Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales
ilustraciones, diagramas, mapas
- Autores:
-
Mejía López, Andrés Alejando
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86366
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Sensores remotos
Fosas comunes
Índices espectrales
Aprendizaje de máquina
Imágenes multiespectrales
Ortoimagen
Remote sensing
Mass graves
Spectral index
Machine learning
Multispectral imaging
Orthophoto
fosa común
geolocalización
procesamiento digital de imágenes
mass grave
geopositioning
digital image processing
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4403d9bde2a848a53827e686f770c087 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86366 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
dc.title.translated.eng.fl_str_mv |
Mass Graves identification methodology based on Multispectral Imaging |
title |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
spellingShingle |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Sensores remotos Fosas comunes Índices espectrales Aprendizaje de máquina Imágenes multiespectrales Ortoimagen Remote sensing Mass graves Spectral index Machine learning Multispectral imaging Orthophoto fosa común geolocalización procesamiento digital de imágenes mass grave geopositioning digital image processing |
title_short |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
title_full |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
title_fullStr |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
title_full_unstemmed |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
title_sort |
Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales |
dc.creator.fl_str_mv |
Mejía López, Andrés Alejando |
dc.contributor.advisor.spa.fl_str_mv |
Ochoa Gutiérrez, Luis Hernán |
dc.contributor.author.spa.fl_str_mv |
Mejía López, Andrés Alejando |
dc.contributor.orcid.spa.fl_str_mv |
Mejía López, Andrés Alejandro [0009-0000-7614-7429] |
dc.contributor.googlescholar.spa.fl_str_mv |
Mejía López, Andrés Alejandro [5pnOby4AAAAJ] |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Sensores remotos Fosas comunes Índices espectrales Aprendizaje de máquina Imágenes multiespectrales Ortoimagen Remote sensing Mass graves Spectral index Machine learning Multispectral imaging Orthophoto fosa común geolocalización procesamiento digital de imágenes mass grave geopositioning digital image processing |
dc.subject.proposal.spa.fl_str_mv |
Sensores remotos Fosas comunes Índices espectrales Aprendizaje de máquina Imágenes multiespectrales Ortoimagen |
dc.subject.proposal.eng.fl_str_mv |
Remote sensing Mass graves Spectral index Machine learning Multispectral imaging Orthophoto |
dc.subject.wikidata.spa.fl_str_mv |
fosa común geolocalización procesamiento digital de imágenes |
dc.subject.wikidata.eng.fl_str_mv |
mass grave geopositioning digital image processing |
description |
ilustraciones, diagramas, mapas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-03T00:59:44Z |
dc.date.available.none.fl_str_mv |
2024-07-03T00:59:44Z |
dc.date.issued.none.fl_str_mv |
2024-01-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86366 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86366 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Auravant. (2023). Auravant Agricultura de Precisión. Recuperado el 8 de mayo de 203, de https://www.auravant.com/blog/agricultura-de-precision/indices-de-vegetacion-y-como-interpretarlos/#quees-gndvi Ballarina, M., Ballettia, C., & Guerra, F. (2015). Action cameras and low-cost aerial vehicles in archaeology. F. Remondino, M.R. Shortis (Eds.), Spiedigitallibrary.Org. doi:10.1117/12.2184692 Blau, S., Sterenberg, J., Weeden, P., Urzedo, F., Wright, R., & Watson, C. (2018). Exploring non-invasive approaches to assist in the detection of clandestine human burials: developing a way forward. Forensic Sciences Research, 3(4), 320-342. doi:10.1080/20961790.2018.1493809 Boyd, R. M. (1979). Buried Body Cases. FBI Law Enforcement Bulletin, 48(2), 1-7 Brabazon, H., DeBruyb, J. M., Lenaghab, S. C., Li, F., Mundorff, A. Z., Steadman, D. W., & Stewart, C. N. (2020). Plants to Remotely Detect Human Decomposition? Trends in Plant Science Brabazon, H., DeBruyn, J. M., Lenaghan, S. C., Li, F., Mundorff, A. Z., Steadman, D. W., & Jr1, C. N. (2020). Plants to Remotely Detect Human Decomposition? Trends in Plant Science, 25(10). doi:10.1016/j.tplants.2020.07.013 Carabassa, V., Montero, P., Crespo, M., Padró, J. C., & Alcañiz, J. M. (2020). Instrucciones técnicas para el uso de drones en el seguimiento de actividades extractivas. Generalitat de Catalunya Castaño-Marín, A. M., Sánchez-Vívas, D. F., Duarte-Carvajalino, J. M., Góez-Vinasco, G. A., & Araujo-Carrillo, G. A. (2023). Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery. AgriEngineering, 5(2023), 325-337. doi:10.3390/agriengineering5010021 CNMH. (2016). Hasta encontrarlos. El drama de la desaparición. Centro Nacional de Memoria Histórica. Imprenta Nacional de Colombia Davenport, G. (2018). Remote Sensing Technology in Forensic Investigations: Geophysical Techniques to Locate Clandestine Graves and Hidden Evidence. En T. Y. Group (Ed.). Boca Ratón, FL: CRC Press Davenport, G. C. (2001). Remote Sensing Applications in Forensic Investigations. Historical Archaeology, 35(1), 87-100. Retrieved from http://www.jstor.org/stable/25616896?origin=JSTOR-pdf Doro, K. O., Kolapkar, A. M., Bank, C.-G., Wescott, D. J., & Mickleburgh, H. L. (2022). Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Science International(335). doi:10.1016/j.forsciint.2022.111289 Enkhtuya, J., Damdinsuren, A., Ulziibat, B., & & Altangerel, M.-E. (2022). Land cover classification using machine-learning method and vegetation indices. Mongolian Journal of Geography and Geoecology, 59(43), 235-242. doi:10.5564/mjgg.v59i43.2532 Equitas. (2015). MESP Modelamientos Espacial y Esatdístico Predictivo. Bogotá D.C. Evers, R., & Masters, P. (2018). The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera. Forensic Science International(289), 408-418. doi:10.1016/j.forsciint.2018.06.020 FAFG. (2013). Fundación de Antropología Forense de Guatemala. Recuperado el 20 de marzo de 2017, de https://www.fafg.org/bd/index.php Fenger-Nielsen, R. (2017). MicaSense Image Processing Sequoia. Recuperado el mayo de 2023, de Github: https://github.com/rasmusfenger/micasense_imageprocessing_sequoia Flach, P. (2012). MACHINE LEARNING: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press. Obtenido de www.cambridge.org/9781107096394 Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal Of Plant Physiology, 160(3), 271-282. doi:10.1078/0176-1617-00887 Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298. doi:10.1016/S0034-4257(96)00072-7 IDEAM. (2017). Atlas Climatológico de Colombia. Bogotá D.C.: Imprenta Nacional de Colombia. Jessee, E., & Skinner, M. (2005). A Typology of mass grave and mass grave-related sites. Forensics Science International(152), 55-59 Kalacska, M. E., Bell, L. S., Sánchez-Azofeifa, A., & Celli, T. (2009). The Application of Remote Sensing for Detecting Mass Graves: An Experimental Case Study fron Costa Rica. Journal of Forensic Sciences, 54(1), 159-166. doi:10.1111/j.1556-4029.2008.00938.x Kalacska, M., & Bell, L. S. (2006). Remote Sensing as Tool for the Deteccion of Clandestine Mass Graves. Canadian Society of Forensic Science Journal, 39(1), 1-13 Keenana, S. W., Schaeffera, S. M., Jimb, V. L., & DeBruyna, J. M. (2018). Mortality hotspots: Nitrogen cycling in forest soils during vertebrate decomposition. Soil Biology and Biochemistry(121), 165-176. doi:10.1016/j.soilbio.2018.03.005 Lebanc, G., Kalacska, M., & Soffer, R. (2014). Detecction od single graves by airbone hyperespectral imaging. Forensic Science International(245), 17-23. doi:10.1016/j.forsciint.2014.08.020 Li, G., Lu, D., Moran, E., & Hetrick, S. (2011). Land-cover classification in a moist tropical region of Brazil with. Int J Remote Sens., 32(23). doi:10.1080/01431161.2010.532831 Molina, C. M. (2016). Metodología para la búsqueda de fosas a partir de la interpretación de anomalías en los datos obtenidos mediante la aplicación geofísica de alta resolución. Bogotá: Universidad Nacional de Colombia. Molina, C. M., Pringle, J. K., & Hernández, O. (2013). Experiments to detect clandestine graves from interpreted high resolution geophysical anomalies. Cancún, México. Molina, C. M., Pringle, J. K., Saumett, M., & Evans, G. T. (2016). Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America. Forensic Science International, 106-115. doi:10.1016/j.forsciint.2016.02.009 Molina, C. M., Pringle, J. K., Saumett, M., & Hernández, O. (2015). Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany. Forensic Science International, 61-70. doi:doi=10.1016/j.forsciint.2014.12.011 Molina, C. M., Wisniewski, K., Heaton, V., Pringle, J. K., Avila, E. F., Herrera, L. A., . . . Baena, A. (2022). Monitoring of simulated clandestine graves of dismembered victims using UAVs, electrical tomography, and GPR over one year to aid investigations of human rights violations in Colombia, South America. Journal of Forensic Sciences, 67(3), 1060-1071. doi:10.1111/1556-4029.14962 Norton, E. A. (Noviembre de 2019). A multi-temporal approach to using multispectral remote sensing for the prospection of clandestine mass graves in temperate environments Potic, I., Srdiç, Z., Boris Vakanjac, S. B., Bankoviç, R., & Jovanoviç, J. M. (2023). Improving Forest Detection Using Machine Learning andRemote Sensing: A Case Study in Southeastern Serbia. Applied Sciences, 13(14). doi:10.3390/app13148289 Rewehel, E. M., Li, J., Keshk, H. M., Kotb, A. S., Samir, I., & Hamd, A. (2022). Geometric Correction of Aerial Camera and LiDAR Hybrid System Data Using GNSS/IMU. IEEE 13th International Conference on Software Engineering and Service Science (ICSESS) (págs. 54-58). Beijing: IEEE Xplore. doi:doi: 10.1109/ICSESS54813.2022.9930276 Rossi, A. (2017). Predictive Models In Sport Science: Multi-Dimensional Analysis Of Football Training And Injury Prediction. Tesis Doctoral Rouse, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. (N. SP-351, Ed.) Third Earth Resources Technology Satellite–1 Syposium., 1 Sect. A, 309-317 Ruffell, A., & McKinley, J. (2014). Forensic Geomorphology. Geomorphology, 14-22. doi:10.1016/j.geomorph.2013.12.020 RUV. (ene de 2017). Registro Único de Victimas (RUV). Recuperado el 24 de febrero de 2017, de http://rni.unidadvictimas.gov.co/RUV Silván-Cárdenas, J., Caccavari-Garza, A., Quinto-Sánchez, M., Madrigal-Gómez, J., Coronado-Juárez, E., & Quiroz-Suarez, D. (2021). Assessing optical remote sensing for grave detection. Forensic Science International, 329. doi:10.1016/j.forsciint.2021.111064 SIRDEC. (24 de febrero de 2017). Registro Nacional de Desaparecidos. Recuperado el 24 de febero de 2017, de Sistema de Información Red de Desaparecidos y Cadávares: http://sirdec.medicinalegal.gov.co:38080/consultasPublicas/ Urbanová, P., Jurda, M., Vojtíšek, T., & Krajsa, J. (2017). Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey. Forensic Science International(281), 52-62. doi:10.1016/j.forsciint.2017.10.027 Witmer, F. D. (2015). Remote sensing of violent conflict: eyes from above. International Journal of Remote Sensing, 36(9), 2326-2352 Wu, C., Niu, Z., & Gao, S. (2010). Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. Journal Of Geophysical Research, 115(D12). doi:10.1029/2009JD013023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 75 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86366/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86366/2/84083684.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86366/3/84083684.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f866298c12765ebc758f97fddeb70831 94f7d40227a579bee33ac92e2cf8944f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089300715765760 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa Gutiérrez, Luis Hernán61135e0738aca82e58b88b6d224901a3600Mejía López, Andrés Alejando0afe4b9d24ede027a36561cf95439b3a600Mejía López, Andrés Alejandro [0009-0000-7614-7429]Mejía López, Andrés Alejandro [5pnOby4AAAAJ]2024-07-03T00:59:44Z2024-07-03T00:59:44Z2024-01-31https://repositorio.unal.edu.co/handle/unal/86366Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasEn Colombia, la identificación de fosas comunes se ha realizado de forma manual en la mayoría de los casos, es decir, para encontrar los sitios de enterramiento se usa como insumo la información dada por los victimarios o por los relatos de los familiares de las víctimas; estos métodos, además de imprecisos, son extremadamente lentos y costosos. Para incrementar las posibilidades de éxito se han abordado métodos de búsqueda basados en resistividad geofísica, magnetometría o radar de penetración del suelo; estos métodos sólo pueden ser usados en un área delimitada a menudo pequeña y que en muchos casos pueden ser de difícil acceso o se pueden encontrar en zonas en conflicto. Por esto, se ha visto la necesidad de implementar métodos que no impliquen acceso directo al terreno y que puedan abarcar áreas mayores, para agilizar la búsqueda, reduciendo el coste en tiempo y en dinero. En este trabajo se plantea que las fosas comunes se pueden identificar correlacionando los índices espectrales NDVI, GNDVI y GCI con el contenido de materia orgánica enterrada en las fosas comunes, entendiendo cómo afecta el contenido de materia orgánica de las fosas comunes la salud de las plantas que se encuentran sobre el área a estudiar. En la fase experimental se usó un sensor multiespectral con el fin de obtener imágenes del área en la cual se simularon tumbas con materia orgánica de origen animal y restos óseos humanos. Se obtuvieron y procesaron 297 imágenes en diferentes bandas, se construyeron ortoimágenes en el espectro verde, infrarrojo y rojo para calcular cada uno de los índices espectrales escogidos. Posteriormente, se realizó una clasificación supervisada, aplicando algoritmos de aprendizaje de máquinas, para identificar los sitios en los que se encontraban las fosas simuladas. (Texto tomado de la fuente).Identification of mass graves in Colombia has mostly been done manually, meaning that locating the burial sites relies on the information given by the perpetrator or the victims’ families. This method is imprecise, in addition to being extremely slow and expensive. Alternative methods, including geophysical resistivity, magnetometry and ground penetrating radar, have been explored in an attempt to increase the chances of success. However, the tested methods have drawbacks, notably the necessity to cover a restricted range of areas to yield results which often render these techniques impractical, especially in conflict zones. Hence, there is a need to deploy new methods that circumvent the need for direct access to the field and enable broader coverage, with the aim of facilitating the search process, which will save time and reduce the financial investment required. This work poses the possibility of identifying burial sites by correlating the spectral index (NDVI, GNDVI and GCI) with the amount of organic matter buried in the mass graves to analyze how the organic matter affects the health of the plants growing in the area. In the experimental phase, a multispectral sensor was used to get images over the area where simulated graves were prepared with organic matter of animal origin and human bone remains. 297 images across different bandwidths were obtained and processed, wherewith the orthophotos in green, infrared, and red spectrums were constructed so as to calculate each chosen spectral index. Afterwards, there was a supervised classification using Machine Learning to identify the location of the simulated graves.MaestríaMagíster en GeomáticaTecnologías geoespacialesxvi, 75 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresSensores remotosFosas comunesÍndices espectralesAprendizaje de máquinaImágenes multiespectralesOrtoimagenRemote sensingMass gravesSpectral indexMachine learningMultispectral imagingOrthophotofosa comúngeolocalizaciónprocesamiento digital de imágenesmass gravegeopositioningdigital image processingMetodología para la identificación de fosas comunes a partir de imágenes multiespectralesMass Graves identification methodology based on Multispectral ImagingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAuravant. (2023). Auravant Agricultura de Precisión. Recuperado el 8 de mayo de 203, de https://www.auravant.com/blog/agricultura-de-precision/indices-de-vegetacion-y-como-interpretarlos/#quees-gndviBallarina, M., Ballettia, C., & Guerra, F. (2015). Action cameras and low-cost aerial vehicles in archaeology. F. Remondino, M.R. Shortis (Eds.), Spiedigitallibrary.Org. doi:10.1117/12.2184692Blau, S., Sterenberg, J., Weeden, P., Urzedo, F., Wright, R., & Watson, C. (2018). Exploring non-invasive approaches to assist in the detection of clandestine human burials: developing a way forward. Forensic Sciences Research, 3(4), 320-342. doi:10.1080/20961790.2018.1493809Boyd, R. M. (1979). Buried Body Cases. FBI Law Enforcement Bulletin, 48(2), 1-7Brabazon, H., DeBruyb, J. M., Lenaghab, S. C., Li, F., Mundorff, A. Z., Steadman, D. W., & Stewart, C. N. (2020). Plants to Remotely Detect Human Decomposition? Trends in Plant ScienceBrabazon, H., DeBruyn, J. M., Lenaghan, S. C., Li, F., Mundorff, A. Z., Steadman, D. W., & Jr1, C. N. (2020). Plants to Remotely Detect Human Decomposition? Trends in Plant Science, 25(10). doi:10.1016/j.tplants.2020.07.013Carabassa, V., Montero, P., Crespo, M., Padró, J. C., & Alcañiz, J. M. (2020). Instrucciones técnicas para el uso de drones en el seguimiento de actividades extractivas. Generalitat de CatalunyaCastaño-Marín, A. M., Sánchez-Vívas, D. F., Duarte-Carvajalino, J. M., Góez-Vinasco, G. A., & Araujo-Carrillo, G. A. (2023). Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery. AgriEngineering, 5(2023), 325-337. doi:10.3390/agriengineering5010021CNMH. (2016). Hasta encontrarlos. El drama de la desaparición. Centro Nacional de Memoria Histórica. Imprenta Nacional de ColombiaDavenport, G. (2018). Remote Sensing Technology in Forensic Investigations: Geophysical Techniques to Locate Clandestine Graves and Hidden Evidence. En T. Y. Group (Ed.). Boca Ratón, FL: CRC PressDavenport, G. C. (2001). Remote Sensing Applications in Forensic Investigations. Historical Archaeology, 35(1), 87-100. Retrieved from http://www.jstor.org/stable/25616896?origin=JSTOR-pdfDoro, K. O., Kolapkar, A. M., Bank, C.-G., Wescott, D. J., & Mickleburgh, H. L. (2022). Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Science International(335). doi:10.1016/j.forsciint.2022.111289Enkhtuya, J., Damdinsuren, A., Ulziibat, B., & & Altangerel, M.-E. (2022). Land cover classification using machine-learning method and vegetation indices. Mongolian Journal of Geography and Geoecology, 59(43), 235-242. doi:10.5564/mjgg.v59i43.2532Equitas. (2015). MESP Modelamientos Espacial y Esatdístico Predictivo. Bogotá D.C.Evers, R., & Masters, P. (2018). The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera. Forensic Science International(289), 408-418. doi:10.1016/j.forsciint.2018.06.020FAFG. (2013). Fundación de Antropología Forense de Guatemala. Recuperado el 20 de marzo de 2017, de https://www.fafg.org/bd/index.phpFenger-Nielsen, R. (2017). MicaSense Image Processing Sequoia. Recuperado el mayo de 2023, de Github: https://github.com/rasmusfenger/micasense_imageprocessing_sequoiaFlach, P. (2012). MACHINE LEARNING: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press. Obtenido de www.cambridge.org/9781107096394Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal Of Plant Physiology, 160(3), 271-282. doi:10.1078/0176-1617-00887Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298. doi:10.1016/S0034-4257(96)00072-7IDEAM. (2017). Atlas Climatológico de Colombia. Bogotá D.C.: Imprenta Nacional de Colombia.Jessee, E., & Skinner, M. (2005). A Typology of mass grave and mass grave-related sites. Forensics Science International(152), 55-59Kalacska, M. E., Bell, L. S., Sánchez-Azofeifa, A., & Celli, T. (2009). The Application of Remote Sensing for Detecting Mass Graves: An Experimental Case Study fron Costa Rica. Journal of Forensic Sciences, 54(1), 159-166. doi:10.1111/j.1556-4029.2008.00938.xKalacska, M., & Bell, L. S. (2006). Remote Sensing as Tool for the Deteccion of Clandestine Mass Graves. Canadian Society of Forensic Science Journal, 39(1), 1-13Keenana, S. W., Schaeffera, S. M., Jimb, V. L., & DeBruyna, J. M. (2018). Mortality hotspots: Nitrogen cycling in forest soils during vertebrate decomposition. Soil Biology and Biochemistry(121), 165-176. doi:10.1016/j.soilbio.2018.03.005Lebanc, G., Kalacska, M., & Soffer, R. (2014). Detecction od single graves by airbone hyperespectral imaging. Forensic Science International(245), 17-23. doi:10.1016/j.forsciint.2014.08.020Li, G., Lu, D., Moran, E., & Hetrick, S. (2011). Land-cover classification in a moist tropical region of Brazil with. Int J Remote Sens., 32(23). doi:10.1080/01431161.2010.532831Molina, C. M. (2016). Metodología para la búsqueda de fosas a partir de la interpretación de anomalías en los datos obtenidos mediante la aplicación geofísica de alta resolución. Bogotá: Universidad Nacional de Colombia.Molina, C. M., Pringle, J. K., & Hernández, O. (2013). Experiments to detect clandestine graves from interpreted high resolution geophysical anomalies. Cancún, México.Molina, C. M., Pringle, J. K., Saumett, M., & Evans, G. T. (2016). Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America. Forensic Science International, 106-115. doi:10.1016/j.forsciint.2016.02.009Molina, C. M., Pringle, J. K., Saumett, M., & Hernández, O. (2015). Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany. Forensic Science International, 61-70. doi:doi=10.1016/j.forsciint.2014.12.011Molina, C. M., Wisniewski, K., Heaton, V., Pringle, J. K., Avila, E. F., Herrera, L. A., . . . Baena, A. (2022). Monitoring of simulated clandestine graves of dismembered victims using UAVs, electrical tomography, and GPR over one year to aid investigations of human rights violations in Colombia, South America. Journal of Forensic Sciences, 67(3), 1060-1071. doi:10.1111/1556-4029.14962Norton, E. A. (Noviembre de 2019). A multi-temporal approach to using multispectral remote sensing for the prospection of clandestine mass graves in temperate environmentsPotic, I., Srdiç, Z., Boris Vakanjac, S. B., Bankoviç, R., & Jovanoviç, J. M. (2023). Improving Forest Detection Using Machine Learning andRemote Sensing: A Case Study in Southeastern Serbia. Applied Sciences, 13(14). doi:10.3390/app13148289Rewehel, E. M., Li, J., Keshk, H. M., Kotb, A. S., Samir, I., & Hamd, A. (2022). Geometric Correction of Aerial Camera and LiDAR Hybrid System Data Using GNSS/IMU. IEEE 13th International Conference on Software Engineering and Service Science (ICSESS) (págs. 54-58). Beijing: IEEE Xplore. doi:doi: 10.1109/ICSESS54813.2022.9930276Rossi, A. (2017). Predictive Models In Sport Science: Multi-Dimensional Analysis Of Football Training And Injury Prediction. Tesis DoctoralRouse, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. (N. SP-351, Ed.) Third Earth Resources Technology Satellite–1 Syposium., 1 Sect. A, 309-317Ruffell, A., & McKinley, J. (2014). Forensic Geomorphology. Geomorphology, 14-22. doi:10.1016/j.geomorph.2013.12.020RUV. (ene de 2017). Registro Único de Victimas (RUV). Recuperado el 24 de febrero de 2017, de http://rni.unidadvictimas.gov.co/RUVSilván-Cárdenas, J., Caccavari-Garza, A., Quinto-Sánchez, M., Madrigal-Gómez, J., Coronado-Juárez, E., & Quiroz-Suarez, D. (2021). Assessing optical remote sensing for grave detection. Forensic Science International, 329. doi:10.1016/j.forsciint.2021.111064SIRDEC. (24 de febrero de 2017). Registro Nacional de Desaparecidos. Recuperado el 24 de febero de 2017, de Sistema de Información Red de Desaparecidos y Cadávares: http://sirdec.medicinalegal.gov.co:38080/consultasPublicas/Urbanová, P., Jurda, M., Vojtíšek, T., & Krajsa, J. (2017). Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey. Forensic Science International(281), 52-62. doi:10.1016/j.forsciint.2017.10.027Witmer, F. D. (2015). Remote sensing of violent conflict: eyes from above. International Journal of Remote Sensing, 36(9), 2326-2352Wu, C., Niu, Z., & Gao, S. (2010). Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. Journal Of Geophysical Research, 115(D12). doi:10.1029/2009JD013023EstudiantesInvestigadoresMaestrosPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86366/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL84083684.2024.pdf84083684.2024.pdfTesis de Maestría en Geomáticaapplication/pdf4245645https://repositorio.unal.edu.co/bitstream/unal/86366/2/84083684.2024.pdff866298c12765ebc758f97fddeb70831MD52THUMBNAIL84083684.2024.pdf.jpg84083684.2024.pdf.jpgGenerated Thumbnailimage/jpeg4615https://repositorio.unal.edu.co/bitstream/unal/86366/3/84083684.2024.pdf.jpg94f7d40227a579bee33ac92e2cf8944fMD53unal/86366oai:repositorio.unal.edu.co:unal/863662024-08-25 23:12:00.067Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |