An approximate orthogonal decomposition method for the solution of the generalized liouville equation

We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are inves...

Full description

Autores:
Dulov, Eugene
Sinitsyn, Alexandre
Tipo de recurso:
Article of journal
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73618
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73618
http://bdigital.unal.edu.co/38094/
Palabra clave:
Liouville equation
orthonormal system
eigenfunction
strong and weak convergence
mean convergence
Camassa- Holm equation
Hermite functions.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_44049f2fd2225ab5cd43f2f523e822e1
oai_identifier_str oai:repositorio.unal.edu.co:unal/73618
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dulov, Eugene4973f2e9-1a67-4263-b945-336d6c16902d300Sinitsyn, Alexandre99d56fa8-88a3-41cd-878f-29de9994a5d73002019-07-03T16:35:53Z2019-07-03T16:35:53Z2007https://repositorio.unal.edu.co/handle/unal/73618http://bdigital.unal.edu.co/38094/We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutionsare represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40465Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380Dulov, Eugene and Sinitsyn, Alexandre (2007) An approximate orthogonal decomposition method for the solution of the generalized liouville equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 .An approximate orthogonal decomposition method for the solution of the generalized liouville equationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTLiouville equationorthonormal systemeigenfunctionstrong and weak convergencemean convergenceCamassa- Holm equationHermite functions.ORIGINAL40465-181993-1-PB.pdfapplication/pdf3164446https://repositorio.unal.edu.co/bitstream/unal/73618/1/40465-181993-1-PB.pdfb2f8e8a6ee5e642ff87725a3ee025130MD51THUMBNAIL40465-181993-1-PB.pdf.jpg40465-181993-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4990https://repositorio.unal.edu.co/bitstream/unal/73618/2/40465-181993-1-PB.pdf.jpg2b328e165a7f1f5205b956b0a1528975MD52unal/73618oai:repositorio.unal.edu.co:unal/736182024-06-25 23:11:45.109Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv An approximate orthogonal decomposition method for the solution of the generalized liouville equation
title An approximate orthogonal decomposition method for the solution of the generalized liouville equation
spellingShingle An approximate orthogonal decomposition method for the solution of the generalized liouville equation
Liouville equation
orthonormal system
eigenfunction
strong and weak convergence
mean convergence
Camassa- Holm equation
Hermite functions.
title_short An approximate orthogonal decomposition method for the solution of the generalized liouville equation
title_full An approximate orthogonal decomposition method for the solution of the generalized liouville equation
title_fullStr An approximate orthogonal decomposition method for the solution of the generalized liouville equation
title_full_unstemmed An approximate orthogonal decomposition method for the solution of the generalized liouville equation
title_sort An approximate orthogonal decomposition method for the solution of the generalized liouville equation
dc.creator.fl_str_mv Dulov, Eugene
Sinitsyn, Alexandre
dc.contributor.author.spa.fl_str_mv Dulov, Eugene
Sinitsyn, Alexandre
dc.subject.proposal.spa.fl_str_mv Liouville equation
orthonormal system
eigenfunction
strong and weak convergence
mean convergence
Camassa- Holm equation
Hermite functions.
topic Liouville equation
orthonormal system
eigenfunction
strong and weak convergence
mean convergence
Camassa- Holm equation
Hermite functions.
description We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutionsare represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.
publishDate 2007
dc.date.issued.spa.fl_str_mv 2007
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:35:53Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:35:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73618
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/38094/
url https://repositorio.unal.edu.co/handle/unal/73618
http://bdigital.unal.edu.co/38094/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/bolma/article/view/40465
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380
dc.relation.references.spa.fl_str_mv Dulov, Eugene and Sinitsyn, Alexandre (2007) An approximate orthogonal decomposition method for the solution of the generalized liouville equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Boletín de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73618/1/40465-181993-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73618/2/40465-181993-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv b2f8e8a6ee5e642ff87725a3ee025130
2b328e165a7f1f5205b956b0a1528975
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089347824091136