An approximate orthogonal decomposition method for the solution of the generalized liouville equation
We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are inves...
- Autores:
-
Dulov, Eugene
Sinitsyn, Alexandre
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2007
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73618
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73618
http://bdigital.unal.edu.co/38094/
- Palabra clave:
- Liouville equation
orthonormal system
eigenfunction
strong and weak convergence
mean convergence
Camassa- Holm equation
Hermite functions.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_44049f2fd2225ab5cd43f2f523e822e1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73618 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dulov, Eugene4973f2e9-1a67-4263-b945-336d6c16902d300Sinitsyn, Alexandre99d56fa8-88a3-41cd-878f-29de9994a5d73002019-07-03T16:35:53Z2019-07-03T16:35:53Z2007https://repositorio.unal.edu.co/handle/unal/73618http://bdigital.unal.edu.co/38094/We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutionsare represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40465Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380Dulov, Eugene and Sinitsyn, Alexandre (2007) An approximate orthogonal decomposition method for the solution of the generalized liouville equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 .An approximate orthogonal decomposition method for the solution of the generalized liouville equationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTLiouville equationorthonormal systemeigenfunctionstrong and weak convergencemean convergenceCamassa- Holm equationHermite functions.ORIGINAL40465-181993-1-PB.pdfapplication/pdf3164446https://repositorio.unal.edu.co/bitstream/unal/73618/1/40465-181993-1-PB.pdfb2f8e8a6ee5e642ff87725a3ee025130MD51THUMBNAIL40465-181993-1-PB.pdf.jpg40465-181993-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4990https://repositorio.unal.edu.co/bitstream/unal/73618/2/40465-181993-1-PB.pdf.jpg2b328e165a7f1f5205b956b0a1528975MD52unal/73618oai:repositorio.unal.edu.co:unal/736182024-06-25 23:11:45.109Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
title |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
spellingShingle |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation Liouville equation orthonormal system eigenfunction strong and weak convergence mean convergence Camassa- Holm equation Hermite functions. |
title_short |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
title_full |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
title_fullStr |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
title_full_unstemmed |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
title_sort |
An approximate orthogonal decomposition method for the solution of the generalized liouville equation |
dc.creator.fl_str_mv |
Dulov, Eugene Sinitsyn, Alexandre |
dc.contributor.author.spa.fl_str_mv |
Dulov, Eugene Sinitsyn, Alexandre |
dc.subject.proposal.spa.fl_str_mv |
Liouville equation orthonormal system eigenfunction strong and weak convergence mean convergence Camassa- Holm equation Hermite functions. |
topic |
Liouville equation orthonormal system eigenfunction strong and weak convergence mean convergence Camassa- Holm equation Hermite functions. |
description |
We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutionsare represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations. |
publishDate |
2007 |
dc.date.issued.spa.fl_str_mv |
2007 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T16:35:53Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T16:35:53Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73618 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/38094/ |
url |
https://repositorio.unal.edu.co/handle/unal/73618 http://bdigital.unal.edu.co/38094/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/bolma/article/view/40465 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas Boletín de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 |
dc.relation.references.spa.fl_str_mv |
Dulov, Eugene and Sinitsyn, Alexandre (2007) An approximate orthogonal decomposition method for the solution of the generalized liouville equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 129-172 2357-6529 0120-0380 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Boletín de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73618/1/40465-181993-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73618/2/40465-181993-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
b2f8e8a6ee5e642ff87725a3ee025130 2b328e165a7f1f5205b956b0a1528975 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089347824091136 |