Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces
Consider the noncrossing set partitions of an n-element set which, either do not use the block {n - 1, n} or which do not use both the singleton block {n} and a block containing 1 and n - 1. In this article we study the subposet of the noncrossing partition lattice induced by these elements, and sho...
- Autores:
-
Mühle, Henri
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66425
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66425
http://bdigital.unal.edu.co/67453/
- Palabra clave:
- 51 Matemáticas / Mathematics
noncrossing partition
supersolvable lattice
left-modular lattice
parking function
lexicographic shellability
NBB base
Möbius function
Particiones sin cruces
retículo supersoluble
retículo modular izquierdo
funciones de parqueo
descascarabilidad lexicográfica
bases NBB
función Möbius
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4419c575e3d278d9e58f904d7a81831a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66425 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
title |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
spellingShingle |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces 51 Matemáticas / Mathematics noncrossing partition supersolvable lattice left-modular lattice parking function lexicographic shellability NBB base Möbius function Particiones sin cruces retículo supersoluble retículo modular izquierdo funciones de parqueo descascarabilidad lexicográfica bases NBB función Möbius |
title_short |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
title_full |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
title_fullStr |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
title_full_unstemmed |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
title_sort |
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces |
dc.creator.fl_str_mv |
Mühle, Henri |
dc.contributor.author.spa.fl_str_mv |
Mühle, Henri |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics noncrossing partition supersolvable lattice left-modular lattice parking function lexicographic shellability NBB base Möbius function Particiones sin cruces retículo supersoluble retículo modular izquierdo funciones de parqueo descascarabilidad lexicográfica bases NBB función Möbius |
dc.subject.proposal.spa.fl_str_mv |
noncrossing partition supersolvable lattice left-modular lattice parking function lexicographic shellability NBB base Möbius function Particiones sin cruces retículo supersoluble retículo modular izquierdo funciones de parqueo descascarabilidad lexicográfica bases NBB función Möbius |
description |
Consider the noncrossing set partitions of an n-element set which, either do not use the block {n - 1, n} or which do not use both the singleton block {n} and a block containing 1 and n - 1. In this article we study the subposet of the noncrossing partition lattice induced by these elements, and show that it is a supersolvable lattice, and therefore lexicographically shellable. We give a combinatorial model for the NBB bases of this lattice and derive an explicit formula for the value of its Möbius function between least and greatest element.This work is motivated by a recent article by M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, in which they introduce a subposet of the noncrossing partition lattice that is determined by parking functions with certain forbidden entries. In particular, they conjecture that the resulting poset always has a contractible order complex. We prove this conjecture by embedding their poset into ours, and showing that it inherits the lexicographic shellability. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:06:13Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:06:13Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2357-4100 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66425 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67453/ |
identifier_str_mv |
ISSN: 2357-4100 |
url |
https://repositorio.unal.edu.co/handle/unal/66425 http://bdigital.unal.edu.co/67453/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/recolma/article/view/74562 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Mühle, Henri (2018) Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. Revista Colombiana de Matemáticas, 52 (1). pp. 65-86. ISSN 2357-4100 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66425/1/74562-395559-1-SM.pdf https://repositorio.unal.edu.co/bitstream/unal/66425/2/74562-395559-1-SM.pdf.jpg |
bitstream.checksum.fl_str_mv |
09023465c2a9a32c7b746a014dbc9b1c cfb7f047cd2e9fc29cd14e480e058759 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089315608690688 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mühle, Henrib509ba03-7bbc-4116-924d-50bc33230ad43002019-07-03T02:06:13Z2019-07-03T02:06:13Z2018-01-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66425http://bdigital.unal.edu.co/67453/Consider the noncrossing set partitions of an n-element set which, either do not use the block {n - 1, n} or which do not use both the singleton block {n} and a block containing 1 and n - 1. In this article we study the subposet of the noncrossing partition lattice induced by these elements, and show that it is a supersolvable lattice, and therefore lexicographically shellable. We give a combinatorial model for the NBB bases of this lattice and derive an explicit formula for the value of its Möbius function between least and greatest element.This work is motivated by a recent article by M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, and I. Nicolas, in which they introduce a subposet of the noncrossing partition lattice that is determined by parking functions with certain forbidden entries. In particular, they conjecture that the resulting poset always has a contractible order complex. We prove this conjecture by embedding their poset into ours, and showing that it inherits the lexicographic shellability.Considere las particiones sin cruces de un conjunto de n elementos que no usan el bloque {n - 1, n}, ni usan a la vez el bloque {n} y un bloque que contenga a 1 y n - 1. En este artículo estudiamos el subposet del retículo de particiones sin cruces inducido por estos elementos. Probamos que este retículo es supersoluble, y por lo tanto es lexicogríaficamente descascarable. También damos un modelo combinatorio de las bases NBB de este retículo y derivamos una fórmula explicita para el valor de su función de Möbius entre el elemento mínimo y el máximo. Este trabajo es motivado por un artículo reciente de M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo, e I. Nicolas en el cual introducen un subposet del retículo de particiones sin cruces que es determinado por funciones de parqueo con ciertas entradas prohibidas. En particular, ellos conjeturan que el poset resultante siempre tiene un complejo de orden contráctil. En este artículo probamos esta conjetura, sumergiendo su poset en el nuestro y mostrando que esta inmersión hereda la descascarabilidad lexicográfica.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/74562Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasMühle, Henri (2018) Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces. Revista Colombiana de Matemáticas, 52 (1). pp. 65-86. ISSN 2357-410051 Matemáticas / Mathematicsnoncrossing partitionsupersolvable latticeleft-modular latticeparking functionlexicographic shellabilityNBB baseMöbius functionParticiones sin crucesretículo supersolubleretículo modular izquierdofunciones de parqueodescascarabilidad lexicográficabases NBBfunción MöbiusTwo Posets of Noncrossing Partitions Coming From Undesired Parking SpacesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL74562-395559-1-SM.pdfapplication/pdf474354https://repositorio.unal.edu.co/bitstream/unal/66425/1/74562-395559-1-SM.pdf09023465c2a9a32c7b746a014dbc9b1cMD51THUMBNAIL74562-395559-1-SM.pdf.jpg74562-395559-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5405https://repositorio.unal.edu.co/bitstream/unal/66425/2/74562-395559-1-SM.pdf.jpgcfb7f047cd2e9fc29cd14e480e058759MD52unal/66425oai:repositorio.unal.edu.co:unal/664252024-05-16 23:09:21.704Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |