. JETP, 33(1):108–114.
Pincus, M. (1970). A monte carlo method for the approximate solution of certain types of constrained optimization problems. Operations Research, 18(6):1225– 1228.
Pino, M., Prior, J., and Clark, S. R. (2013). Capturing the re-entrant behavior of one-dimensional Bose-Hubbard model. Physica Status Solidi (B) Basic Research, 250(1):51–58.
Quinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, pages 236–243.
Rahimi, A. and Recht, B. (2008a). Random features for large-scale kernel machines. In Advances in neural information processing systems, pages 1177–1184.
Rahimi, A. and Recht, B. (2008b). Weighted sums of random kitchen sinks: Replac- ing minimization with randomization in learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems, volume 21, pages 1316–1323.
Roth, C. and MacDonald, A. H. (2021). Group convolutional neural networks im- prove quantum state accuracy. arXiv preprint arXiv:2104.05085. Roy, V. (2020). Convergence diagnostics for markov chain monte carlo. Annual Review of Statistics and Its Application, 7(1):387–412.
Rudolph, M. S., Toussaint, N. B., Katabarwa, A., Johri, S., Peropadre, B., and Perdomo-Ortiz, A. (2022). Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X, 12:031010.
Saito, H. (2017). Solving the bose–hubbard model with machine learning. Journal of the Physical Society of Japan, 86(9):093001.
Schuld, M. (2021). Supervised quantum machine learning models are kernel meth- ods. Schuld, M. and Killoran, N. (2019). Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett., 122:040504.
Schuld, M. and Petruccione, F. (2021). Quantum Models as Kernel Methods, pages 217–245. Springer International Publishing, Cham.
Sergioli, G., Militello, C., Rundo, L., Minafra, L., Torrisi, F., Russo, G., Chow, K. L., and Giuntini, R. (2021). A quantum-inspired classifier for clonogenic assay evaluations. Scientific Reports, 11(1):2830.
Sharir, O., Shashua, A., and Carleo, G. (2021). Neural tensor contractions and the expressive power of deep neural quantum states.
Shende, V. V., Bullock, S. S., and Markov, I. L. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010.
Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.
Smelyanskiy, V. N., Rieffel, E. G., Knysh, S. I., Williams, C. P., Johnson, M. W., Thom, M. C., Macready, W. G., and Pudenz, K. L. (2012). A near-term quantum computing approach for hard computational problems in space exploration. arXiv preprint arXiv:1204.2821.
Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of Harmony Theory, page 194–281. MIT Press, Cambridge, MA, USA.
Someya, K., Ono, R., and Kawahara, T. (2016). Novel ising model using dimension- control for high-speed solver for ising machines. In 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), pages 1–4. IEEE.
Sorella, S., Casula, M., and Rocca, D. (2007). Weak binding between two aromatic rings: Feeling the van der waals attraction by quantum monte carlo methods. The Journal of Chemical Physics, 127(1):014105.
Spohn, H. (1976). Approach to equilibrium for completely positive dynamical semi- groups of n-level systems. Reports on Mathematical Physics, 10(2):189–194.
Steck, D. (2007). Quantum and Atom Optics.
Steinbach, J., Garraway, B. M., and Knight, P. L. (1995). High-order unraveling of master equations for dissipative evolution. Phys. Rev. A, 51:3302–3308.
Takagahara, T. (1993). Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B, 47:4569–4584.
Takagahara, T. (2002). Theory of exciton dephasing in semiconductor quantum dots. In Semiconductor Quantum Dots, pages 353–388. Springer.
Tanahashi, K., Takayanagi, S., Motohashi, T., and Tanaka, S. (2019). Application of ising machines and a software development for ising machines. Journal of the Physical Society of Japan, 88(6):061010.
Tang, E. (2019). A quantum-inspired classical algorithm for recommendation sys- tems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 217–228, New York, NY, USA. Association for Computing Machinery.
Tay, B. A. and Petrosky, T. (2008). Biorthonormal eigenbasis of a markovian master equation for the quantum brownian motion. Journal of mathematical physics, 49(11):113301.
The GPyOpt authors (2016). GPyOpt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt.
Tiwari, P. and Melucci, M. (2019). Towards a quantum-inspired binary classifier. IEEE Access, 7:42354–42372.
Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., and Carleo, G. (2018). Neural-network quantum state tomography. Nature Physics, 14(5):447–450.
Torlai, G. and Melko, R. G. (2018). Latent space purification via neural density operators. Phys. Rev. Lett., 120:240503.
Treinish, M., Gambetta, J., Nation, P., Kassebaum, P., qiskit bot, Rodr ́ıguez, D. M., de la Puente Gonza ́lez, S., Hu, S., Krsulich, K., Zdanski, L., Yu, J., Garrison, J., Gacon, J., McKay, D., Gomez, J., Capelluto, L., Travis-S-IBM, Marques, M., Panigrahi, A., Lishman, J., lerongil, Rahman, R. I., Wood, S., Bello, L., Singh, D., Drew, Arbel, E., Schwarm, J., Daniel, J., and George, M. (2022). Qiskit/qiskit: Qiskit 0.34.2.
Useche, D. H., Giraldo-Carvajal, A., Zuluaga-Bucheli, H. M., Jaramillo-Villegas, J. A., and Gonza ́lez, F. A. (2021). Quantum measurement classification with qudits. Quantum Information Processing, 21(1):12.
Vargas-Caldero ́n, V. (2018). Phonon-assisted tunnelling in double quantum dot molecules immersed in a microcavity. Research Gate.
Vargas-Caldero ́n, V., Gonza ́lez, F. A., and Vinck-Posada, H. (2022). Optimisation- free density estimation and classification with quantum circuits. Quantum Ma- chine Intelligence, 4(2):16. Vargas-Caldero ́n, V., Parra-A., N., Vinck-Posada, H., and Gonza ́lez, F. A. (2021). Many-qudit representation for the travelling salesman problem optimisation. Journal of the Physical Society of Japan, 90(11):114002.
Vargas-Caldero ́n, V. and Vinck-Posada, H. (2019). Phonon-assisted tunnelling in a double quantum dot molecule immersed in a cavity. Optik, 183:168–173.
Vargas-Caldero ́n, V. and Vinck-Posada, H. (2020). Light emission properties in a double quantum dot molecule immersed in a cavity: Phonon-assisted tunnel- ing. Physics Letters A, 384(3):126076.
Vargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2020). Phase diagram reconstruction of the bose–hubbard model with a restricted boltzmann machine wavefunction. Journal of the Physical Society of Japan, 89(9):094002.
Vargas-Caldero ́n, V., Vinck-Posada, H., and Villas-Boas, J. M. (2022). Dark-exciton giant rabi oscillations with no external magnetic field. Phys. Rev. B, 106:035305.
Vargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2022). An empirical study of quantum dynamics as a ground state problem with neural quantum states.
Vicentini, F., Biella, A., Regnault, N., and Ciuti, C. (2019). Variational neural- network ansatz for steady states in open quantum systems. Physical review letters, 122(25):250503.
Vicentini, F., Hofmann, D., Szabo ́, A., Wu, D., Roth, C., Giuliani, C., Pescia, G., Nys, J., Vargas-Calderon, V., Astrakhantsev, N., and Carleo, G. (2021). Netket 3: Machine learning toolbox for many-body quantum systems.
Vieijra, T. and Nys, J. (2021). Many-body quantum states with exact conservation of non-abelian and lattice symmetries through variational monte carlo. Phys. Rev. B, 104:045123.
Vivas,D.R.,Madron ̃ero,J.,Bucheli,V.,Go ́mez,L.O.,andReina,J.H.(2022).Neural- network quantum states: A systematic review.
Warren, R. H. (2013). Adapting the traveling salesman problem to an adiabatic quantum computer. Quantum information processing, 12(4):1781–1785.
Waugh, S. G. (1995). Extending and benchmarking Cascade-Correlation: extensions to the Cascade-Correlation architecture and benchmarking of feed-forward supervised artifi- cial neural networks. PhD thesis, University of Tasmania.
Weiß, M. and Krenner, H. J. (2018). Interfacing quantum emitters with propagating surface acoustic waves. Journal of Physics D: Applied Physics, 51(37):373001.
Wigger,D.,Weiß,M.,Lienhart,M.,Mu ̈ller,K.,Finley,J.J.,Kuhn,T.,Krenner,H.J., and Machnikowski, P. (2021). Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot. Phys. Rev. Research, 3:033197.
Wilce, A. (2021). Quantum Logic and Probability Theory. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer- sity, Fall 2021 edition.
Williams, C. P. (2011). Quantum Gates, pages 51–122. Springer London, London. Woods, L. M., Reinecke, T. L., and Kotlyar, R. (2004). Hole spin relaxation in quan- tum dots. Phys. Rev. B, 69:125330.
Wright, L. G. and McMahon, P. L. (2020). The capacity of quantum neural net- works. In Conference on Lasers and Electro-Optics, page JM4G.5. Optica Publish- ing Group.
Wu, D., Rossi, R., and Carleo, G. (2021). Unbiased monte carlo cluster updates with autoregressive neural networks. Phys. Rev. Research, 3:L042024.
Wu, D., Wang, L., and Zhang, P. (2019). Solving statistical mechanics using varia- tional autoregressive networks. Phys. Rev. Lett., 122:080602.
Yang, X.-C., Yung, M.-H., and Wang, X. (2018). Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A, 97:042324.
Yoshioka, N. and Hamazaki, R. (2019). Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306.
Zahedinejad, E., Ghosh, J., and Sanders, B. C. (2016). Designing high-fidelity single-shot three-qubit gates: A machine-learning approach. Phys. Rev. Applied, 6:054005.
Zhao, T., De, S., Chen, B., Stokes, J., and Veerapaneni, S. (2021). Overcoming bar- riers to scalability in variational quantum monte carlo. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA. Association for Computing Machinery.
Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.-Y., Zhang, W.-J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., and Pan, J.-W. (2020). Quantum computational advantage using photons. Science, 370(6523):1460–1463.
Zhou, H.-Q., Oru ́s, R., and Vidal, G. (2008). Ground state fidelity from tensor network representations. Phys. Rev. Lett., 100:080601.
Zou, X. T. and Mandel, L. (1990). Photon-antibunching and sub-poissonian photon statistics. Phys. Rev. A, 41:475–476.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 119 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84294/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84294/4/1019108908.pdf
https://repositorio.unal.edu.co/bitstream/unal/84294/5/1019108908.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7f58a72f5f74928db44b382e97935f16
1543cf9fa677c1959377edfa10d25740
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089283332472832
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck Posada, Herbertcb451c328e333b7d420c1effb3732257González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Vargas Calderón, Vladimir2975d7228cef335804ee66caa57fe8b6Grupo de Óptica E Información CuánticaSuperconductividad y NanotecnologíaVladimir Vargas-Calderón [0000000154763300]Vladimir Vargas-Calderón [Vladimir-Vargas-Calderon]Vladimir Vargas-Calderón [SfLRhYcAAAAJ]2023-07-26T19:20:31Z2023-07-26T19:20:31Z2022-12-01https://repositorio.unal.edu.co/handle/unal/84294Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThis thesis explores the intersections between quantum computing, quantum physics and machine learning. In the three fields, estimating probability distributions plays a central role. In the case of quantum computing and quantum physics, a central object of study is the quantum state of a system, which encodes a probability dis- tribution (the converse is not true, however, as a quantum state is an object that is more general than a classical probability distribution). In the case of machine learning, most of supervised and unsupervised learning tasks can be seen as esti- mating probability distributions from a training data set, which then can be used to predict by sampling or evaluating such probability distribution. Due to the famous curse of dimensionality, both present in machine learning but also in the natural intractability of Hilbert spaces, it has been established that quantum theory and machine learning have a lot to give and learn from each other. The journey depicted in this thesis stems from quantum optics and its application to modelling quantum devices for quantum computation or simulation, such as quantum dots and their interaction with optical and acoustic cavities. Indeed, quan- tum computation has long been sought by the physics community and stands–in the collective imagination–as a “holy grail” to solve several problems in the indus- try and science. Of particular interest of mine is the study of quantum many-body problems themselves, which, in combination with quantum computing, establishes an interesting circular set of resources: quantum computation to study quantum systems that can be used for quantum computation. Unfortunately, the promise of the “holy grail” of quantum computation has not materialised to date (even though there are known applications which are expo- nentially faster than any classical algorithm, e.g. the famous Deutsch-Jozsa algo- rithm), which is why the best known approaches to studying quantum physics or quantum chemistry are still classical algorithms. In particular, there are machine learning models, known as neural quantum states, that can be used to study quan- tum many-body problems. Neural quantum states are an application of machine learning techniques for studying quantum physics. In this thesis, we show fruitful approaches to studying ground states, steady-states and closed dynamics of quan- tum systems through neural quantum states. This knowledge transfer does not only occur in one direction: quantum physics can also contribute to machine learning with quantum-inspired machine learning methods. In this thesis, we also present a framework that establishes an analogy between quantum state preparation and training, and also between quantum pro- jective measurements and prediction. Our approach condenses classical data into the quantum state of a system. We manage to show that arbitrary probability dis- tributions can be encoded in such a quantum state to arbitrary precision, given enough degrees of freedom of the quantum state. Moreover, we can condense ar- bitrarily large data sets into quantum states, which allow us to have gradient-free (actually, optimisation-free) training. This framework of ours was also put into action by implementing it on a real quantum computer for toy data sets. Finally, I also present applications of neural quantum states and quantum-inspired generative modelling to industry problems such as the famous travelling salesman problem, for which we propose a qudit-based Hamiltonian whose ground state en- codes its solution; and other problems such as the portfolio optimisation problem using tensor network generative models.Esta tesis explora las intersecciones entre la computación cuántica, la física cuántica y el aprendizaje automático. En los tres campos, la estimación de distribuciones de probabilidad desempeña un papel central. En el caso de la computación cuántica y la física cuántica, un objeto de estudio central es el estado cuántico de un sistema, que codifica una distribución de probabilidad (sin embargo, lo contrario no es cierto, ya que un estado cuántico es un objeto más general que una distribución de probabilidad clásica). En el caso del aprendizaje automático, la mayoría de las tareas de aprendizaje supervisado y no supervisado pueden considerarse como la estimación de distribuciones de probabilidad a partir de un conjunto de datos de entrenamiento, que luego pueden utilizarse para predecir mediante el muestreo o la evaluación de dicha distribución de probabilidad. Debido a la famosa maldición de la dimensionalidad, presente tanto en el aprendizaje automático como en la intratabilidad natural de los espacios de Hilbert, se ha establecido que la teoría cuántica y el aprendizaje automático tienen mucho que dar y aprender la una de la otra. El viaje descrito en esta tesis parte de la óptica cuántica y su aplicación al modelado de dispositivos cuánticos para la computación o la simulación cuánticas, como los puntos cuánticos y su interacción con cavidades ópticas y acústicas. De hecho, la comunidad de físicos lleva mucho tiempo buscando la computación cuántica y se erige–en el imaginario colectivo–como un “santo grial” para resolver varios problemas de la industria y la ciencia. De particular interés para mı es el estudio de los problemas cuánticos de muchos cuerpos, que, en combinación con la computación cuántica, establece un interesante conjunto circular de recursos: computación cuántica para estudiar sistemas cuánticos que pueden utilizarse para la computación cuántica. Por desgracia, la promesa del “santo grial” de la computación cuántica no se ha materializado hasta la fecha (aunque se conocen aplicaciones exponencialmente más rápidas que cualquier algoritmo clásico, por ejemplo, el famoso algoritmo Deutsch-Jozsa), por lo que los enfoques más conocidos para estudiar la física o la química cuánticas siguen siendo los algoritmos clásicos. En particular, existen modelos de aprendizaje automático, conocidos como estados cuánticos neuronales, que pueden utilizarse para estudiar problemas cuánticos de muchos cuerpos. Los estados cuánticos neuronales son una aplicación de las técnicas de aprendizaje automático para estudiar la física cuántica. En esta tesis, mostramos enfoques fructíferos para estudiar estados básicos, estados estacionarios y dinámicas cerradas de sistemas cuánticos mediante estados cuánticos neuronales. Esta transferencia de conocimientos no solo se produce en una dirección: la física cuántica también puede contribuir al aprendizaje automático con métodos de aprendizaje automático inspirados en la cuántica. En esta tesis también presentamos un marco que establece una analogía entre la preparación del estado cuántico y el entrenamiento, y también entre las mediciones proyectivas cuánticas y la predicción. Nuestro enfoque condensa los datos clásicos en el estado cuántico de un sistema. Conseguimos demostrar que se pueden codificar distribuciones de probabilidad arbitrarias en dicho estado cuántico con una precisión arbitraria, dados suficientes grados de libertad del estado cuántico. Además, podemos condensar conjuntos de datos arbitrariamente grandes en estados cuánticos, lo que nos permite tener un entrenamiento sin gradiente (en realidad, sin optimización). Este marco nuestro también se puso en práctica implementándolo en un ordenador cuántico real para conjuntos de datos de juguete. Por último, también presento aplicaciones de los estados cuánticos neuronales y el modelado generativo de inspiración cuántica a problemas industriales como el famoso problema del viajante de comercio, para el que proponemos un Hamiltoniano basado en el qudit cuyo estado fundamental codifica su solución; y otros problemas como el de optimización de carteras mediante modelos generativos de redes tensoriales. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias - Físicaix, 119 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaFISICA CUANTICAAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)Quantum physicalQuantum physicsMachine learningData scienceQuantum computingFísica cuánticaCiencia de datosComputación cuánticaSymbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computationSimbiosis entre la física cuántica y el machine learning: Aplicaciones en ciencia de datos, física de muchos cuerpos y computación cuánticaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., and Woerner, S. (2021). The power of quantum neural networks. Nature Computational Science, 1(6):403–409.Adambukulam, C., Sewani, V., Stemp, H., Asaad, S., Madzik, M., Morello, A., and Laucht, A. (2021). An ultra-stable 1.5 t permanent magnet assembly for qubit experiments at cryogenic temperatures. Review of Scientific Instruments, 92(8):085106.Akbay, M. A., Kalayci, C. B., and Polat, O. (2020). A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained port- folio optimization. Knowledge-Based Systems, 198:105944.Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next- generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Albert, V. V. and Jiang, L. (2014). Symmetries and conserved quantities in lindblad master equations. Physical Review A, 89(2):022118.Alcazar, J., Vakili, M. G., Kalayci, C. B., and Perdomo-Ortiz, A. (2021). Geo: Enhanc- ing combinatorial optimization with classical and quantum generative models.Alhambra,A ́.M.(2022).Quantummany-bodysystemsinthermalequilibrium.Anschuetz, E. R. and Kiani, B. T. (2022). Beyond barren plateaus: Quantum varia- tional algorithms are swamped with traps.Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M. P., Hartmann, M. J., Ho, A., Hoffmann, M., Huang, T., Humble, T. S., Isakov, S. V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P. V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandra`, S., McClean, J. R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M. Y., Ostby, E., Petukhov, A., Platt, J. C., Quintana, C., Rieffel, E. G., Roushan, P., Rubin, N. C., Sank, D., Satzinger, K. J., Smelyanskiy, V., Sung, K. J., Trevithick, M. D., Vainsencher, A., Villalonga, B., White, T., Yao, Z. J., Yeh, P., Zalcman, A., Neven, H., and Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510.Ballentine, L. E. (2014). Quantum mechanics: a modern development. World Scientific Publishing Company.Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quan- tum computation. Phys. Rev. A, 52:3457–3467.Barison, S., Vicentini, F., Cirac, I., and Carleo, G. (2022). Variational dynamics as a ground-state problem on a quantum computer. arXiv preprint arXiv:2204.03454.Barker, J. A. and O’Reilly, E. P. (2000). Theoretical analysis of electron-hole align- ment in inas-gaas quantum dots. Phys. Rev. B, 61:13840–13851.Barontini, G., Labouvie, R., Stubenrauch, F., Vogler, A., Guarrera, V., and Ott, H. (2013). Controlling the dynamics of an open many-body quantum system with localized dissipation. Physical review letters, 110(3):035302.Barrett, T. D., Malyshev, A., and Lvovsky, A. I. (2022). Autoregressive neural- network wavefunctions for ab initio quantum chemistry. Nature Machine In- telligence, 4(4):351–358.Batrouni, G. G. and Scalettar, R. T. (1992). World-line quantum monte carlo algo- rithm for a one-dimensional bose model. Phys. Rev. B, 46:9051–9062.Batrouni, G. G., Scalettar, R. T., and Zimanyi, G. T. (1990). Quantum critical phe- nomena in one-dimensional bose systems. Phys. Rev. Lett., 65:1765–1768.Baumgartner, B. and Narnhofer, H. (2008). Analysis of quantum semigroups with gks–lindblad generators: Ii. general. Journal of Physics A: Mathematical and Theo- retical, 41(39):395303.Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., and Scha ̈fer, F. (2002). Fine structure of neutral and charged excitons in self-assembled in(ga)as/(al)gaas quantum dots. Phys. Rev. B, 65:195315.Becca, F. and Sorella, S. (2017). Quantum Monte Carlo approaches for correlated systems. Cambridge University Press.Berg, E. v. d., Minev, Z. K., Kandala, A., and Temme, K. (2022). Probabilistic error cancellation with sparse pauli-lindblad models on noisy quantum processors. arXiv preprint arXiv:2201.09866.Bergstra, J., Bardenet, R., Bengio, Y., and Ke ́gl, B. (2011). Algorithms for hyper- parameter optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J. S., Menke, T., Mok, W.-K., Sim, S., Kwek, L.-C., and Aspuru-Guzik, A. (2022). Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004.Bin, Q., Lu ̈, X.-Y., Laussy, F. P., Nori, F., and Wu, Y. (2020). N-phonon bundle emission via the stokes process. Physical review letters, 124(5):053601.Bir, G. L., Pikus, G. E., et al. (1974). Symmetry and strain-induced effects in semiconduc- tors, volume 484. Wiley New York.Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.Blackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from carto- graphic variables. Computers and Electronics in Agriculture, 24(3):131–151.Bloch, F. (1946). Nuclear induction. Phys. Rev., 70:460–474.Bogdanov, Y. I., Chernyavskiy, A. Y., Holevo, A., Lukichev, V. F., and Orlikovsky, A. A. (2013). Modeling of quantum noise and the quality of hardware com- ponents of quantum computers. In Orlikovsky, A. A., editor, International Con- ference Micro- and Nano-Electronics 2012, volume 8700, pages 404 – 415. Interna- tional Society for Optics and Photonics, SPIE.Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Nec- ula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs.Breuer, H.-P., Petruccione, F., et al. (2002). The theory of open quantum systems. Oxford University Press on Demand.Brown, R. H. and Twiss, R. Q. (1956). Correlation between photons in two coherent beams of light. Nature, 177(4497):27–29.Caha, L., Landau, Z., and Nagaj, D. (2018). Clocks in feynman’s computer and kitaev’s local hamiltonian: Bias, gaps, idling, and pulse tuning. Phys. Rev. A, 97:062306.Carleo, G., Choo, K., Hofmann, D., Smith, J. E., Westerhout, T., Alet, F., Davis, E. J., Efthymiou, S., Glasser, I., Lin, S.-H., et al. (2019a). Netket: A machine learning toolkit for many-body quantum systems. SoftwareX, 10:100311.Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborova ́, L. (2019b). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4):045002.Carleo, G. and Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606. Carrasquilla, J. (2020). Machine learning for quantum matter. Advances in Physics: X, 5(1):1797528.Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Mc- Clean, J. R., Mitarai, K., Yuan, X., Cincio, L., and Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644.Chang, T.-J., Meade, N., Beasley, J., and Sharaiha, Y. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers Operations Research, 27(13):1271– 1302.Chatterjee, R. and Yu, T. (2017). Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Information and Communica- tion, 17:1292.Chen, A., Choo, K., Astrakhantsev, N., and Neupert, T. (2022). Neural network evolution strategy for solving quantum sign structures. Phys. Rev. Research, 4:L022026.Cheng, J., Wang, Z., and Pollastri, G. (2008). A neural network approach to ordinal regression. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 1279–1284.Cheng, S., Chen, J., and Wang, L. (2018). Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy, 20(8).Choo, K., Neupert, T., and Carleo, G. (2019). Two-dimensional frustrated J1 − J2 model studied with neural network quantum states. Phys. Rev. B, 100:125124.Chow, J. M., Srinivasan, S. J., Magesan, E., Co ́rcoles, A. D., Abraham, D. W., Gam- betta, J. M., and Steffen, M. (2015). Characterizing a four-qubit planar lattice for arbitrary error detection. In Donkor, E., Pirich, A. R., and Hayduk, M., ed- itors, Quantum Information and Computation XIII, volume 9500, pages 315 – 323. International Society for Optics and Photonics, SPIE.Cirac, J. I., Pe ́rez-Garc ́ıa, D., Schuch, N., and Verstraete, F. (2021). Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003.Crooker, S., Barrick, T., Hollingsworth, J., and Klimov, V. (2003). Multiple temper- ature regimes of radiative decay in cdse nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 82(17):2793–2795.Cura, T. (2021). A rapidly converging artificial bee colony algorithm for portfolio optimization. Knowledge-Based Systems, 233:107505. Daley, A. J. (2014). Quantum trajectories and open many-body quantum systems. Advances in Physics, 63(2):77–149.Dalibard, J., Castin, Y., and Mølmer, K. (1992). Wave-function approach to dissipa- tive processes in quantum optics. Phys. Rev. Lett., 68:580–583.Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38.Deng, D.-L., Li, X., and Das Sarma, S. (2017). Quantum entanglement in neural network states. Phys. Rev. X, 7:021021.Deng, W.-Y., Zheng, Q.-H., Lian, S., Chen, L., and Wang, X. (2010). Ordinal extreme learning machine. Neurocomputing, 74(1):447–456. Artificial Brains.Deutsch, D. and Jozsa, R. (1992). Rapid solution of problems by quantum computa- tion. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558.Ding, Z.-H., Cui, J.-M., Huang, Y.-F., Li, C.-F., Tu, T., and Guo, G.-C. (2019). Fast high-fidelity readout of a single trapped-ion qubit via machine-learning meth- ods. Phys. Rev. Applied, 12:014038.Dogra, N., Landini, M., Kroeger, K., Hruby, L., Donner, T., and Esslinger, T. (2019). Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science, 366(6472):1496–1499.Dong, D., Wu, C., Chen, C., Qi, B., Petersen, I. R., and Nori, F. (2016). Learn- ing robust pulses for generating universal quantum gates. Scientific Reports, 6(1):36090.Dua, D. and Graff, C. (2017). UCI machine learning repository.Eisele, H., Lenz, A., Heitz, R., Timm, R., Da ̈hne, M., Temko, Y., Suzuki, T., and Jacobi, K. (2008). Change of inas/gaas quantum dot shape and composition during capping. Journal of Applied Physics, 104(12):124301.Ejima, S., Fehske, H., and Gebhard, F. (2011). Dynamic properties of the one- dimensional bose-hubbard model. EPL (Europhysics Letters), 93(3):30002.Ejima, S., Fehske, H., Gebhard, F., zu Mu ̈nster, K., Knap, M., Arrigoni, E., and von der Linden, W. (2012). Characterization of mott-insulating and superfluid phases in the one-dimensional bose-hubbard model. Phys. Rev. A, 85:053644.Elstner, N. and Monien, H. (1999). Dynamics and thermodynamics of the bose- hubbard model. Phys. Rev. B, 59:12184–12187.Evans, D. E. (1976). Irreducible quantum dynamical semigroups. Preprint series: Pure mathematics http://urn. nb. no/URN: NBN: no-8076.Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys, 21(6/7).Feynman, R. P. (1985). Quantum mechanical computers. Optics News, 11(2):11–20.Feynman, R. P., Vernon, F. L., and Hellwarth, R. W. (1957). Geometrical representa- tion of the schro ̈dinger equation for solving maser problems. Journal of Applied Physics, 28(1):49–52.Fine, A. (1973). Probability and the interpretation of quantum mechanics. The British Journal for the Philosophy of Science, 24(1):1–37.Fisher, M. P., Weichman, P. B., Grinstein, G., and Fisher, D. S. (1989). Boson localiza- tion and the superfluid-insulator transition. Physical Review B, 40(1):546–570.Fox, A. M., Fox, M., et al. (2006). Quantum optics: an introduction, volume 15. Oxford university press.Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Adaptive Computation and Machine Learning. The MIT Press.Frey, P. W. and Slate, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Machine Learning, 6(2):161–182.Gambetta, J. M., Motzoi, F., Merkel, S. T., and Wilhelm, F. K. (2011). Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A, 83:012308.Gent, I. P. and Walsh, T. (1996). The tsp phase transition. Artificial Intelligence, 88(1- 2):349–358.Gerry, C., Knight, P., and Knight, P. L. (2005). Introductory quantum optics. Cambridge university press.Giamarchi, T. (2003). Quantum physics in one dimension, volume 121. Clarendon press.Gini, C. (1912). Variabilita` e mutabilita`: contributo allo studio delle distribuzioni e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.Giuntini, R., Freytes, H., Park, D. K., Blank, C., Holik, F., Chow, K. L., and Sergioli, G. (2021). Quantum state discrimination for supervised classification.Glauber, R. J. (1963). The quantum theory of optical coherence. Phys. Rev., 130:2529– 2539.Gonza ́lez, F. A., Gallego, A., Toledo-Corte ́s, S., and Vargas-Caldero ́n, V. (2021a). Learning with density matrices and random features. arXiv preprint arXiv:2102.04394.Gonza ́lez, F. A., Vargas-Caldero ́n, V., and Vinck-Posada, H. (2021b). Classifi- cation with quantum measurements. Journal of the Physical Society of Japan, 90(4):044002.Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. (1976). Completely posi- tive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821–825.Greiner, M., Mandel, O., Rom, T., Altmeyer, A., Widera, A., Ha ̈nsch, T. W., and Bloch, I. (2003). Quantum phase transition from a superfluid to a Mott insulator in an ultracold gas of atoms. Physica B: Condensed Matter, 329-333:11–12.Guvenir, H. A. and Uysal, I. (2000). Bilkent university function approximation repos- itory.Guyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider, G., and Uhr, M. (2007). Com- petitive baseline methods set new standards for the nips 2003 feature selection benchmark. Pattern Recognition Letters, 28(12):1438–1444.Han, Z.-Y., Wang, J., Fan, H., Wang, L., and Zhang, P. (2018). Unsupervised genera- tive modeling using matrix product states. Phys. Rev. X, 8:031012.Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81–102.Hartmann, M. J. and Carleo, G. (2019). Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett., 122:250502.Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109.Hatano, N. and Petrosky, T. (2015). Eigenvalue problem of the liouvillian of open quantum systems. AIP Conference Proceedings, 1648(1):200005.Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the theory of neural computation. Santa Fe Institute Studies in the Sciences of Complexity; Lecture Notes.Heyl, M. (2018). Dynamical quantum phase transitions: a review. Reports on Progress in Physics, 81(5):054001.Heyl, M., Polkovnikov, A., and Kehrein, S. (2013). Dynamical quantum phase tran- sitions in the transverse-field ising model. Phys. Rev. Lett., 110:135704.Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G., and Carrasquilla, J. (2020). Recurrent neural network wave functions. Physical Review Research, 2(2):023358.Huang, Y. (2019). Approximating local properties by tensor network states with constant bond dimension.Hull, J. (1994). A database for handwritten text recognition research. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 16(5):550–554. Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2018). Polarization switch in an elliptical micropillar – quantum dot system induced by a magnetic field in faraday configuration. Physics Letters A, 382(44):3216–3219.Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020a). Magnetic and temperature control in the emission of a quantum dot strongly coupled to a microcavity. Physica B: Condensed Matter, 592:412215.Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020b). Strong cou- pling of two quantum dots with a microcavity in the presence of an external and tilted magnetic field. Physica B: Condensed Matter, 585:412070.Jime ́nez-Orjuela, C. A., Vinck-Posada, H., and Villas-Boˆas, J. M. (2017). Dark exci- tons in a quantum-dot–cavity system under a tilted magnetic field. Phys. Rev. B, 96:125303.Johansson, J., Nation, P., and Nori, F. (2013). Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184(4):1234–1240.Jonsson, B., Bauer, B., and Carleo, G. (2018). Neural-network states for the classical simulation of quantum computing.Kalayci, C. B., Ertenlice, O., Akyer, H., and Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration pro- cedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85:61–75.Kalayci, C. B., Polat, O., and Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolu- tionary Computation, 54:100662.Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2019). Ana- lyzing and improving the image quality of stylegan.Kashurnikov, V. A., Krasavin, A. V., and Svistunov, B. V. (1996). Mott-insulator- superfluid-liquid transition in a one-dimensional bosonic hubbard model: Quantum monte carlo method. Journal of Experimental and Theoretical Physics Letters, 64(2):99–104.Kastner, M. A. (2005). Prospects for quantum dot implementation of adiabatic quan- tum computers for intractable problems. Proceedings of the IEEE, 93(10):1765– 1771.Kibler, D., Aha, D. W., and Albert, M. K. (1989). Instance-based prediction of real- valued attributes. Computational Intelligence, 5(2):51–57.King, R. D., Hirst, J. D., and Sternberg, M. J. E. (1995). Comparison of artificial intelligence methods for modeling pharmaceutical qsars. Applied Artificial Intel- ligence, 9(2):213–233.Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.Koller, W. and Dupuis, N. (2006). Variational cluster perturbation theory for bose- hubbard models. Journal of Physics: Condensed Matter, 18(41):9525–9540.Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.Krol, A. M., Sarkar, A., Ashraf, I., Al-Ars, Z., and Bertels, K. (2022). Efficient de- composition of unitary matrices in quantum circuit compilers. Applied Sciences, 12(2).Ku ̈hner,T.D.andMonien,H.(1998).Phasesoftheone-dimensionalbose-hubbard model. Phys. Rev. B, 58:R14741–R14744.Ku ̈hner,T.D.,White,S.R.,andMonien,H.(2000).One-dimensionalbose-hubbard model with nearest-neighbor interaction. Phys. Rev. B, 61:12474–12489.Labouvie, R., Santra, B., Heun, S., and Ott, H. (2016). Bistability in a driven- dissipative superfluid. Physical review letters, 116(23):235302.Larry, J. and Shibin, Q. (2005). Prediction for compound activity in large drug datasets using efficient machine learning approaches.Le Bellac, M. (2011). Quantum physics. Cambridge University Press.Le Boite ́, A., Orso, G., and Ciuti, C. (2013). Steady-state phases and tunneling- induced instabilities in the driven dissipative bose-hubbard model. Physical review letters, 110(23):233601.LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551.Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. Li, C.-K., Roberts, R., and Yin, X. (2013). Decomposition of unitary matrices and quantum gates. International Journal of Quantum Information, 11(01):1350015.Linares, M., Vinck-Posada, H., and Go ́mez, E. A. (2021). Magnetic control of biexci- tons in a quantum dot-cavity system. Physics Letters A, 409:127512.Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Commu- nications in Mathematical Physics, 48(2):119–130. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., and Killoran, N. (2020). Quantum embed- dings for machine learning.Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization.Lucas, A. (2014). Ising formulations of many np problems. Frontiers in Physics, 2:5. Luo, S. L. (2005). Quantum versus classical uncertainty. Theoretical and Mathematical Physics, 143(2):681–688.Lwin, K. and Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2):251–266.Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F. F., Miatto, F. M., Neuhaus, L., Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam, S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., and Lavoie, J. (2022). Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75–81.Mangasarian, O. L., Street, W. N., and Wolberg, W. H. (1995). Breast cancer diagno- sis and prognosis via linear programming. Operations Research, 43(4):570–577.Manzano, D. and Hurtado, P. (2018). Harnessing symmetry to control quantum transport. Advances in Physics, 67(1):1–67.McBrian, K., Carleo, G., and Khatami, E. (2019). Ground state phase diagram of the one-dimensional bose-hubbard model from restricted boltzmann machines. In Journal of Physics: Conference Series, volume 1290, page 012005. IOP Publishing.McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H. (2018). Barren plateaus in quantum neural network training landscapes. Nature Com- munications, 9(1):4812.McClean, J. R., Parkhill, J. A., and Aspuru-Guzik, A. (2013). Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics. Proceedings of the National Academy of Sciences, 110(41):E3901–E3909.Minamisawa, A., Iimura, R., and Kawahara, T. (2019). High-speed sparse ising model on fpga. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pages 670–673. IEEE.Minganti, F., Biella, A., Bartolo, N., and Ciuti, C. (2018). Spectral theory of liouvil- lians for dissipative phase transitions. Physical Review A, 98(4):042118. Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K. (2018). Quantum circuit learn- ing. Phys. Rev. A, 98:032309.Mollow, B. R. (1969). Power spectrum of light scattered by two-level systems. Phys. Rev., 188:1969–1975.Mølmer, K., Castin, Y., and Dalibard, J. (1993). Monte carlo wave-function method in quantum optics. JOSA B, 10(3):524–538.Mo ̈tto ̈nen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M. M. (2004). Quantum circuits for general multiqubit gates. Phys. Rev. Lett., 93:130502.Motzoi, F., Gambetta, J. M., Rebentrost, P., and Wilhelm, F. K. (2009). Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 103:110501.Mozafari, M., Jolai, F., and Tafazzoli, S. (2011). A new ipso-sa approach for car- dinality constrained portfolio optimization. International Journal of Industrial Engineering Computations, 2(2):249–262.Mun ̃oz, C. S., Del Valle, E., Tudela, A. G., Mu ̈ller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J., and Laussy, F. (2014). Emitters of n-photon bundles. Nature photonics, 8(7):550–555.Nagy, A. and Savona, V. (2019). Variational quantum monte carlo method with a neural-network ansatz for open quantum systems. Physical review letters, 122(25):250501.Neumann, M., Kappe, F., Bracht, T. K., Cosacchi, M., Seidelmann, T., Axt, V. M., Weihs, G., and Reiter, D. E. (2021). Optical stark shift to control the dark exciton occupation of a quantum dot in a tilted magnetic field. Phys. Rev. B, 104:075428.Nielsen, M. A. and Chuang, I. (2002). Quantum computation and quantum infor- mation.Nomura, S., Segawa, Y., and Kobayashi, T. (1994). Confined excitons in a semicon- ductor quantum dot in a magnetic field. Phys. Rev. B, 49:13571–13582.Pan, F., Chen, K., and Zhang, P. (2021). Solving the sampling problem of the sycamore quantum supremacy circuits. arXiv preprint arXiv:2111.03011.Pascual Winter, M. F., Rozas, G., Fainstein, A., Jusserand, B., Perrin, B., Huynh, A., Vaccaro, P. O., and Saravanan, S. (2007). Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett., 98:265501.Perea, J., Porras, D., and Tejedor, C. (2004). Dynamics of the excitations of a quan- tum dot in a microcavity. Physical Review B, 70(11):115304.Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru- Guzik, A., and O’Brien, J. L. (2014). A variational eigenvalue solver on a pho- tonic quantum processor. Nature Communications, 5(1):4213.Petrosky, T. (2010). Complex Spectral Representation of the Liouvillian and Kinetic Theory in Nonequilibrium Physics. Progress of Theoretical Physics, 123(3):395– 420.Petrosky, T. and Prigogine, I. (1996). The Liouville Space Extension of Quantum Me- chanics, pages 1–120. John Wiley & Sons, Ltd. Pikus, G. and Bir, G. (1971). Exchange interaction in excitons in semiconductors. Sov. Phys. JETP, 33(1):108–114.Pincus, M. (1970). A monte carlo method for the approximate solution of certain types of constrained optimization problems. Operations Research, 18(6):1225– 1228.Pino, M., Prior, J., and Clark, S. R. (2013). Capturing the re-entrant behavior of one-dimensional Bose-Hubbard model. Physica Status Solidi (B) Basic Research, 250(1):51–58.Quinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, pages 236–243.Rahimi, A. and Recht, B. (2008a). Random features for large-scale kernel machines. In Advances in neural information processing systems, pages 1177–1184.Rahimi, A. and Recht, B. (2008b). Weighted sums of random kitchen sinks: Replac- ing minimization with randomization in learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems, volume 21, pages 1316–1323.Roth, C. and MacDonald, A. H. (2021). Group convolutional neural networks im- prove quantum state accuracy. arXiv preprint arXiv:2104.05085. Roy, V. (2020). Convergence diagnostics for markov chain monte carlo. Annual Review of Statistics and Its Application, 7(1):387–412.Rudolph, M. S., Toussaint, N. B., Katabarwa, A., Johri, S., Peropadre, B., and Perdomo-Ortiz, A. (2022). Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X, 12:031010.Saito, H. (2017). Solving the bose–hubbard model with machine learning. Journal of the Physical Society of Japan, 86(9):093001.Schuld, M. (2021). Supervised quantum machine learning models are kernel meth- ods. Schuld, M. and Killoran, N. (2019). Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett., 122:040504.Schuld, M. and Petruccione, F. (2021). Quantum Models as Kernel Methods, pages 217–245. Springer International Publishing, Cham.Sergioli, G., Militello, C., Rundo, L., Minafra, L., Torrisi, F., Russo, G., Chow, K. L., and Giuntini, R. (2021). A quantum-inspired classifier for clonogenic assay evaluations. Scientific Reports, 11(1):2830.Sharir, O., Shashua, A., and Carleo, G. (2021). Neural tensor contractions and the expressive power of deep neural quantum states.Shende, V. V., Bullock, S. S., and Markov, I. L. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010.Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332.Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.Smelyanskiy, V. N., Rieffel, E. G., Knysh, S. I., Williams, C. P., Johnson, M. W., Thom, M. C., Macready, W. G., and Pudenz, K. L. (2012). A near-term quantum computing approach for hard computational problems in space exploration. arXiv preprint arXiv:1204.2821.Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of Harmony Theory, page 194–281. MIT Press, Cambridge, MA, USA.Someya, K., Ono, R., and Kawahara, T. (2016). Novel ising model using dimension- control for high-speed solver for ising machines. In 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), pages 1–4. IEEE.Sorella, S., Casula, M., and Rocca, D. (2007). Weak binding between two aromatic rings: Feeling the van der waals attraction by quantum monte carlo methods. The Journal of Chemical Physics, 127(1):014105.Spohn, H. (1976). Approach to equilibrium for completely positive dynamical semi- groups of n-level systems. Reports on Mathematical Physics, 10(2):189–194.Steck, D. (2007). Quantum and Atom Optics.Steinbach, J., Garraway, B. M., and Knight, P. L. (1995). High-order unraveling of master equations for dissipative evolution. Phys. Rev. A, 51:3302–3308.Takagahara, T. (1993). Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B, 47:4569–4584.Takagahara, T. (2002). Theory of exciton dephasing in semiconductor quantum dots. In Semiconductor Quantum Dots, pages 353–388. Springer.Tanahashi, K., Takayanagi, S., Motohashi, T., and Tanaka, S. (2019). Application of ising machines and a software development for ising machines. Journal of the Physical Society of Japan, 88(6):061010.Tang, E. (2019). A quantum-inspired classical algorithm for recommendation sys- tems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 217–228, New York, NY, USA. Association for Computing Machinery.Tay, B. A. and Petrosky, T. (2008). Biorthonormal eigenbasis of a markovian master equation for the quantum brownian motion. Journal of mathematical physics, 49(11):113301.The GPyOpt authors (2016). GPyOpt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt.Tiwari, P. and Melucci, M. (2019). Towards a quantum-inspired binary classifier. IEEE Access, 7:42354–42372.Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., and Carleo, G. (2018). Neural-network quantum state tomography. Nature Physics, 14(5):447–450.Torlai, G. and Melko, R. G. (2018). Latent space purification via neural density operators. Phys. Rev. Lett., 120:240503.Treinish, M., Gambetta, J., Nation, P., Kassebaum, P., qiskit bot, Rodr ́ıguez, D. M., de la Puente Gonza ́lez, S., Hu, S., Krsulich, K., Zdanski, L., Yu, J., Garrison, J., Gacon, J., McKay, D., Gomez, J., Capelluto, L., Travis-S-IBM, Marques, M., Panigrahi, A., Lishman, J., lerongil, Rahman, R. I., Wood, S., Bello, L., Singh, D., Drew, Arbel, E., Schwarm, J., Daniel, J., and George, M. (2022). Qiskit/qiskit: Qiskit 0.34.2.Useche, D. H., Giraldo-Carvajal, A., Zuluaga-Bucheli, H. M., Jaramillo-Villegas, J. A., and Gonza ́lez, F. A. (2021). Quantum measurement classification with qudits. Quantum Information Processing, 21(1):12.Vargas-Caldero ́n, V. (2018). Phonon-assisted tunnelling in double quantum dot molecules immersed in a microcavity. Research Gate.Vargas-Caldero ́n, V., Gonza ́lez, F. A., and Vinck-Posada, H. (2022). Optimisation- free density estimation and classification with quantum circuits. Quantum Ma- chine Intelligence, 4(2):16. Vargas-Caldero ́n, V., Parra-A., N., Vinck-Posada, H., and Gonza ́lez, F. A. (2021). Many-qudit representation for the travelling salesman problem optimisation. Journal of the Physical Society of Japan, 90(11):114002.Vargas-Caldero ́n, V. and Vinck-Posada, H. (2019). Phonon-assisted tunnelling in a double quantum dot molecule immersed in a cavity. Optik, 183:168–173.Vargas-Caldero ́n, V. and Vinck-Posada, H. (2020). Light emission properties in a double quantum dot molecule immersed in a cavity: Phonon-assisted tunnel- ing. Physics Letters A, 384(3):126076.Vargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2020). Phase diagram reconstruction of the bose–hubbard model with a restricted boltzmann machine wavefunction. Journal of the Physical Society of Japan, 89(9):094002.Vargas-Caldero ́n, V., Vinck-Posada, H., and Villas-Boas, J. M. (2022). Dark-exciton giant rabi oscillations with no external magnetic field. Phys. Rev. B, 106:035305.Vargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2022). An empirical study of quantum dynamics as a ground state problem with neural quantum states.Vicentini, F., Biella, A., Regnault, N., and Ciuti, C. (2019). Variational neural- network ansatz for steady states in open quantum systems. Physical review letters, 122(25):250503.Vicentini, F., Hofmann, D., Szabo ́, A., Wu, D., Roth, C., Giuliani, C., Pescia, G., Nys, J., Vargas-Calderon, V., Astrakhantsev, N., and Carleo, G. (2021). Netket 3: Machine learning toolbox for many-body quantum systems.Vieijra, T. and Nys, J. (2021). Many-body quantum states with exact conservation of non-abelian and lattice symmetries through variational monte carlo. Phys. Rev. B, 104:045123.Vivas,D.R.,Madron ̃ero,J.,Bucheli,V.,Go ́mez,L.O.,andReina,J.H.(2022).Neural- network quantum states: A systematic review.Warren, R. H. (2013). Adapting the traveling salesman problem to an adiabatic quantum computer. Quantum information processing, 12(4):1781–1785.Waugh, S. G. (1995). Extending and benchmarking Cascade-Correlation: extensions to the Cascade-Correlation architecture and benchmarking of feed-forward supervised artifi- cial neural networks. PhD thesis, University of Tasmania.Weiß, M. and Krenner, H. J. (2018). Interfacing quantum emitters with propagating surface acoustic waves. Journal of Physics D: Applied Physics, 51(37):373001.Wigger,D.,Weiß,M.,Lienhart,M.,Mu ̈ller,K.,Finley,J.J.,Kuhn,T.,Krenner,H.J., and Machnikowski, P. (2021). Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot. Phys. Rev. Research, 3:033197.Wilce, A. (2021). Quantum Logic and Probability Theory. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer- sity, Fall 2021 edition.Williams, C. P. (2011). Quantum Gates, pages 51–122. Springer London, London. Woods, L. M., Reinecke, T. L., and Kotlyar, R. (2004). Hole spin relaxation in quan- tum dots. Phys. Rev. B, 69:125330.Wright, L. G. and McMahon, P. L. (2020). The capacity of quantum neural net- works. In Conference on Lasers and Electro-Optics, page JM4G.5. Optica Publish- ing Group.Wu, D., Rossi, R., and Carleo, G. (2021). Unbiased monte carlo cluster updates with autoregressive neural networks. Phys. Rev. Research, 3:L042024.Wu, D., Wang, L., and Zhang, P. (2019). Solving statistical mechanics using varia- tional autoregressive networks. Phys. Rev. Lett., 122:080602.Yang, X.-C., Yung, M.-H., and Wang, X. (2018). Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A, 97:042324.Yoshioka, N. and Hamazaki, R. (2019). Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306.Zahedinejad, E., Ghosh, J., and Sanders, B. C. (2016). Designing high-fidelity single-shot three-qubit gates: A machine-learning approach. Phys. Rev. Applied, 6:054005.Zhao, T., De, S., Chen, B., Stokes, J., and Veerapaneni, S. (2021). Overcoming bar- riers to scalability in variational quantum monte carlo. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA. Association for Computing Machinery.Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.-Y., Zhang, W.-J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., and Pan, J.-W. (2020). Quantum computational advantage using photons. Science, 370(6523):1460–1463.Zhou, H.-Q., Oru ́s, R., and Vidal, G. (2008). Ground state fidelity from tensor network representations. Phys. Rev. Lett., 100:080601.Zou, X. T. and Mandel, L. (1990). Photon-antibunching and sub-poissonian photon statistics. Phys. Rev. A, 41:475–476.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84294/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1019108908.pdf1019108908.pdfTesis de Doctorado en Físicaapplication/pdf29947786https://repositorio.unal.edu.co/bitstream/unal/84294/4/1019108908.pdf7f58a72f5f74928db44b382e97935f16MD54THUMBNAIL1019108908.pdf.jpg1019108908.pdf.jpgGenerated Thumbnailimage/jpeg5833https://repositorio.unal.edu.co/bitstream/unal/84294/5/1019108908.pdf.jpg1543cf9fa677c1959377edfa10d25740MD55unal/84294oai:repositorio.unal.edu.co:unal/842942023-08-11 23:04:09.654Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=