Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.

ilustraciones, mapas

Autores:
Calderón Díaz, Laura Cristina
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85771
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85771
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Estratigrafía
Source-to-sink
Extension and compressional tectonics
Northern Andes
Thermochronology
Andes del Norte
Termocronología
Procedencia sedimentaria
Cuencas extensionales y broken foreland
Tectónica cretácica
Termocronología
Geocronología
Rights
closedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_441eaa1075a099428d3b0488432a6bae
oai_identifier_str oai:repositorio.unal.edu.co:unal/85771
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
dc.title.translated.spa.fl_str_mv Múltiples fases extensionales y compresionales durante el cretácico en el Valle Superior del Magdalena: un análisis de procedencia y sistemas sedimentarios)
title Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
spellingShingle Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Estratigrafía
Source-to-sink
Extension and compressional tectonics
Northern Andes
Thermochronology
Andes del Norte
Termocronología
Procedencia sedimentaria
Cuencas extensionales y broken foreland
Tectónica cretácica
Termocronología
Geocronología
title_short Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
title_full Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
title_fullStr Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
title_full_unstemmed Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
title_sort Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.
dc.creator.fl_str_mv Calderón Díaz, Laura Cristina
dc.contributor.advisor.none.fl_str_mv Zapata Henao, Sebastian
Cardona Molina, Agustín
dc.contributor.author.none.fl_str_mv Calderón Díaz, Laura Cristina
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios en Geología y Geofísica Egeo
dc.contributor.cvlac.spa.fl_str_mv Calderón Díaz, Laura Cristina (0000-0002-3523-9017)
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Estratigrafía
Source-to-sink
Extension and compressional tectonics
Northern Andes
Thermochronology
Andes del Norte
Termocronología
Procedencia sedimentaria
Cuencas extensionales y broken foreland
Tectónica cretácica
Termocronología
Geocronología
dc.subject.lemb.none.fl_str_mv Estratigrafía
dc.subject.proposal.eng.fl_str_mv Source-to-sink
Extension and compressional tectonics
Northern Andes
Thermochronology
dc.subject.proposal.spa.fl_str_mv Andes del Norte
Termocronología
Procedencia sedimentaria
Cuencas extensionales y broken foreland
Tectónica cretácica
dc.subject.wikidata.none.fl_str_mv Termocronología
Geocronología
description ilustraciones, mapas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-03-05T18:20:39Z
dc.date.available.none.fl_str_mv 2024-03-05T18:20:39Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85771
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85771
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Bernet, M., Brandon, M. T., Garver, J. I., & Molitor, B. R. (2004). Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. In Detrital thermochronology - Provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of America.
Fleischer, R. L., & Price, P. B. (1964). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28(10–11), 1705–1714. https://doi.org/10.1016/0016-7037(64)90017-1
Gleadow, A. J. W., Hurford, A. J., & Quaife, R. D. (1976). Fission track dating of zircon: Improved etching techniques. Earth and Planetary Science Letters, 33(2), 273–276. https://doi.org/10.1016/0012-821x(76)90235-1
Kohn, B., Chung, L., & Gleadow, A. (2019). Fission-track analysis: Field collection, sample preparation and data acquisition. In Fission-Track Thermochronology and its Application to Geology (pp. 25–48). Springer International Publishing.
Acosta, J., Velandia, F., Osorio, J., Lonergan, L., & Mora, H. (2007). Strike-slip deformation within the Colombian Andes. Geological Society Special Publication, 272(1), 303–319. https://doi.org/10.1144/gsl.sp.2007.272.01.16
Amaya-López, C., Weber Scharff, M., Ibáñez Mejía, M., Cuadros Jiménez, F. A., Restrepo Álvarez, J. J., Botelho, N. F., Maya Sánchez, M., Pérez Parra, O. M., & Ramírez Cárdenas, C. (2021). San José de Guaviare Syenite, Colombia: Repeated Ediacaran intrusions in the northwestern Amazonian Craton. Boletín Geológico, 48(1), 49–79. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.503
Anderson, T. A. (1972). Paleogene nonmarine gualanday group, Neiva basin, Colombia, and regional development of the Colombian Andes. Geological Society of America Bulletin, 83(8), 2423. https://doi.org/10.1130/0016-7606(1972)83[2423:pnggnb]2.0.co;2
Angiolini, L., Racheboeuf, P. R., Villarroel, C. A., & Concha, A. E. (2021). Stratigraphy and brachiopod fauna of the Carboniferous El Imán Formation, Colombia. Spanish Journal of Palaeontology, 18(2), 151. https://doi.org/10.7203/sjp.18.2.21641
Bajolet, F., Chardon, D., Rouby, D., Dall’Asta, M., Loparev, A., Couëffe, R., & Roig, J.-Y. (2022). The sediment routing systems of Northern South America since 250 Ma. EarthScience Reviews, 232(104139), 104139. https://doi.org/10.1016/j.earscirev.2022.104139
Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632
Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jimenez, G., Mesa, A., & Valencia, V. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time. Geological Society Special Publication, 377(1), 285–314. https://doi.org/10.1144/sp377.5
Bernet, M., Brandon, M., Garver, J., Balestieri, M. L., Ventura, B., & Zattin, M. (2009). Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Research, 21(6), 781–798. https://doi.org/10.1111/j.1365-2117.2009.00400.x
Brune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., & Shillington, D. J. (2023). Geodynamics of continental rift initiation and evolution. Nature Reviews. Earth & Environment, 4(4), 235–253. https://doi.org/10.1038/s4301 7-023- 00391-3
Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS Geochronology and Regional Correlation of Middle Jurassic Intrusive Rocks from the Garzon Massif, Upper Magdalena Valley and Central Cordillera, Southern Colombia. Revista Boletín de Geología, 32(2), 93–109. http://www.scielo.org.co/scielo.php?pid=S0120- 02832010000200007&script=sci_arttext&tlng=en
Carvajal-Torres, J., Catuneanu, O., Mora, A., Caballero, V., & Reyes, M. (2022). First-order stratigraphic boundaries of the Late Cretaceous–Paleogene retroarc foreland basin in Colombia. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.876140
Chen, W.-H., Yan, Y., Carter, A., Huang, C.-Y., Yumul, G. P., Jr, Dimalanta, C. B., GaboRatio, J. A. S., Wang, M.-H., Chen, D., Shan, Y., Zhang, X.-C., & Liu, W. (2021). Stratigraphy and provenance of the Paleogene syn‐rift sediments in central‐southern Palawan: Paleogeographic significance for the South China margin. Tectonics, 40(9). https://doi.org/10.1029/2021tc006753
del Papa, C., Payrola, P., Pingel, H., Hongn, F., Do Campo, M., Sobel, E. R., Lapiana, A., Cottle, J., Glodny, J., & Strecker, M. R. (2021). Stratigraphic response to fragmentation of the Miocene Andean foreland basin, NW Argentina. Basin Research, 33(6), 2914–2937. https://doi.org/10.1111/bre.12589
Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3–12. https://doi.org/10.1016/s0098-3004(01)00024-3
Flowers, Rebecca M. (2009). Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277(1–2), 148–155. https://doi.org/10.1016/j.epsl.2008.10.005
Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology: Transdimensional Inverse Thermal History. Journal of Geophysical Research, 117(B2). https://doi.org/10.1029/2011jb008825
Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001805
Girault, I., Basile, C., Bernet, M., Paquette, J.-L., Heuret, A., Loncke, L., Poetisi, E., & Balvay, M. (2023). Thermochronology and U–Pb dating of detrital zircons from the Demerara Plateau (French Guiana‐Suriname): Implications for the provenance of the Early Cretaceous syn‐rift sedimentation. Basin Research, 35(4), 1386–1406. https://doi.org/10.1111/bre.12758
Guerrero, J., Sarmiento, G., & Narrete, R. (2000). The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45–110. http://www.revistas.unal.edu.co/index.php/geocol/article/view/31536
Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10), 1423–1442. https://doi.org/10.1130/b30118.1
Jaramillo, C., Yepes, O., & Etayo-Serna, F. (1994). Palinoestratigrafía del Grupo Olini (Coniaciano-Campaniano), Valle Superior del Magdalena, Colombia. Estudios Geologicos del Valle Superior del Magdalena
Leal-Mejía, H., Shaw, R. P., & Melgarejo I Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. Geology and Tectonics of Northwestern South America: The Pacific-CaribbeanAndean Junction. 253–410.
Martín-Rincón, C. L., Terraza-Melo, R., Rojas Parra, N. R., Martínez Aparicio, G. A., Rojas Jiménez, S., & Hernández González, J. S. (2022). The Upper Cretaceous (SantonianMaastrichtian) phosphate deposits in the west of the Neiva subbasin, Upper Magdalena Valley, Colombia. Boletín Geológico, 49(2), 75–96. https://doi.org/10.32685/0120- 1425/bol.geol.49.2.2022.621
Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903
Ordóñez-Carmona, O., Restrepo Álvarez, J. J., & Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 372–382.https://doi.org/10.1016/j.jsames.2006.07.005
Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research. https://doi.org/10.1111/j.1365-2117.2009.00459.x
Pérez-Consuegra, N., Teixell, A., Gómez-Gras, D., & Stockli, D. F. (2019). Reconstructing extensional basin architecture and provenance in the Marrakech high atlas of morocco: Implications for rift basins and inversion tectonics. Tectonics, 38(5), 1584–1608. https://doi.org/10.1029/2018tc005413
Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenicerosion. Annual Review of Earth and Planetary Sciences, 34(1), 419–466.https://doi.org/10.1146/annurev.earth.34.031405.125202
Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2
Sarmiento-Rojas, Luis Fernando. (2019). Cretaceous stratigraphy and Paleo-facies maps of northwestern south America. In Geology and Tectonics of Northwestern South America (pp. 673–747). Springer International Publishing
Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
Vásquez, M., & Altenberger, U. (2005). Mid-Cretaceous extension-related magmatism in the eastern Colombian Andes. Journal of South American Earth Sciences, 20(3), 193–210. https://doi.org/10.1016/j.jsames.2005.05.010
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
Wagner, G., Gleadow, A., & Fitzgerald, P. (1989). The significance of the partial annealing zone in apatite fission-track analysis: Projected track length measurements and uplift chronology of the transantarctic mountains. Chemical Geology: Isotope Geoscience Section, 79(4), 295–305. https://doi.org/10.1016/0168-9622(89)90035-3
Zapata, S., Calderon-Diaz, L., Jaramillo, C., Oboh-Ikuenobe, F., Piedrahita, J. C., Rodríguez-Cuevas, M., Cardona, A., Sobel, E. R., Parra, M., Valencia, V., Patiño, A., Jaramillo-Rios, J. S., Flores, M., & Glodny, J. (2023). Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strike‐slip tectonics: A source to sink study of the Magdalena Basin. Basin Research. https://doi.org/10.1111/bre.12769
Zapata, Sebastian, Cardona, A., Jaramillo, C., Valencia, V., & Vervoort, J. (2016). U-Pb LA-ICP-MS Geochronology and Geochemistry of Jurassic Volcanic and Plutonic Rocks from the Putumayo Region (Southern Colombia): Tectonic Setting and Regional Correlations. Revista Boletín de Geología, 38(2), 21–38. https://doi.org/10.18273/revbol.v38n2-2016001
Zhou, R., Schoenbohm, L. M., Sobel, E. R., Davis, D. W., & Glodny, J. (2017). New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation. Geological Society of America Bulletin, 129(1–2), 152– 170. https://doi.org/10.1130/b31384.1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 108 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Andes colombianos
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85771/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85771/2/Laura%20Cristina%20Calder%c3%b3n%20D%c3%adaz_2024_tesisconfidencial.pdf
https://repositorio.unal.edu.co/bitstream/unal/85771/3/Laura%20Cristina%20Calder%c3%b3n%20D%c3%adaz_2024_licenciaembargo.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
06017eaba94c8aa12a68c09e53e60ec9
4c1a1cdd6ac5cedfe4ea36a0d6abb70f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886056119762944
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbZapata Henao, Sebastian8082b05766d2d5ae117feebfd8e13eebCardona Molina, Agustín765d759de5d84bc9085321c1634df535Calderón Díaz, Laura Cristinac69c6f4d8e9eacb2855c5abd83a4023cGrupo de Estudios en Geología y Geofísica EgeoCalderón Díaz, Laura Cristina (0000-0002-3523-9017)2024-03-05T18:20:39Z2024-03-05T18:20:39Z2023https://repositorio.unal.edu.co/handle/unal/85771Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasExtensional and compressional basins can evolve over tens of millions of years through multiple stages under the same tectonic regime. The Cretaceous tectonic evolution of the Colombian Andes is characterized by shifts between compressional, neutral, and extensional tectonics. The upper plate response to these changes is recorded in the Cretaceous sedimentary rocks along the Western, Central, and Eastern cordilleras, as well as in their bounding basins, including the Upper Magdalena Basin. We integrated field observations, petrography, geochronology, and thermochronology in the Cretaceous sedimentary units preserved in the southern Upper Magdalena Basin and in the basement adjacent to the basin to evaluate the provenance of these units, the exhumation patterns of the source areas and the response of the sedimentary systems to the tectonic changes. The provenance results together with the detrital and bedrock cooling ages suggest exhumation during the Early Cretaceous, which combined with regional magmatic and sedimentary patterns is interpreted as extensional exhumation between ~145 and 100 Ma, during two different stages of crustal extension. Between ~100 and 80 Ma, sedimentation in the Villeta Group represents the end of the extension and the onset of compression, which was characterized by minor rock uplift within the basin. Between 80 and 65 Ma, two subsequent compressional phases caused changes in the sedimentary patterns that resulted in the burial of a previously exhumed horst block and the apparition of new source areas. These major changes in the source areas and sedimentary systems are the result of multiphase deformation episodes during prolonged extensional and compressional phases; highlighting the stages of tectonic evolution that characterize extensional to compressional settings.Las cuencas extensionales y compresionales pueden evolucionar a lo largo de decenas de millones de años a través de múltiples etapas bajo el mismo régimen tectónico. La evolución tectónica Cretácica de los Andes colombianos se caracteriza por cambios entre tectónica compresional, neutra y extensional. La respuesta de la placa superior a estos cambios se registra en las rocas sedimentarias Cretácicas a lo largo de las cordilleras Occidental, Central y Oriental, así como en las cuencas adyacentes, incluida la Cuenca del Valle Superior del Magdalena. En este trabajo integramos observaciones de campo, petrografía, geocronología y termocronología en las unidades sedimentarias Cretácicas preservadas en el sur del Valle Superior del Magdalena y en el basamento adyacente a la cuenca para evaluar la procedencia de estas unidades, los patrones de exhumación de las áreas fuente y la respuesta de los sistemas sedimentarios a los cambios tectónicos. Los resultados de procedencia, junto con las edades de enfriamiento detríticas y del basamento, sugieren una exhumación durante el Cretácico Temprano, que, combinada con patrones magmáticos y sedimentarios regionales, se interpreta como exhumación extensional entre ~145 y 100 millones de años, durante dos etapas diferentes de extensión cortical. Entre ~100 y 80 millones de años, la sedimentación en el Grupo Villeta representa el final de la extensión y el comienzo de la compresión, caracterizada por un levantamiento menor de rocas dentro de la cuenca. Entre 80 y 65 millones de años, dos fases compresionales posteriores causaron cambios en los patrones sedimentarios que resultaron en el enterramiento de un bloque de horst previamente exhumado y la aparición de nuevas áreas fuente. Estos cambios importantes en las áreas fuente y en los sistemas sedimentarios son el resultado de episodios de deformación polifásica durante fases prolongadas de extensión y compresión, destacando las etapas de evolución tectónica que caracterizan configuraciones extensionales y compresionales (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Recursos Minerales108 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaEstratigrafíaSource-to-sinkExtension and compressional tectonicsNorthern AndesThermochronologyAndes del NorteTermocronologíaProcedencia sedimentariaCuencas extensionales y broken forelandTectónica cretácicaTermocronologíaGeocronologíaExtensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.Múltiples fases extensionales y compresionales durante el cretácico en el Valle Superior del Magdalena: un análisis de procedencia y sistemas sedimentarios)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAndes colombianosBernet, M., Brandon, M. T., Garver, J. I., & Molitor, B. R. (2004). Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. In Detrital thermochronology - Provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of America.Fleischer, R. L., & Price, P. B. (1964). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28(10–11), 1705–1714. https://doi.org/10.1016/0016-7037(64)90017-1Gleadow, A. J. W., Hurford, A. J., & Quaife, R. D. (1976). Fission track dating of zircon: Improved etching techniques. Earth and Planetary Science Letters, 33(2), 273–276. https://doi.org/10.1016/0012-821x(76)90235-1Kohn, B., Chung, L., & Gleadow, A. (2019). Fission-track analysis: Field collection, sample preparation and data acquisition. In Fission-Track Thermochronology and its Application to Geology (pp. 25–48). Springer International Publishing.Acosta, J., Velandia, F., Osorio, J., Lonergan, L., & Mora, H. (2007). Strike-slip deformation within the Colombian Andes. Geological Society Special Publication, 272(1), 303–319. https://doi.org/10.1144/gsl.sp.2007.272.01.16Amaya-López, C., Weber Scharff, M., Ibáñez Mejía, M., Cuadros Jiménez, F. A., Restrepo Álvarez, J. J., Botelho, N. F., Maya Sánchez, M., Pérez Parra, O. M., & Ramírez Cárdenas, C. (2021). San José de Guaviare Syenite, Colombia: Repeated Ediacaran intrusions in the northwestern Amazonian Craton. Boletín Geológico, 48(1), 49–79. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.503Anderson, T. A. (1972). Paleogene nonmarine gualanday group, Neiva basin, Colombia, and regional development of the Colombian Andes. Geological Society of America Bulletin, 83(8), 2423. https://doi.org/10.1130/0016-7606(1972)83[2423:pnggnb]2.0.co;2Angiolini, L., Racheboeuf, P. R., Villarroel, C. A., & Concha, A. E. (2021). Stratigraphy and brachiopod fauna of the Carboniferous El Imán Formation, Colombia. Spanish Journal of Palaeontology, 18(2), 151. https://doi.org/10.7203/sjp.18.2.21641Bajolet, F., Chardon, D., Rouby, D., Dall’Asta, M., Loparev, A., Couëffe, R., & Roig, J.-Y. (2022). The sediment routing systems of Northern South America since 250 Ma. EarthScience Reviews, 232(104139), 104139. https://doi.org/10.1016/j.earscirev.2022.104139Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jimenez, G., Mesa, A., & Valencia, V. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time. Geological Society Special Publication, 377(1), 285–314. https://doi.org/10.1144/sp377.5Bernet, M., Brandon, M., Garver, J., Balestieri, M. L., Ventura, B., & Zattin, M. (2009). Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Research, 21(6), 781–798. https://doi.org/10.1111/j.1365-2117.2009.00400.xBrune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., & Shillington, D. J. (2023). Geodynamics of continental rift initiation and evolution. Nature Reviews. Earth & Environment, 4(4), 235–253. https://doi.org/10.1038/s4301 7-023- 00391-3Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS Geochronology and Regional Correlation of Middle Jurassic Intrusive Rocks from the Garzon Massif, Upper Magdalena Valley and Central Cordillera, Southern Colombia. Revista Boletín de Geología, 32(2), 93–109. http://www.scielo.org.co/scielo.php?pid=S0120- 02832010000200007&script=sci_arttext&tlng=enCarvajal-Torres, J., Catuneanu, O., Mora, A., Caballero, V., & Reyes, M. (2022). First-order stratigraphic boundaries of the Late Cretaceous–Paleogene retroarc foreland basin in Colombia. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.876140Chen, W.-H., Yan, Y., Carter, A., Huang, C.-Y., Yumul, G. P., Jr, Dimalanta, C. B., GaboRatio, J. A. S., Wang, M.-H., Chen, D., Shan, Y., Zhang, X.-C., & Liu, W. (2021). Stratigraphy and provenance of the Paleogene syn‐rift sediments in central‐southern Palawan: Paleogeographic significance for the South China margin. Tectonics, 40(9). https://doi.org/10.1029/2021tc006753del Papa, C., Payrola, P., Pingel, H., Hongn, F., Do Campo, M., Sobel, E. R., Lapiana, A., Cottle, J., Glodny, J., & Strecker, M. R. (2021). Stratigraphic response to fragmentation of the Miocene Andean foreland basin, NW Argentina. Basin Research, 33(6), 2914–2937. https://doi.org/10.1111/bre.12589Dunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3–12. https://doi.org/10.1016/s0098-3004(01)00024-3Flowers, Rebecca M. (2009). Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277(1–2), 148–155. https://doi.org/10.1016/j.epsl.2008.10.005Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology: Transdimensional Inverse Thermal History. Journal of Geophysical Research, 117(B2). https://doi.org/10.1029/2011jb008825Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001805Girault, I., Basile, C., Bernet, M., Paquette, J.-L., Heuret, A., Loncke, L., Poetisi, E., & Balvay, M. (2023). Thermochronology and U–Pb dating of detrital zircons from the Demerara Plateau (French Guiana‐Suriname): Implications for the provenance of the Early Cretaceous syn‐rift sedimentation. Basin Research, 35(4), 1386–1406. https://doi.org/10.1111/bre.12758Guerrero, J., Sarmiento, G., & Narrete, R. (2000). The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45–110. http://www.revistas.unal.edu.co/index.php/geocol/article/view/31536Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10), 1423–1442. https://doi.org/10.1130/b30118.1Jaramillo, C., Yepes, O., & Etayo-Serna, F. (1994). Palinoestratigrafía del Grupo Olini (Coniaciano-Campaniano), Valle Superior del Magdalena, Colombia. Estudios Geologicos del Valle Superior del MagdalenaLeal-Mejía, H., Shaw, R. P., & Melgarejo I Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. Geology and Tectonics of Northwestern South America: The Pacific-CaribbeanAndean Junction. 253–410.Martín-Rincón, C. L., Terraza-Melo, R., Rojas Parra, N. R., Martínez Aparicio, G. A., Rojas Jiménez, S., & Hernández González, J. S. (2022). The Upper Cretaceous (SantonianMaastrichtian) phosphate deposits in the west of the Neiva subbasin, Upper Magdalena Valley, Colombia. Boletín Geológico, 49(2), 75–96. https://doi.org/10.32685/0120- 1425/bol.geol.49.2.2022.621Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903Ordóñez-Carmona, O., Restrepo Álvarez, J. J., & Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 372–382.https://doi.org/10.1016/j.jsames.2006.07.005Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research. https://doi.org/10.1111/j.1365-2117.2009.00459.xPérez-Consuegra, N., Teixell, A., Gómez-Gras, D., & Stockli, D. F. (2019). Reconstructing extensional basin architecture and provenance in the Marrakech high atlas of morocco: Implications for rift basins and inversion tectonics. Tectonics, 38(5), 1584–1608. https://doi.org/10.1029/2018tc005413Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenicerosion. Annual Review of Earth and Planetary Sciences, 34(1), 419–466.https://doi.org/10.1146/annurev.earth.34.031405.125202Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2Sarmiento-Rojas, Luis Fernando. (2019). Cretaceous stratigraphy and Paleo-facies maps of northwestern south America. In Geology and Tectonics of Northwestern South America (pp. 673–747). Springer International PublishingSiravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002Vásquez, M., & Altenberger, U. (2005). Mid-Cretaceous extension-related magmatism in the eastern Colombian Andes. Journal of South American Earth Sciences, 20(3), 193–210. https://doi.org/10.1016/j.jsames.2005.05.010Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003Wagner, G., Gleadow, A., & Fitzgerald, P. (1989). The significance of the partial annealing zone in apatite fission-track analysis: Projected track length measurements and uplift chronology of the transantarctic mountains. Chemical Geology: Isotope Geoscience Section, 79(4), 295–305. https://doi.org/10.1016/0168-9622(89)90035-3Zapata, S., Calderon-Diaz, L., Jaramillo, C., Oboh-Ikuenobe, F., Piedrahita, J. C., Rodríguez-Cuevas, M., Cardona, A., Sobel, E. R., Parra, M., Valencia, V., Patiño, A., Jaramillo-Rios, J. S., Flores, M., & Glodny, J. (2023). Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strike‐slip tectonics: A source to sink study of the Magdalena Basin. Basin Research. https://doi.org/10.1111/bre.12769Zapata, Sebastian, Cardona, A., Jaramillo, C., Valencia, V., & Vervoort, J. (2016). U-Pb LA-ICP-MS Geochronology and Geochemistry of Jurassic Volcanic and Plutonic Rocks from the Putumayo Region (Southern Colombia): Tectonic Setting and Regional Correlations. Revista Boletín de Geología, 38(2), 21–38. https://doi.org/10.18273/revbol.v38n2-2016001Zhou, R., Schoenbohm, L. M., Sobel, E. R., Davis, D. W., & Glodny, J. (2017). New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation. Geological Society of America Bulletin, 129(1–2), 152– 170. https://doi.org/10.1130/b31384.1InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85771/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALLaura Cristina Calderón Díaz_2024_tesisconfidencial.pdfLaura Cristina Calderón Díaz_2024_tesisconfidencial.pdfTesis de Maestría en Ingeniería - Recursos Mineralesapplication/pdf4796718https://repositorio.unal.edu.co/bitstream/unal/85771/2/Laura%20Cristina%20Calder%c3%b3n%20D%c3%adaz_2024_tesisconfidencial.pdf06017eaba94c8aa12a68c09e53e60ec9MD52CC-LICENSELaura Cristina Calderón Díaz_2024_licenciaembargo.pdfLaura Cristina Calderón Díaz_2024_licenciaembargo.pdfapplication/pdf239267https://repositorio.unal.edu.co/bitstream/unal/85771/3/Laura%20Cristina%20Calder%c3%b3n%20D%c3%adaz_2024_licenciaembargo.pdf4c1a1cdd6ac5cedfe4ea36a0d6abb70fMD53unal/85771oai:repositorio.unal.edu.co:unal/857712024-03-08 13:59:45.34Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=