Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico

ilustraciones, diagramas, figuras

Autores:
Ortiz Álvarez, Antonio
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85483
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85483
https://repositorio.unal.edu.co/
Palabra clave:
580 - Plantas
570 - Biología
630 - Agricultura y tecnologías relacionadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Relaciones agua-planta
Plantas -- Efectos del cadmio
Cadmio
Plant-water relationships
Plants, Effect of cadmium on
Cadmium
Déficit hídrico
Theobroma cacao
Análisis del suelo
Estrés de sequia
Water shortages
Soil analysis
Drought stress
Relación planta-suelo
Plant-soil relationships
Cacao
Déficit hídrico
Estrés hídrico
Genotipo
Tolerancia
Acumulación de Cd
Translocación de Cd
Cocoa
Drought stress
Genotype
Tolerance
Cd accumulation
Cd translocation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_43da90f1df080758eba38e9e9c859bce
oai_identifier_str oai:repositorio.unal.edu.co:unal/85483
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
dc.title.translated.eng.fl_str_mv Evaluation of physiological response and cadmium accumulation in cocoa plants (Theobroma cacao L.) under water deficit conditions
title Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
spellingShingle Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
580 - Plantas
570 - Biología
630 - Agricultura y tecnologías relacionadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Relaciones agua-planta
Plantas -- Efectos del cadmio
Cadmio
Plant-water relationships
Plants, Effect of cadmium on
Cadmium
Déficit hídrico
Theobroma cacao
Análisis del suelo
Estrés de sequia
Water shortages
Soil analysis
Drought stress
Relación planta-suelo
Plant-soil relationships
Cacao
Déficit hídrico
Estrés hídrico
Genotipo
Tolerancia
Acumulación de Cd
Translocación de Cd
Cocoa
Drought stress
Genotype
Tolerance
Cd accumulation
Cd translocation
title_short Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
title_full Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
title_fullStr Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
title_full_unstemmed Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
title_sort Respuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídrico
dc.creator.fl_str_mv Ortiz Álvarez, Antonio
dc.contributor.advisor.none.fl_str_mv Castaño Marín, Ángela María
Magnitskiy, Stanislav
dc.contributor.author.none.fl_str_mv Ortiz Álvarez, Antonio
dc.contributor.orcid.spa.fl_str_mv Ortiz Álvarez, Antonio [0000000223580277]
dc.subject.ddc.spa.fl_str_mv 580 - Plantas
570 - Biología
630 - Agricultura y tecnologías relacionadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
topic 580 - Plantas
570 - Biología
630 - Agricultura y tecnologías relacionadas
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Relaciones agua-planta
Plantas -- Efectos del cadmio
Cadmio
Plant-water relationships
Plants, Effect of cadmium on
Cadmium
Déficit hídrico
Theobroma cacao
Análisis del suelo
Estrés de sequia
Water shortages
Soil analysis
Drought stress
Relación planta-suelo
Plant-soil relationships
Cacao
Déficit hídrico
Estrés hídrico
Genotipo
Tolerancia
Acumulación de Cd
Translocación de Cd
Cocoa
Drought stress
Genotype
Tolerance
Cd accumulation
Cd translocation
dc.subject.lcc.spa.fl_str_mv Relaciones agua-planta
Plantas -- Efectos del cadmio
Cadmio
dc.subject.lcc.eng.fl_str_mv Plant-water relationships
Plants, Effect of cadmium on
Cadmium
dc.subject.agrovoc.spa.fl_str_mv Déficit hídrico
Theobroma cacao
Análisis del suelo
Estrés de sequia
dc.subject.agrovoc.eng.fl_str_mv Water shortages
Soil analysis
Drought stress
dc.subject.lemb.spa.fl_str_mv Relación planta-suelo
dc.subject.lemb.eng.fl_str_mv Plant-soil relationships
dc.subject.proposal.spa.fl_str_mv Cacao
Déficit hídrico
Estrés hídrico
Genotipo
Tolerancia
Acumulación de Cd
Translocación de Cd
dc.subject.proposal.eng.fl_str_mv Cocoa
Drought stress
Genotype
Tolerance
Cd accumulation
Cd translocation
description ilustraciones, diagramas, figuras
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-29T18:11:48Z
dc.date.available.none.fl_str_mv 2024-01-29T18:11:48Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85483
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85483
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, M., Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148(November 2017), 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063
Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for Determination of Proline in Plants. In R. Sunkar (Ed.), Plant Stress Tolerance, Methods in Molecular Biology (Vol. 639, pp. 317–331). https://doi.org/10.1007/978-1-60761-702-0
Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., ur Rehman, M. Z., Hussain, A., Hussain, K., Shahid Chatha, S. A., & Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124681
Ahmad, P. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(11). https://doi.org/10.5897/ajb11.3203
Akbar, K. F., Hale, W. H. G., Headley, A. D., & Athar, M. (2006). Heavy Metal Contamination of Roadside Soils of Northern England. Soil & Water Res, 1(4), 158–163.
Akhter, M. F., Omelon, C. R., Gordon, R. A., Moser, D., & Macfie, S. M. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environmental and Experimental Botany, 100, 10–19. https://doi.org/10.1016/j.envexpbot.2013.12.005
Albacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock×scion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211–2226. https://doi.org/10.1093/jxb/erv027
Alban, M. B. K. A., Elain Apshara, S., Hebbar, K. B., Mathias, T. G., & Séverin, A. (2016). Morpho-physiological criteria for assessment of two month old cocoa (Theobroma cacao L.) genotypes for drought tolerance. Indian Journal of Plant Physiology, 21(1), 23–30. https://doi.org/10.1007/s40502-015-0195-y
Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
Alia, & Saradhi, P. (1991). Proline Accumulation Under Heavy Metal Stress. Journal of Plant Physiology, 138(5), 554–558. https://doi.org/10.1016/S0176-1617(11)80240-3
Altuntaş, C., Demiralay, M., Sezgin Muslu, A., & Terzi, R. (2020). Proline-stimulated signaling primarily targets the chlorophyll degradation pathway and photosynthesis associated processes to cope with short-term water deficit in maize. Photosynthesis Research, 144(1), 35–48. https://doi.org/10.1007/s11120-020-00727-w
Andresen, E., Lyubenova, L., Hubáček, T., Nadeem, S., Bokhari, H., Matoušková, Š., Mijovilovich, A., Rohovec, J., & Küpper, H. (2020). Chronic exposure of soybean plants to nanomolar cadmium reveals specific additional high-affinity targets of cadmium toxicity. Journal of Experimental Botany, 71(4), 1628–1644. https://doi.org/10.1093/jxb/erz530
Arao, T., & Ishikawa, S. (2006). Genotypic Differences in Cadmium Concentration and Distribution of Soybean and Rice. Japan Agricultural Research Quarterly. Japan International Research Center for Agricultural Sciences, 40(1), 21–30. http://www.jircas.affrc.go.jp
Araque, O., Jaimez, R. E., Tezara, W., Coronel, I., Urich, R., & Espinoza, W. (2012). Comparative photosynthesis, water relations, growth and survival rates in juvenile criollo cacao cultivars (theobroma cacao) during dry and wet seasons. Experimental Agriculture, 48(4), 513–522. https://doi.org/10.1017/S0014479712000427
Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122
Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292
Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., Wright, G. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113–125. https://doi.org/10.1111/j.1439-037X.2008.00299.x
Arvelo, M. A., González León, D., Maroto Arce, S., Delgado López, T., & Montoya López, P. (2017). Manual técnico del cultivo de cacao. Pràcticas Latinoamericanas. In Instituto Interamericano de Cooperación para la Agricultura (IICA). https://repositorio.iica.int/handle/11324/6181
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., Ben Abdallah, F., Fki, L., & Munné-Bosch, S. (2020). Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo- and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. Frontiers in Plant Science, 11(December), 1–14. https://doi.org/10.3389/fpls.2020.614144
Balasimha, D., Daniel, E. V., & Bhat, P. G. (1991). Influence of environmental factors on photosynthesis in cocoa trees. Agricultural and Forest Meteorology, 55, 15–21. https://doi.org/10.4172/2375-4338.1000e117
Baligar, V. C., Bunce, J. A., Machado, R. C. R., & Elson, M. K. (2008). Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica, 46(2), 216–221. https://doi.org/10.1007/s11099-008-0035-7
Bansal, R., Priya, S., Dikshit, H. K., Jacob, S. R., Rao, M., Bana, R. S., Kumari, J., Tripathi, K., Kumar, A., Kumar, S., & Siddique, K. H. M. (2021). Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics, 9(8), 1–11. https://doi.org/10.3390/toxics9080182
Barraza, F., Schreck, E., Ev ^ Eque, T. L., Uzu, G., Opez, F. L., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080
Barrera, J., Suárez, D., & Melgarejo, L. (2010). Análisis de crecimiento en plantas. Experimentos En Fisiología Vegetal, December, 25–38. https://www.uv.mx/personal/tcarmona/files/2019/02/Melgarejo-2010.pdf
Bashir, N., Athar, H. U. R., Zafar, Z. U., Ashraf, M., Kalaji, H. M., Wróbel, J., & Mahmood, S. (2021). Is photoprotection of psii one of the key mechanisms for drought tolerance in maize? International Journal of Molecular Sciences, 22(24). https://doi.org/10.3390/ijms222413490
Bashir, W., Anwar, S., Zhao, Q., Hussain, I., & Xie, F. (2019). Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 175(November 2018), 90–101. https://doi.org/10.1016/j.ecoenv.2019.03.042
Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research, 5(F1000 Faculty Rev), 1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies Summary. Plant and Soil, 39, 205–207.
Bauddh, K., & Singh, R. P. (2012). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental Safety, 85, 13–22. https://doi.org/10.1016/j.ecoenv.2012.08.019
Berglund, T., & Ohlsson, A. B. (1995). Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide, glutathione and oxidative stress. Plant Cell, Tissue and Organ Culture, 43(2), 137–145. https://doi.org/10.1007/BF00052169
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell and Environment, 40(1), 4–10. https://doi.org/10.1111/pce.12800
Borjas-Ventura, R., Bello-Medina, N., Bello-Amez, S., Alvarado-Huaman, L., Rabaza-Fernandez, D., Tapia Y Figueroa, L., Castro-Cepero, V., & Julca-Otiniano, A. (2022). Absorción diferenciada de cadmio y su efecto en la fisiología de seis genotipos de cacao (Theobroma cacao L.) en San Ramón, Selva Central del Perú. Tropical and Subtropical Agroecosystems, 25(3). https://doi.org/10.56369/tsaes.4000
Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 1–18. https://doi.org/10.3390/agronomy11040761
Bunn, C., Lundy, M., Läderach, P., & Castro, F. (2017). Global climate change impacts on cocoa. Paper Presented at International Symposium on Cocoa Research, 13-17 November 2017, Lima, Peru, November, 13–17.
Carpena, R. O., Vázquez, S., Esteban, E., Fernández-Pascual, M., De Felipe, M. R., & Zornoza, P. (2003). Cadmium-stress in white lupin: Effects on nodule structure and functioning. Plant Physiology and Biochemistry, 41(10), 911–919. https://doi.org/10.1016/S0981-9428(03)00136-0
Castro, A. V, De Almeida, A.-A. F., Pirovani, C. P., Reis, G. S. M., Almeida, N. M., & Mangabeira, P. A. O. (2015). Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. Ecotoxicology and Environmental Safety, 115, 174–186. https://doi.org/10.1016/j.ecoenv.2015.02.003
Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106
Chen, L., Long, X. H., Zhang, Z. H., Zheng, X. T., Rengel, Z., & Liu, Z. P. (2011). Cadmium Accumulation and Translocation in Two Jerusalem Artichoke (Helianthus tuberosus L.) Cultivars. Pedosphere, 21(5), 573–580. https://doi.org/10.1016/S1002-0160(11)60159-8
Chen, Y. E., Liu, W. J., Su, Y. Q., Cui, J. M., Zhang, Z. W., Yuan, M., Zhang, H. Y., & Yuan, S. (2016). Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 158(2), 225–235. https://doi.org/10.1111/ppl.12438
Cho, U. H., & Kim, I. T. (2003). Effect of Cadmium on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings. In The Korean Journal of Ecology (Vol. 26, Issue 3, pp. 115–121). https://doi.org/10.5141/jefb.2003.26.3.115
Cho, U. H., & Seo, N. H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168(1), 113–120. https://doi.org/10.1016/j.plantsci.2004.07.021
Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003
De Almeida, J., Tezara, W., & Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management, 171, 80–88. https://doi.org/10.1016/j.agwat.2016.03.012
De Almeida, N. M., Furtado De Almeida, A.-A., De Almeida, N. S., Do Nascimento, L. J., De Carvalho Neto, C. H., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2022). Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Scientia Horticulturae, 300. https://doi.org/10.1016/j.scienta.2022.111086
de Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of Experimental Botany, 63(16), 5957–5966. https://doi.org/doi:10.1093/jxb/ers241
Deng, X., Joly, R. J., & Hahn, D. T. (1990). The influence of plant water deficit on photosynthesis and translocation of 14C‐labeled assimilates in cacao seedlings. Physiologia Plantarum, 78(4), 623–627. https://doi.org/10.1111/j.1399-3054.1990.tb05251.x
Dietz, K. J. (2016). Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Molecules and Cells, 39(1), 20–25. https://doi.org/10.14348/molcells.2016.2324
Dobrikova, A. G., Apostolova, E. L., Han´c, A. H., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.-D. S., Moustakas, M., & Sibley, P. (2021). Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicology and Environmental Safety, 209. https://doi.org/10.1016/j.ecoenv.2020.111851
Dos Santos, I. C., De Almeida, A. A. F., Anhert, D., Da Conceiҫão, A. S., Pirovani, C. P., Pires, J. L., Valle, R. R., & Baligar, V. C. (2014). Molecular, physiological and biochemical responses of theobroma cacao L. genotypes to soil water deficit. PLoS ONE, 9(12), 1–31. https://doi.org/10.1371/journal.pone.0115746
Dos Santos, J. V., Baligar, V. C., Ahrnet, D., & de Almeida, A. A. F. (2023). Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao. Plant Physiology and Biochemistry, 196, 624–633. https://doi.org/10.1016/J.PLAPHY.2023.01.053
Dos Santos Souza, L. M., Furtado De Almeida, A.-A., Martins Da Silva, N., Rafaela, B., Oliveira, M., Victor, J., Silva, S., Olímpio, J., Junior, S., Ahnert, D., & Baligar, V. C. (2020). Mitigation of cadmium toxicity by zinc in juvenile cacao: Physiological, biochemical, molecular and micromorphological responses. Environmental and Experimental Botany, 179. https://doi.org/10.1016/j.envexpbot.2020.104201
Drake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D., Maier, C., Pfautsch, S., Smith, R. A., Tjoelker, M. G., & Tissue, D. T. (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 247(December 2016), 454–466. https://doi.org/10.1016/j.agrformet.2017.08.026
Dutta, A., Patra, A., Singh Jatav, H., Singh Jatav, S., Kumar Singh, S., Sathyanarayana, E., Sudhanshu, V., & Singh, P. (2020). Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques. In Soil Contamination - Threats and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.94307
Dzandu, E., Enu-Kwesi, L., Markwei, C. M., & Ayeh, K. O. (2021). Screening for drought tolerance potential of nine cocoa (Theobroma cacao L.) genotypes from Ghana. Heliyon, 7(11), e08389. https://doi.org/10.1016/j.heliyon.2021.e08389
El-Mahdy, M. T., Abdel-Wahab, D. A., & Youssef, M. (2021). In vitro morpho-physiological performance and DNA stability of banana under cadmium and drought stresses. In Vitro Cellular and Developmental Biology - Plant, 57(3), 460–469. https://doi.org/10.1007/s11627-020-10142-4
Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660–670. https://doi.org/10.1016/j.scitotenv.2019.05.001
Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao (Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. Frontiers in Plant Science, 12, 2848. https://doi.org/10.3389/FPLS.2021.777842/BIBTEX
Florida Rofner, N. (2021). Revision sobre limites máximos de cadmio en cacao (Theobrama cacao l.). Granja, 34(2), 113–126.
Furcal-Beriguete, P., & Torres-Morales, L. J. (2020). Determination of cadmium concentrations in cocoa plantations (Theobroma cacao L.) in Costa Rica. Tecnología En Marcha, 33. https://doi.org/10.18845/tm.v33i1.5027
Furlan, A. L., Bianucci, E., Giordano, W., Castro, S., & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151(December 2019), 566–578. https://doi.org/10.1016/j.plaphy.2020.04.010
García Lozano, J., & Moreno Fonseca, L. P. (2016). Respuestas fisiológicas de Theobroma cacao L. En etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronomica, 65(1), 44–50. https://doi.org/10.15446/acag.v65n1.48161
Garrett, R. G., Porter, A. R. D., Hunt, P. A., & Lalor, G. C. (2008). The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites. Applied Geochemistry, 23(4), 822–834. https://doi.org/10.1016/j.apgeochem.2007.08.008
Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-x
Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant Signaling and Behavior, 6(2), 215–222. https://doi.org/10.4161/psb.6.2.14880
Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 390(2–3), 301–310. https://doi.org/10.1016/j.scitotenv.2007.10.038
Gu, J., Zou, G., Su, S., Li, S., Liu, W., Zhao, H., Liu, L., Jin, L., Tian, Y., Zhang, X., Wang, Y., Zhao, T., Du, L., & Wei, D. (2022). Effects of pH on Available Cadmium in Calcareous Soils and Culture Substrates. Eurasian Soil Science, 55(12), 1714–1719. https://doi.org/10.1134/S1064229322601391
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614
Gutiérrez-Martínez, P. B., Torres-Morán, M. I., Romero-Puertas, M. C., Casas-Solís, J., Zarazúa-Villaseñor, P., Sandoval-Pinto, E., & Ramírez-Hernández, B. C. (2020). Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress//Evaluación de enzimas antioxidantes en hojas y raíces de plantas Phaseolus vulgaris bajo estrés de cadmio. Biotecnia, 22(2), 110–118. https://doi.org/10.18633/biotecnia.v22i2.1252
Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy, 134, 135–225. https://doi.org/10.1016/bs.agron.2015.06.005
He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16(3), 259–272. https://doi.org/10.1007/s12298-010-0028-4
Hu, P. J., Qiu, R. L., Senthilkumar, P., Jiang, D., Chen, Z. W., Tang, Y. T., & Liu, F. J. (2009). Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany, 66(2), 317–325. https://doi.org/10.1016/j.envexpbot.2009.02.014
Ibrahim, M. H., & Jaafar, H. Z. E. (2012). Primary, secondary metabolites, H 2O 2, malondialdehyde and photosynthetic responses of Orthosiphon stimaneus benth. to different irradiance levels. Molecules, 17(2), 1159–1176. https://doi.org/10.3390/molecules17021159
Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004
Jaimes, Y., Agudelo, G., Monrealegre, F., Rengifo, G., & Rojas, J. (2022). Cultivo de cacao ( Theobroma cacao L .) en el departamento de Santander (2a ed.). Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/view/276/258/1646-1
Jaraba, A. B., Buriticá, Á. J., Vega, F. N., Urrego, J. E., Bautista, J. F., Puerta, J. A., & Yepes, J. E. (2021a). Modelo Productivo Para El Cultivo De Cacao (Theobroma cacao L.) - Nutrición y Fertilización. In Campaña Nacional de Chocolates - CNCH. www.chocolates.com.co
Jaraba, A. B., Buriticá, Á. J., Vega, F. N., Urrego, J. E., Bautista, J. F., Puerta, J. A., & Yepes, J. E. (2021b). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) - Origen, Botánica y Generalidades. Campaña Nacional de Chocolates - CNCH. https://chocolates.com.co/wp-content/uploads/2021/12/AF-FOLLETO-ORIGEN-BOTANICA-Y-GENERALIDADES-1.pdf
Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J. J., Moreno, M. A., & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33(10), 1061–1075. https://doi.org/10.1093/treephys/tpt074
Juby, B., Minimol, J. S., Suma, B., Santhoshkumar, A. V., Jiji, J., & Panchami, P. S. (2021). Drought mitigation in cocoa (Theobroma cacao L.) through developing tolerant hybrids. BMC Plant Biology, 21(1), 1–12. https://doi.org/10.1186/s12870-021-03352-4
Juenger, T. E., & Verslues, P. E. (2023). Time for a drought experiment: Do you know your plants’ water status? Plant Cell, 35(1), 10–23. https://doi.org/10.1093/plcell/koac324
Kabata-Pendias, A. (1993). Behavioural properties of trace metals in soils. Applied Geochemistry, 8, 3–9. https://doi.org/10.1016/S0883-2927(09)80002-4
Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1–2), 19–32. https://doi.org/10.1016/j.geoderma.2006.08.024
Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review EPA Public Access. Appl Geochem, 108, 1–16. https://doi.org/10.1016/j.apgeochem.2019.104388
Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(1). https://doi.org/10.1007/s13593-018-0552-0
Lahive, F., Handley, L. R., Hadley, P., & Daymond, A. J. (2021). Climate change impacts on cacao: Genotypic variation in responses of mature cacao to elevated co2 and water deficit. Agronomy, 11(5). https://doi.org/10.3390/agronomy11050818
Lajayer, B. A., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145(June), 377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035
Lanza, J. G., Churión, P. C., Liendo, N. J., & López, V. H. (2016). Evaluación del contenido de metales pesados en cacao (Teobroma cacao L.) de Sabta Bárbara del Zulia, Venezuela. Saber, Universidad de Oriente, 28, 106–115.
Lettens, S., Vandecasteele, B., De Vos, B., Vansteenkiste, D., & Verschelde, P. (2011). Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Science of the Total Environment, 409(11), 2306–2316. https://doi.org/10.1016/j.scitotenv.2011.02.029
Lewis, C., Lennon, A. M., Eudoxie, G., Umaharan, P., & Campus, A. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365
Lewis, V. R., Farrell, A. D., Umaharan, P., & Lennon, A. M. (2021). Genetic variation in high light responses of Theobroma cacao L. accessions. Heliyon, 7(6), e07404. https://doi.org/10.1016/J.HELIYON.2021.E07404
Li, R., Guo, P., Baum, M., Grando, S., & Ceccarelli, S. (2006). Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators. Agricultural Sciences in China, 5(October), 751–757.
Li, S., Liu, J., Liu, H., Qiu, R., Gao, Y., & Duan, A. (2021). Role of Hydraulic Signal and ABA in Decrease of Leaf Stomatal and Mesophyll Conductance in Soil Drought-Stressed Tomato. Frontiers in Plant Science, 12(April), 1–12. https://doi.org/10.3389/fpls.2021.653186
Li, T., Wang, R., Zhao, D., & Tao, J. (2020). Effects of drought stress on physiological responses and gene expression changes in herbaceous peony (Paeonia lactiflora Pall.). Plant Signaling and Behavior, 15(5). https://doi.org/10.1080/15592324.2020.1746034
Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., & Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 121433. https://doi.org/10.1016/j.envpol.2023.121433
Lisar, S., Seyed, Y., Motafakkerazad, R., Mosharraf, M., Rahm, M., & Ismail, M. (2012). Introductory Chapter: Water Stress. Water Stress in Plants: Causes, Effects and Responses, 1–15. www.intechopen.com
Liu, C., Yu, R., & Shi, G. (2016). Effects of drought on the accumulation and redistribution of cadmium in peanuts at different developmental stages. Archives of Agronomy and Soil Science, 63(8), 1049–1057. https://doi.org/10.1080/03650340.2016.1271120
Liu, X., Peng, K., Wang, A., Lian, C., & Shen, Z. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78(9), 1136–1141. https://doi.org/10.1016/j.chemosphere.2009.12.030
Liu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y., & Ning, Z. (2017). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42–49. https://doi.org/10.1016/j.gexplo.2016.04.004
Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119(3), 1091–1099. https://doi.org/10.1104/pp.119.3.1091
Lorentzen, E. M. L., & Kingston, H. M. (1996). Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Analytical Chemistry, 68(24), 4316–4320. https://doi.org/10.1021/ac960553l
Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21–37. https://doi.org/10.1093/jxb/erq281
Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137645
Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580–585.
Makholwa, K., Malambane, G., Moseki, B., & Nthupisang, B. (2021). Water Stress Response in Different Jatropha curcas Accessions from Different Geographical Zones of Botswana: Biochemical & Physiological Perceptive. American Journal of Plant Sciences, 12(09), 1305–1318. https://doi.org/10.4236/ajps.2021.129091
Maréchaux, I., Bartlett, M. K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., & Chave, J. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29(10), 1268–1277. https://doi.org/10.1111/1365-2435.12452
Martínez-Ferri, E., Moreno-Ortega, G., Van Den Berg, N., & Pliego, C. (2019). Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2016-3
Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378. https://doi.org/10.1016/S0269-7491(03)00060-5
Matysik, J., Alia, Bhalu, B., & Mohanty P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants on JSTOR. Current Science Association. Vol. 82, No. 5. https://www.jstor.org/stable/24105959
Medina, V., & Laliberte, B. (2017). A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change. Bioversity International.
Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, e02952. https://doi.org/10.1016/j.heliyon.2019.e02952
Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao from Latin America and the Caribbean – A Review of Research and Potential Mitigation Solutions. Bioversity International.
Mingorance, M. D., Valdés, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514–520. https://doi.org/10.1016/j.envint.2007.01.005
Moore, R. E. T., Ullah, I., de Oliveira, V. H., Hammond, S. J., Strekopytov, S., Tibbett, M., Dunwell, J. M., & Rehkämper, M. (2020). Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Horticulture Research, 7(1). https://doi.org/10.1038/s41438-020-0292-6
Mori, S., Uraguchi, S., Ishikawa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67(1), 127–132. https://doi.org/10.1016/j.envexpbot.2009.05.006
Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311
Mukherjee, M. (2017). Lead and Cadmium Toxicity on Seedling Growth and Metabolism of Trigonellafoenum-graecum L. International Journal of Science and Research (IJSR), 6(7), 1685–1689. https://doi.org/10.21275/art20175574
Nadarajah, K. K. (2020). Ros homeostasis in abiotic stress tolerance in plants. In International Journal of Molecular Sciences (Vol. 21, Issue 15, pp. 1–29). MDPI AG. https://doi.org/10.3390/ijms21155208
Najeeb, U., Jilani, G., Ali, S., Sarwar, M., Xu, L., & Zhou, W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials, 186(1), 565–574. https://doi.org/10.1016/j.jhazmat.2010.11.037
Nguyen, H. M., Kim, M., Ralph, P. J., Marín-Guirao, L., Pernice, M., & Procaccini, G. (2020). Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications. Frontiers in Plant Science, 11(April), 1–18. https://doi.org/10.3389/fpls.2020.00494
Niether, W., Glawe, A., Pfohl, K., Adamtey, N., Schneider, M., Karlovsky, P., & Pawelzik, E. (2020). The effect of short-term vs. long-term soil moisture stress on the physiological response of three cocoa (Theobroma cacao L.) cultivars. Plant Growth Regulation, 92(2), 295–306. https://doi.org/10.1007/s10725-020-00638-9
Nirola, R., Megharaj, M., Palanisami, T., Aryal, R., Venkateswarlu, K., & Ravi Naidu. (2015). Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization. Journal of Sustainable Mining, 14(3), 115–123. https://doi.org/10.1016/j.jsm.2015.11.001
Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., & Yildiz, M. (2022). Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia, 2(4), 180–197. https://doi.org/10.3390/physiologia2040015
Oliveira, R. B. M., Furtado De Almeida, A.-A., De Almeida Santos, N., & Pirovani, C. P. (2022). Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Scientia Horticulturae, 293, 110733. https://doi.org/10.1016/j.scienta.2021.110733
Oono, Y., Yazawa, T., Kawahara, Y., Kanamori, H., Kobayashi, F., Sasaki, H., Mori, S., Wu, J., Handa, H., Itoh, T., & Matsumoto, T. (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096946
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(MAR), 1–8. https://doi.org/10.3389/fpls.2014.00086
Osorio Zambrano, M. A., Castillo, D. A., Rodríguez Pérez, L., & Terán, W. (2021). Cacao (Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.700855
Palencia, G., Gómez, R., & Mejia, L. A. (2007). Patrones de cacao (Vol. 1, pp. 1–24). Corporación Colombiana de Investigación Agropecuaria (Corpoica). https://repository.agrosavia.co/bitstream/handle/20.500.12324/2222/42973_48680.pdf?sequence=1&isAllowed=y
Parmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6. https://doi.org/10.1186/1999-3110-54-45
Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197
Pereira de Araújo, R., Furtado De Almeida, A.-A., Pereira, L. S., Mangabeira, P. A. O., Souza, J. O., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006
Pereira, M. P., Rodrigues, L. C. de A., Corrêa, F. F., de Castro, E. M., Ribeiro, V. E., & Pereira, F. J. (2015). Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees - Structure and Function, 30(3), 807–814. https://doi.org/10.1007/s00468-015-1322-0
Pompelli, M. F., Barata-Luís, R., Vitorino, H. S., Gonçalves, E. R., Rolim, E. V., Santos, M. G., Almeida-Cortez, J. S., Ferreira, V. M., Lemos, E. E., & Endres, L. (2010). Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass and Bioenergy, 34(8), 1207–1215. https://doi.org/10.1016/j.biombioe.2010.03.011
Rada, F., Jaimez, R. E., García-Nuñez, C., Azócar, a, & Ramírez, M. E. (2005). Relaciones hídricas e intercambio de gases en Theobroma cacao var. Guasare bajo períodos de deficit hídrico. Rev. Fac. Agron, 22(April), 120.
Ramalho, J. C., Rodrigues, A. P., Lidon, F. C., Marques, L. M. C., Leitão, A. E., Fortunato, A. S., Pais, I. P., Silva, M. J., Scotti-Campos, P., Lopes, A., Reboredo, F. H., & Ribeiro-Barros, A. I. (2018). Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0198694
Redjala, T., Sterckeman, T., & Morel, J. L. (2009). Cadmium uptake by roots: Contribution of apoplast and of high- and low-affinity membrane transport systems. Environmental and Experimental Botany, 67(1), 235–242. https://doi.org/10.1016/j.envexpbot.2009.05.012
Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Campo, F. F. D., & Hernández, L. E. (2006). Stress responses of Zea mays to cadmium and mercury. Plant and Soil, 279(1–2), 41–50. https://doi.org/10.1007/s11104-005-3900-1
Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012
Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8(September). https://doi.org/10.3389/fpls.2017.01608
Romero Navarro, J. A., Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., Haiminen, N., Mustiga, G., Livingstone, D., Van Bakel, H., Kuhn, D. N., Parida, L., Kasarskis, A., & Motamayor, J. C. (2017). Application of genome wide association and genomic prediction for improvement of cacao productivity and resistance to black and frosty pod diseases. Frontiers in Plant Science, 8(November). https://doi.org/10.3389/fpls.2017.01905
Rouphael, Y., Cardarelli, M., Schwarz, D., Franken, P., & Colla, G. (2012). Effects of Drought on Nutrient Uptake and Assimilation in Vegetable Crops. In Plant Responses to Drought Stress (pp. 171–195). https://doi.org/10.1007/978-3-642-32653-0
Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 13(5), 468–474. https://doi.org/doi:10.1038/nbt0595-468
Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156–161. https://doi.org/10.1016/j.scienta.2010.09.011
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259
Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. How to Recruit Voluntary Donors in the Third World?, 241, 73–137. https://doi.org/10.1007/398_2016_8
Sharma, S. S., Schat, H., & Vooijs, R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49(6), 1531–1535. https://doi.org/10.1016/S0031-9422(98)00282-9
Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8(November), 1–8. https://doi.org/10.3389/fpls.2017.01950
Shawon, R. A., Kang, B. S., Kim, H. C., Lee, S. G., Kim, S. K., Lee, H. J., Bae, J. H., & Ku, Y. G. (2018). Changes in Free Amino Acid, Carotenoid, and Proline Content in Chinese Cabbage (Brassica rapa subsp. Pekinensis) in Response to Drought Stress. Korean Journal of Plant Resources, 31(6), 622–633.
Shi, G., Xia, S., Ye, J., Huang, Y., Liu, C., & Zhang, Z. (2015). PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 111, 127–134. https://doi.org/10.1016/j.envexpbot.2014.11.008
Singh, S., & Prasad, S. M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Scientia Horticulturae, 176, 1–10. https://doi.org/10.1016/J.SCIENTA.2014.06.022
Solís-Domínguez, F. A., González-Chávez, M. C., Carrillo-González, R., & Rodríguez-Vázquez, R. (2007). Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials, 141(3), 630–636. https://doi.org/10.1016/j.jhazmat.2006.07.014
Song, C., Shen, W., Du, L., Wen, J., Lin, J., & Li, R. (2019). Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata). Trees - Structure and Function, 33(3), 827–836. https://doi.org/10.1007/s00468-019-01820-x
Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598
Standtman, E. R., Moskovitz, J., & Levine, R. L. (2003). Oxidation of Methionine Residues of Proteins: Biological Consequences. Antioxidants & Redox Signaling, 5(5), 577–582.
Stankovic, S., Baptista, P., Carillo, P., & Bandurska, H. (2022). Drought Stress Responses: Coping Strategy and Resistance. Plants, MDPI. https://doi.org/10.3390/plants11070922
Su, Y., Wang, X., Liu, C., & Shi, G. (2013). Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency. Plant and Soil, 363(1–2), 201–213. https://doi.org/10.1007/s11104-012-1310-8
Suchithra, M., Suma, B., Js, M., & Mathew, D. (2023). Biochemical Response of Cocoa ( Theobroma cacao L .) Genotypes to Water Deficit Stress Condition Biochemical Response of Cocoa ( Theobroma cacao L .) Genotypes to Water Deficit Stress Condition. Environment and Ecology, 41(2), 824–830.
Suh, N. N., & Molua, E. L. (2022). Cocoa production under climate variability and farm management challenges: Some farmers’ perspective. Journal of Agriculture and Food Research, 8(February), 100282. https://doi.org/10.1016/j.jafr.2022.100282
Sun, T., Rao, S., Zhou, X., & Li, L. (2022). Plant carotenoids: recent advances and future perspectives. Molecular Horticulture, 2(1), 1–21. https://doi.org/10.1186/s43897-022-00023-2
Telfer, A. (2005). Too much light? How β-carotene protects the photosystem II reaction centre. Photochemical & Photobiological Sciences, 4(12), 950–956. https://doi.org/doi:10.1039/b507888c
Terzi, R., & Kadioglu, A. (2006). Drought stress tolerance and the antioxidant enzyme system in Ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica, 48(2), 89–96.
Tran, T. A., & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turkish Journal of Botany, 37(1), 1–13. https://doi.org/10.3906/bot-1112-16
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102. https://doi.org/10.1038/ng.2725
Umar, M., & Siddiqui, Z. S. (2018). Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Botanica Croatica, 77(1), 36–44. https://doi.org/10.2478/botcro-2018-0002
Ünyayar, S., Keleş, Y., & Çekiç, F. Ö. (2005). The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant, Soil and Environment, 51(2), 57–64. https://doi.org/10.17221/3556-pse
Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779
Varone, L., Ribas-Carbo, M., Cardona, C., Gallé, A., Medrano, H., Gratani, L., & Flexas, J. (2012). Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany, 75, 235–247. https://doi.org/10.1016/j.envexpbot.2011.07.007
Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35(4), 753–759. https://doi.org/10.1007/s00726-008-0061-6
Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372. https://doi.org/10.1016/j.pbi.2009.05.001
Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLoS ONE, 17(2 February). https://doi.org/10.1371/journal.pone.0261989
Wang, H. zheng, Zhang, L. he, Ma, J., Li, X. yi, Li, Y., Zhang, R. ping, & Wang, R. quan. (2010). Effects of Water Stress on Reactive Oxygen Species Generation and Protection System in Rice During Grain-Filling Stage. Agricultural Sciences in China, 9(5), 633–641. https://doi.org/10.1016/S1671-2927(09)60138-3
Warren, C. R. (2008). Rapid measurement of chlorophylls with a microplate reader. Journal of Plant Nutrition, 31(7), 1321–1332. https://doi.org/10.1080/01904160802135092
White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080. https://doi.org/10.1093/aob/mcq085
Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33(4), 510–525. https://doi.org/10.1111/j.1365-3040.2009.02052.x
Xia, S., Wang, X., Su, G., & Shi, G. (2015). Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Environmental Science and Pollution Research, 22(23), 18707–18717. https://doi.org/10.1007/s11356-015-5063-9
Xiao, X., Xu, X., & Yang, F. (2008). Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 42(5), 705–719. https://doi.org/10.14214/sf.224
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. In Horticulturae (Vol. 7, Issue 3). MDPI AG. https://doi.org/10.3390/horticulturae7030050
Yilmaz, D. D., & Parlak, K. U. (2011). Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecological Indicators, 11(2), 417–423. https://doi.org/10.1016/j.ecolind.2010.06.012
Zakariyya, F., & Indradewa, D. (2018). Drought Stress Affecting Growth and Some Physiological Characters of Three Cocoa Clones at Seedling Phase. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 34(3), 156–165. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v34i3.330
Zakariyya, F., Setyawan, B., & Wahyu Susilo, A. (2017). Stomatal, Proline, and Leaf Water Status Characters of Some Cocoa Clones (Theobroma cacao L.) on Prolonged Dry Season. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 33(2), 109–117. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v33i2.264
Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-89322-0
Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169(4), 737–745. https://doi.org/10.1016/j.plantsci.2005.05.030
Živanović, B., Komić, S. M., Tosti, T., Vidović, M., Prokić, L., & Jovanović, S. V. (2020). Leaf soluble sugars and free amino acids as important components of abscisic acid—mediated drought response in tomato. Plants, 9(9), 1–17. https://doi.org/10.3390/plants9091147
Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F. U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M., & Mustafa, A. (2022). Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.773815
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 99 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85483/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85483/2/1094579566.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85483/3/1094579566.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
97675df90aee66fb37031695a79db161
cc2928b3a1023379a145fc9c9756f1db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089810211504128
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castaño Marín, Ángela María9b22edbde935ebc76d2ffb7d1bd19465Magnitskiy, Stanislav6c80f64a607d52111546f87810302ba2Ortiz Álvarez, Antonio33d2459ac9d78a9be23d0a51dccf40f1Ortiz Álvarez, Antonio [0000000223580277]2024-01-29T18:11:48Z2024-01-29T18:11:48Z2023https://repositorio.unal.edu.co/handle/unal/85483Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figurasEl riesgo de sequía debido a la variabilidad climática y la presencia de cadmio (Cd) en el suelo es común en zonas cacaoteras alrededor del mundo. Hasta el momento no se encuentran estudios publicados sobre la acumulación de Cd en condiciones de déficit hídrico. Esta investigación tuvo como objetivo evaluar la respuesta fisiológica y la acumulación de cadmio en plantas de cacao bajo déficit hídrico. El estudio se realizó en casa de mallas en el Centro de Investigación Nataima de AGROSAVIA, municipio El Espinal, Tolima. Se utilizaron materiales con potencial como portainjertos de cacao, dos progenies (A2 y 1233) de hermanos completos obtenidas mediante cruzamiento dirigido, y un genotipo ampliamente utilizado como patrón en Colombia (IMC 67). Se analizaron diversos parámetros, incluyendo aspectos hídricos, de crecimiento, fisiológicos, bioquímicos y la acumulación de Cd en plantas de 7 meses de edad. Estas plantas crecieron en un suelo contaminado con Cd, sin añadir fuentes externas del metal, con una concentración inicial de Cd soluble de 0,356 mg kg-1. Se sometieron a déficit hídrico mediante la suspensión de riego durante períodos consecutivos de 19 y 27 días (D19 y D27), y luego se rehidrataron para evaluar su potencial de recuperación al estrés hídrico. El estrés hídrico redujo el potencial hídrico de las hojas (Ψhoja) con valores entre -1,51 y -2,09 MPa, siendo la progenie 1233 la más tolerante. Sin embargo, la recuperación de variables de intercambio gaseoso, el potencial hídrico y los pigmentos fotosintéticos tras la rehidratación, sugiere que las tres progenies poseen la capacidad de tolerar los niveles de estrés evaluados. La acumulación de Cd varió entre progenies, no entre niveles de estrés. La concentración de Cd se vio influenciada por la reducción de la biomasa (A2 y 1233) y la tasa de transpiración (IMC 67) causada por el déficit hídrico. La combinación de estrés hídrico y Cd estuvo relacionada con el contenido de clorofilas, el estrés oxidativo y acumulación de prolina en las hojas. Las progenies A2 y 1233 acumularon más Cd en la planta que IMC 67, con mayor concentración en las hojas. El factor translocación (FT) mostró que los órganos aéreos de las tres progenies estaban enriquecidos con Cd (FT>4). El déficit hídrico incrementó la translocación de Cd desde las raíces en A2 e IMC 67, a pesar de que este último acumuló menos Cd, mientras que en 1233 no hubo cambios significativos. La progenie 1233 se destacó como el portainjerto más prometedor debido a su tolerancia al estrés hídrico y estabilidad en la acumulación de Cd. (Texto tomado de la fuente)The risk of drought due to climate variability and the presence of cadmium (Cd) in the soil is common in cocoa-producing areas worldwide. Currently, there are no published studies on Cd accumulation under water deficit conditions. This research aimed to evaluate the physiological response and cadmium accumulation in cocoa plants under water deficit. The study was conducted in a nursery at the Nataima Research Center of AGROSAVIA, in El Espinal municipality, Tolima. Two potential cocoa rootstock materials, progenies A2 and 1233 from controlled crosses, and a commercially used rootstock genotype in Colombia (IMC 67), were used. Various parameters, including water-related aspects, growth, physiological, biochemical, and Cd accumulation in 7-month-old plants, were analyzed. The plants were grown in Cd-contaminated soil without the addition of external sources of the metal, with an initial soluble Cd concentration of 0.356 mg kg-1. They were subjected to water deficit by suspending irrigation for consecutive periods of 19 and 27 days (D19 and D27) and then rehydrated to assess their potential for water stress recovery. Water deficit reduced leaf water potential (Ψleaf) with values between -1.51 and -2.09 MPa, with progeny 1233 being the most tolerant. However, the recovery of gas exchange variables, water potential, and photosynthetic pigments after rehydration suggests that all three genotypes have the capacity to tolerate the stress levels evaluated. Cd accumulation varied among progenies, not among stress levels. The Cd concentration was influenced by biomass reduction (A2 and 1233) and transpiration rate (IMC 67) caused by water deficit. The combination of water deficit and Cd was associated with chlorophyll content, oxidative stress, and proline accumulation in the leaves. Progenies A2 and 1233 accumulated more Cd in the plant than IMC 67, with higher concentration in the leaves. The translocation factor (TF) indicated that the above-ground organs of all three progenies were enriched with Cd (TF>4). Water deficit increased Cd translocation from the roots in A2 and IMC 67, despite the latter accumulating less Cd, while 1233 showed no significant changes. Progeny 1233 stood out as the most promising rootstock due to its water stress tolerance and stable Cd accumulation.MaestríaMagíster en Ciencias Agrarias1.2 Materiales y métodos 1.2.1 Localización del experimento El experimento se realizó bajo condiciones de casa de malla en el Centro de Investigación Nataima – AGROSAVIA, ubicado en una zona de bosque seco tropical a 4°11’31’’N y 74°57’41’’W, a una altitud de 374 msnm en el municipio de El Espinal (Tolima, Colombia). 1.2.2 Material vegetal El material vegetal utilizado en este experimento hace parte de un programa de mejoramiento genético de cacao dirigido por la Corporación Colombiana de investigación agropecuaria – AGROSAVIA. Se utilizaron tres progenies de cacao: A2, 1233 e IMC 67. Las progenies A2 y 1233 son dos familias de hermanos completos obtenidos de cruzamientos dirigidos, las cuales presentan diferencias en la tolerancia al déficit hídrico, siendo 1233 el material tolerante, según estudios previos de AGROSAVIA (AGROSAVIA, 2021). La progenie IMC 67 es un genotipo comercial utilizado ampliamente el Colombia como patrón de cacao, obtenida a partir de libre polinización. Los cruzamientos se llevaron a cabo en el Centro de Investigación Palmira - AGROSAVIA (Valle del Cauca, Colombia) en condiciones de campo. Las semillas obtenidas se germinaron y se mantuvieron en un medio inerte (arena de río) durante 60 días en el Centro de Investigación Nataima - AGROSAVIA. Posteriormente, se trasplantaron plantas de mes de edad, con entre 6 y 8 hojas verdaderas, en bolsas plásticas que contenían suelo, en donde se mantuvieron hasta el final del experimento. El suelo utilizado presentaba un contenido promedio de 0,356 mg kg-1 de Cd soluble, determinado siguiendo la metodología de Bravo et al. (2021) (Información anexa 1). 1.2.3 Establecimiento del experimento Bajo condiciones de casa de malla, se realizó el trasplante en bolsas de plástico negro (60 cm alto x 30 cm de diámetro) con 40 kg de suelo franco, pH promedio de 5,29 y carbono orgánico de 5,1%. El suelo fue previamente homogenizado en tamiz de 12 mm. Considerando los resultados del análisis de suelos (Información anexa 2), cada planta, a los 4 meses de edad, se fertilizó con 5,7 g de Calcinit B (15,5% N; 26,0% Ca; 0,1% B), 8,6 de DAP (18,0% N; 46% P), 5,7 de ManuKiesek (3% K; 24% Mg; S 18%) y 9 ml de Transfer ionic (complejo orgánico de ácidos carboxílicos, gluconatos y ácido ascórbico), con el fin de corregir relaciones iónicas y saturación de bases en el suelo, de con acuerdo a los requerimientos nutricionales del cacao (Jaraba et al., 2021a). Durante el período comprendido entre el trasplante y la aplicación de los tratamientos de estrés hídrico, todas las plantas se hidrataron a capacidad de campo utilizando agua del acueducto. El riego se ajustaba según la humedad del suelo, la cual era monitoreada mediante sensores de humedad volumétrica tipo CS616 (Campbell Scientific®, USA). Se aplicaban entre 250 y 300 cc de agua por planta, con una frecuencia promedio de cada dos días, dependiendo de las condiciones de humedad detectadas. Los tratamientos de déficit hídrico se establecieron cuando las plantas tenían 6 meses de edad (dos Santos et al., 2014) y se distribuyeron en un diseño de bloques al azar con tres repeticiones en un arreglo factorial, donde el primer factor fueron las progenies: A2, IMC 67 y 1233, y el segundo factor los dos estados hídricos: plantas con estrés por déficit hídrico (ES) y plantas bien regadas (BR). Para el tratamiento BR, las plantas se regaron de manera óptima durante el periodo de evaluación, con el fin de mantener el contenido volumétrico de agua (CVA) del suelo entre 38 y 40% durante el periodo de evaluación (Figura 1). El valor de la capacidad de campo del suelo se determinó mediante curva de retención de humedad del suelo del experimento. El CVA se monitoreó con sensores de humedad volumétrica tipo CS616 (Campbell Scientific®, USA) previamente calibrados en laboratorio usando la metodología descrita en el manual del fabricante. Los sensores se instalaron a 25 cm de profundidad en el suelo, donde se encuentran las raíces secundarias y absorbentes de las plantas de cacao, encargadas de tomar agua y nutrientes del suelo (Jaraba et al., 2021b). 1.2.4 Tratamientos de estrés hídrico En condiciones de campo, el potencial hídrico foliar (Ψhoja) antes del amanecer se mantuvo entre -0,2 y -0,7 MPa, según valores reportados para plantas de cacao en estado hídrico óptimo (Dos Santos et al., 2014). En el tratamiento ES se suspendió el riego por 19 (D19) y 27 días (D27) consecutivos hasta que Ψhoja alcanzó valores entre -1,4 ± -0,4 y -2,05 ± 0,25 MPa, respectivamente, con el fin de someter las plantas a dos niveles de estrés, moderado y severo (De Almeida et al., 2016; Dos Santos et al., 2014; Rada et al., 2005), momentos en los cuales el CVA presentó el 30 y el 25% (Figura 1). Al final la fase de estrés D19 y D27, todas las plantas se regaron hasta alcanzar valores de capacidad de campo con 38-40% al tercer día, logrando recuperarse de la fase de estrés (fase de rehidratación). Las evaluaciones de la recuperación se realizaron al tercer día después de la rehidratación (DRH). Figura 1. Comportamiento del CVA (%) del suelo bajo dos niveles de déficit hídrico y rehidratación del mismo. Círculo abierto: CVA (%) del suelo cuando las plantas tenían un Ψhoja entre -1 y -1,8 MPa; Círculo cerrado: CVA (%) del suelo cuando las plantas de cacao tenían un Ψhoja menor a -1,8 MPa. BR, bien regado; ES, estrés por déficit hídrico; DRH, rehidratación de plantas sometidas a ES durante tres días consecutivos. Se evaluaron todos los parámetros en tres momentos diferentes: el día 19 y 27 de estrés hídrico (D19 y D27) y al final de la fase de rehidratación (DRH). Sin embargo, la biomasa y el contenido de Cd en la planta solo se determinaron en D19 y D27. Para realizar estas mediciones, las muestras de tejido foliar se trituraron en nitrógeno líquido y luego se conservaron a -80 °C. Posteriormente, se utilizaron estas muestras para determinar las variables fisiológicas y bioquímicas de las plantas de cacao. 1.2.5 Condiciones ambientales durante el experimento Durante el transcurso del experimento, se realizaron mediciones de variables ambientales clave, como la temperatura del aire (°C), la humedad relativa del aire (% HR) y la radiación solar (W m-2). Para este propósito, se utilizaron dos sensores ATMOS 14 de Meter Groups (EE. UU.), adaptados a un Data Logger EM50 y colocados dentro de la casa de mallas. Estos sensores registraron la temperatura y la humedad relativa diariamente, con una frecuencia de muestreo de 30 minutos. Además, para medir la radiación solar, se utilizó la estación meteorológica Vantage Pro2 (Davis Instruments, USA), ubicada a una distancia de 200 metros de la casa de malla. Los datos recopilados durante todo el experimento se muestran en la Figura 2. Figura 2. Condiciones de temperatura promedio (Temp), temperatura máxima (Temp máx.), temperatura mínima (Temp min.), humedad relativa (HR) y radiación solar (Rad solar) diaria, a la que fueron expuestas las plantas de cacao durante el tiempo del experimento. 1.2.6 Potencial hídrico de la hoja Se determinó Ψhoja entre las 2:00 a.m. y 4:00 a.m. tomando la tercera hoja madura de arriba hacia abajo (De Almeida et al., 2016) de nueve plantas por tratamiento (n = 9) con ayuda de una bomba de presión Schölander (PMS Model 615, Fresno, CA, United States). 1.2.7 Intercambio de gases Los parámetros de tasa fotosintética (A), conductancia estomática (gs) y transpiración (E) y carbono interno (Ci) se registraron de 9:00 a.m. a 12 m en la cuarta hoja madura de arriba hacia abajo (Osorio Zambrano et al., 2021) en doce plantas por tratamiento (n = 12), usando un sistema portátil de fotosíntesis LI-6800XT (LI-COR Biosciences Inc. NE, United States) con una concentración ambiental de CO2 de 400 µmol m-2 s-1 (J. De Almeida et al., 2016) y una densidad de flujo de fotones fotosintéticos de 600 µmol m-2 s-1, de acuerdo con los umbrales de respuesta de las curvas de luz para las tres progenies, realizadas previamente al establecimiento de los tratamientos (datos no mostrados). El equipo LI-6800XT también determinó los valores de déficit de presión de vapor (DPV) durante el tiempo de medición del intercambio gaseoso. 1.2.8 Acumulación de biomasa Se tomaron seis plantas por tratamiento (n = 6) y se dividieron en hojas+peciolos, tallos y raíces, se llevaron a una estufa a 60°C durante tres días y se determinó el peso seco de cada órgano en una balanza analítica. La relación raíz/parte aérea de la planta (R_S) se determinó dividiendo peso seco de la raíz entre el peso seco de las hojas+tallo. 1.2.9 Pigmentos fotosintéticos Se determinó el contenido de carotenoides (Car), clorofila a (Chla), clorofila b (Chlb) y clorofila total (ChlT) en la cuarta hoja madura de nueve plantas por tratamiento (n = 9). Se siguió la metodología propuesta por Warren (2008) y Nguyen et al. (2020) con algunas modificaciones. Después de extraer las clorofilas de dos discos (1,5 cm de diámetro) de la cuarta hoja madura con metanol (100%) y centrifugar a 5000 xg por 5 min, se usó el sobrenadante para determinar pigmentos con un lector de microplacas (Epoch BioTek) a 470, 652 y 665 nm. Para el cálculo de clorofilas y carotenoides se usaron las fórmulas propuestas por (Warren, 2008). 1.2.10 Prolina El contenido de prolina se determinó en la cuarta hoja madura, de arriba hacia abajo, en la misma hoja donde se evaluó el intercambio gaseoso. Se determinó en nueve plantas por tratamiento (n = 9) con base en el método de detección de (Bates et al., 1973) modificado por (Ábrahám et al., 2010) y se adicionan las modificaciones de (Barrera et al., 2010). Para obtener el extracto vegetal se usó ácido 5-sulfosalicílico 3% (p/v). La mezcla duró en agitación horizontal (200 rpm) durante 1 hora y se centrifugó a 14000 rpm durante 5 min para obtener el sobrenadante de interés. Se generó un mix de reacción a una relación 1:2:2 con ácido 5-sulfosalicílico 3% (p/v), ácido acético glacial y ninhidrina ácida, el cual se mezcló con el sobrenadante extraído y se dejó en baño María a 90°C por 60 min. La reacción se detuvo en una cama de hielo y posteriormente se le adicionó tolueno, se agitó en vórtex y se midió absorbancia a 520 nm de la fase orgánica de la mezcla. La concentración final de prolina se determinó a partir de la curva patrón de L-prolina (Barrera et al., 2010). 1.2.11 Peróxido de hidrógeno (H2O2) El contenido de H2O2 se determinó en la cuarta hoja madura de nueve plantas por tratamiento (n = 9) siguiendo en la metodología desarrollada por (Alexieva et al., 2001) con algunas modificaciones. Se tomaron 0,15 g de tejido foliar previamente congelado en nitrógeno líquido, y se homogenizaron con 1,5 ml de ácido tricloroacético (TCA) al 0,1% (p/v) durante 10 segundos en un vórtex. Posteriormente, se centrifugo a 12000 x g durante 15 min. Se recolectó 0,25 ml del sobrenadante y se le adicionó a 0,25 ml de buffer fosfato (100 mM) y 1 ml de yoduro de potasio (1 M KI p/v en H2O). Inmediatamente se incubó durante 1 hora en condiciones de oscuridad. El contenido de H2O2 se determinó usando un espectrofotómetro a una longitud de onda de 390 nm. La curva estándar de H2O2 se hizo preparando varias concentraciones de H2O2 puro, iniciando con una solución stock de 1000 ppm. 1.2.12 Malondialdehído (MDA) El acumulación de MDA, como producto de la peroxidación lipídica, se estimó siguiendo el método de Heath & Packer (1968). Se tomaron muestras de 0,2 g, previamente congeladas en nitrógeno líquido, de la cuarta hoja madura de nueve plantas por tratamiento (n = 9), se homogenizaron con TCA al 5%, se centrifugó 13000 x g durante 20 min. Se extrajo 0,5 ml del sobrenadante y se mezcló con 1 ml de solución de ácido tiobarbitúrico (TBA) al 0,5% y TCA al 20%, se llevó a baño María durante 20 min y posteriormente se centrifugó a 13000 x g durante 5 min y se leyó la absorbancia del sobrenadante a 532, 600 y 440 nm. El equivalente de malondialdehido (MDA) se calculó con las fórmulas de Heath & Packer (1968). 1.2.13 Contenido de cadmio en hojas Se determinó el contenido de Cd en las hojas, considerando que las variables fisiológicas y bioquímicas también se evaluaron en este órgano de las plantas. Además, se ha demostrado que el Cd presente en las hojas es un indicador predictivo del contenido de Cd presente en los granos de cacao (Wade et al., 2022), de ahí la importancia de determinar la acumulación de Cd en las hojas. Para determinar el contenido de Cd en las hojas de cacao, se recolectaron todas las hojas de la planta, utilizando tres plantas por progenie (n = 3) en los días 19 y 27 de estrés. Posteriormente, las muestras se sometieron a un proceso de secado en un horno a 70°C durante una semana, hasta alcanzar un peso constante. El contenido total de Cd en hojas se obtuvo utilizando la técnica de espectroscopia de emisión óptica con plasma acoplado inductivamente (ICP-OES) (Lanza et al., 2016). Los resultados del contenido de Cd en las hojas se expresaron tanto en términos de concentración en mg Cd kg de hojas, como en términos de acumulación en mg de Cd por órgano (hojas). 1.2.14 Análisis estadístico Se determinaron los supuestos de normalidad y homogeneidad de varianza de las variables evaluadas y se realizó un ANOVA de dos vías (progenie x tratamiento). Se hizo la comparación de medias para evaluar diferencias significativas a través de la prueba HSD de Tukey. Además, se realizó un análisis de correlaciones de Pearson con los variables para determinar posibles relaciones entre ellas (Figura anexa 2). Los análisis se llevaron a cabo usando el software R (R Studio Versión 4.0.1). Materiales y métodos Se empleó el mismo material vegetal descrito en el Capítulo 1 para evaluar la acumulación de cadmio en las plantas de las progenies evaluadas. A continuación, se describe la metodología para determinar las variables relacionadas con el Cd en el suelo y la planta. Contenido de cadmio en el suelo El suelo utilizado para el crecimiento de las plantas en el experimento fue extraído de un lote ubicado en el Centro de Investigación Tibaitatá - AGROSAVIA, el cual se dedica a la producción agropecuaria. Este suelo fue seleccionado específicamente por su contenido inicial de Cd pseudototal (4,85 mg kg-1) y por sus propiedades fisicoquímicas para el desarrollo de las plantas de cacao (Información anexa). Dado el uso del suelo durante las últimas décadas, se considera que el Cd tiene un origen antropogénico, debido a la actividad agropecuaria, específicamente al uso de fertilizantes fosfóricos que enriquecen el suelo con este metal. Con el fin de garantizar uniformidad, se homogeneizó una cantidad total de 10,08 toneladas de suelo, la cual se utilizó para llenar bolsas de plástico negro con una capacidad de 40 kg cada una, de 65 cm de alto por 28 cm de diámetro. Estas bolsas fueron utilizadas posteriormente para trasplantar las plántulas de cacao que tenían entre seis y ocho hojas verdaderas. El contenido de Cd en el suelo se determinó siguiendo la metodología descrita por (Bravo et al., 2021). La concentración de Cd pseudototal se determinó mediante espectrometría de plasma acoplado inductivamente con emisión óptica (ICP-OES) (Thermo Scientific ICAP 6000, Waltham, MA, EE. UU.). El término “pseudototal” se debe a que se usó el método de digestión pseudototal convencional (Lorentzen & Kingston, 1996), recomendado por la Agencia de Protección Ambiental (EPA 3050B), el cual solo extrae y digiere los metales pesados retenidos en las fracciones más lábiles del suelo, como la materia orgánica o los carbonatos (Bravo et al., 2021). La determinación de la concentración de Cd soluble en suelo, se realizó con curvas de calibración medidas con ICP-OES (Bravo et al., 2021). Se utilizó un material de referencia de cadmio puro (Merck-SRM solución estándar trazable de Cd (NO3)2 en HNO3 0,5 mol L-1-1000 mg kg-1 Cd Certipur. Referencia 1.19777.0500) para establecer las curvas de calibración estándar. Se prepararon curvas de calibración de bajo, medio y alto rango, con 10 puntos cada una, donde el límite de detección cuantitativa fue de 0,040 mg kg-1 de Cd2+, y se recuperó un 99.3% de Cd en las muestras de suelo. Según los resultados de esta determinación, se puede afirmar que las plantas de todos los tratamientos, incluyendo las plantas bien regadas, crecieron en suelo con un contenido promedio de 0,356 mg kg-1 de Cd soluble, valor considerado alto según Dutta et al. (2020). Contenido de Cd en la planta Para determinar el contenido de Cd en la planta, se separaron los órganos en hojas con peciolo, tallo y raíces de tres plantas por progenie (n = 3) en los días 19 y 27 de estrés. Posteriormente, las muestras se sometieron a un proceso de secado en un horno a 70°C durante una semana, hasta alcanzar un peso constante. El contenido de Cd en raíces, tallo y hojas, se obtuvo utilizando la técnica de espectroscopia de emisión óptica con plasma acoplado inductivamente (ICP-OES) (Lanza et al., 2016). Los resultados del contenido de Cd en la planta se expresaron tanto en términos de concentración en mg Cd por kg del órgano. Para determinar la acumulación de Cd por órgano de la planta, se multiplicó la concentración de Cd por la masa seca de cada órgano, expresado en mg de Cd por órgano. La acumulación Cd total en la planta se obtuvo sumando la acumulación de Cd en raíces, tallo y hojas. Factor de translocación de Cd (FT) El índice factor de translocación (FT) del Cd se determinó con la ecuación de Mattina et al. (2003) (ver Ecuación 1), utilizada por De Almeida et al. (2022) en plantas de cacao con 8 meses de edad. FT=(C parte aérea)/(C raíces) (Ecuación 1) Donde: C = concentración de Cd en mg kg-1 en la parte aérea (tallo + hojas) y las raíces de la planta. El objetivo de determinar el índice FT fue evaluar la capacidad de las progenies evaluadas para retener Cd en las raíces o translocarlo hacia los órganos de parte aérea. Este aspecto es relevante ya que los programas de mejoramiento genético de cacao buscan portainjertos con baja absorción y acumulación de Cd (Savvas et al., 2010). Análisis estadístico El efecto del estado hídrico de la planta en la acumulación de cadmio en las hojas por parte de las progenies de cacao se evaluó mediante un ANOVA de dos vías (progenie x tratamiento de estrés), permitiendo identificar diferencias significativas entre los tratamientos a través de la prueba HSD de Tukey. Además, se incluyó el contenido de cadmio en las hojas en el análisis de correlación de Pearson junto con los demás parámetros fisiológicos, con el objetivo de determinar la relación existente entre la acumulación de cadmio y dichas variables (Figura anexa 2).Fisiología de cultivosxxii, 99 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá580 - Plantas570 - Biología630 - Agricultura y tecnologías relacionadas630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónRelaciones agua-plantaPlantas -- Efectos del cadmioCadmioPlant-water relationshipsPlants, Effect of cadmium onCadmiumDéficit hídricoTheobroma cacaoAnálisis del sueloEstrés de sequiaWater shortagesSoil analysisDrought stressRelación planta-sueloPlant-soil relationshipsCacaoDéficit hídricoEstrés hídricoGenotipoToleranciaAcumulación de CdTranslocación de CdCocoaDrought stressGenotypeToleranceCd accumulationCd translocationRespuesta fisiológica y acumulación de cadmio en cacao (Theobroma cacao L.) bajo déficit hídricoEvaluation of physiological response and cadmium accumulation in cocoa plants (Theobroma cacao L.) under water deficit conditionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAbbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, M., Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148(November 2017), 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for Determination of Proline in Plants. In R. Sunkar (Ed.), Plant Stress Tolerance, Methods in Molecular Biology (Vol. 639, pp. 317–331). https://doi.org/10.1007/978-1-60761-702-0Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., ur Rehman, M. Z., Hussain, A., Hussain, K., Shahid Chatha, S. A., & Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124681Ahmad, P. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(11). https://doi.org/10.5897/ajb11.3203Akbar, K. F., Hale, W. H. G., Headley, A. D., & Athar, M. (2006). Heavy Metal Contamination of Roadside Soils of Northern England. Soil & Water Res, 1(4), 158–163.Akhter, M. F., Omelon, C. R., Gordon, R. A., Moser, D., & Macfie, S. M. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environmental and Experimental Botany, 100, 10–19. https://doi.org/10.1016/j.envexpbot.2013.12.005Albacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock×scion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211–2226. https://doi.org/10.1093/jxb/erv027Alban, M. B. K. A., Elain Apshara, S., Hebbar, K. B., Mathias, T. G., & Séverin, A. (2016). Morpho-physiological criteria for assessment of two month old cocoa (Theobroma cacao L.) genotypes for drought tolerance. Indian Journal of Plant Physiology, 21(1), 23–30. https://doi.org/10.1007/s40502-015-0195-yAlexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.xAlia, & Saradhi, P. (1991). Proline Accumulation Under Heavy Metal Stress. Journal of Plant Physiology, 138(5), 554–558. https://doi.org/10.1016/S0176-1617(11)80240-3Altuntaş, C., Demiralay, M., Sezgin Muslu, A., & Terzi, R. (2020). Proline-stimulated signaling primarily targets the chlorophyll degradation pathway and photosynthesis associated processes to cope with short-term water deficit in maize. Photosynthesis Research, 144(1), 35–48. https://doi.org/10.1007/s11120-020-00727-wAndresen, E., Lyubenova, L., Hubáček, T., Nadeem, S., Bokhari, H., Matoušková, Š., Mijovilovich, A., Rohovec, J., & Küpper, H. (2020). Chronic exposure of soybean plants to nanomolar cadmium reveals specific additional high-affinity targets of cadmium toxicity. Journal of Experimental Botany, 71(4), 1628–1644. https://doi.org/10.1093/jxb/erz530Arao, T., & Ishikawa, S. (2006). Genotypic Differences in Cadmium Concentration and Distribution of Soybean and Rice. Japan Agricultural Research Quarterly. Japan International Research Center for Agricultural Sciences, 40(1), 21–30. http://www.jircas.affrc.go.jpAraque, O., Jaimez, R. E., Tezara, W., Coronel, I., Urich, R., & Espinoza, W. (2012). Comparative photosynthesis, water relations, growth and survival rates in juvenile criollo cacao cultivars (theobroma cacao) during dry and wet seasons. Experimental Agriculture, 48(4), 513–522. https://doi.org/10.1017/S0014479712000427Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., Wright, G. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113–125. https://doi.org/10.1111/j.1439-037X.2008.00299.xArvelo, M. A., González León, D., Maroto Arce, S., Delgado López, T., & Montoya López, P. (2017). Manual técnico del cultivo de cacao. Pràcticas Latinoamericanas. In Instituto Interamericano de Cooperación para la Agricultura (IICA). https://repositorio.iica.int/handle/11324/6181Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., Ben Abdallah, F., Fki, L., & Munné-Bosch, S. (2020). Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo- and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. Frontiers in Plant Science, 11(December), 1–14. https://doi.org/10.3389/fpls.2020.614144Balasimha, D., Daniel, E. V., & Bhat, P. G. (1991). Influence of environmental factors on photosynthesis in cocoa trees. Agricultural and Forest Meteorology, 55, 15–21. https://doi.org/10.4172/2375-4338.1000e117Baligar, V. C., Bunce, J. A., Machado, R. C. R., & Elson, M. K. (2008). Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica, 46(2), 216–221. https://doi.org/10.1007/s11099-008-0035-7Bansal, R., Priya, S., Dikshit, H. K., Jacob, S. R., Rao, M., Bana, R. S., Kumari, J., Tripathi, K., Kumar, A., Kumar, S., & Siddique, K. H. M. (2021). Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics, 9(8), 1–11. https://doi.org/10.3390/toxics9080182Barraza, F., Schreck, E., Ev ^ Eque, T. L., Uzu, G., Opez, F. L., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080Barrera, J., Suárez, D., & Melgarejo, L. (2010). Análisis de crecimiento en plantas. Experimentos En Fisiología Vegetal, December, 25–38. https://www.uv.mx/personal/tcarmona/files/2019/02/Melgarejo-2010.pdfBashir, N., Athar, H. U. R., Zafar, Z. U., Ashraf, M., Kalaji, H. M., Wróbel, J., & Mahmood, S. (2021). Is photoprotection of psii one of the key mechanisms for drought tolerance in maize? International Journal of Molecular Sciences, 22(24). https://doi.org/10.3390/ijms222413490Bashir, W., Anwar, S., Zhao, Q., Hussain, I., & Xie, F. (2019). Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 175(November 2018), 90–101. https://doi.org/10.1016/j.ecoenv.2019.03.042Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research, 5(F1000 Faculty Rev), 1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies Summary. Plant and Soil, 39, 205–207.Bauddh, K., & Singh, R. P. (2012). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental Safety, 85, 13–22. https://doi.org/10.1016/j.ecoenv.2012.08.019Berglund, T., & Ohlsson, A. B. (1995). Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide, glutathione and oxidative stress. Plant Cell, Tissue and Organ Culture, 43(2), 137–145. https://doi.org/10.1007/BF00052169Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell and Environment, 40(1), 4–10. https://doi.org/10.1111/pce.12800Borjas-Ventura, R., Bello-Medina, N., Bello-Amez, S., Alvarado-Huaman, L., Rabaza-Fernandez, D., Tapia Y Figueroa, L., Castro-Cepero, V., & Julca-Otiniano, A. (2022). Absorción diferenciada de cadmio y su efecto en la fisiología de seis genotipos de cacao (Theobroma cacao L.) en San Ramón, Selva Central del Perú. Tropical and Subtropical Agroecosystems, 25(3). https://doi.org/10.56369/tsaes.4000Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 1–18. https://doi.org/10.3390/agronomy11040761Bunn, C., Lundy, M., Läderach, P., & Castro, F. (2017). Global climate change impacts on cocoa. Paper Presented at International Symposium on Cocoa Research, 13-17 November 2017, Lima, Peru, November, 13–17.Carpena, R. O., Vázquez, S., Esteban, E., Fernández-Pascual, M., De Felipe, M. R., & Zornoza, P. (2003). Cadmium-stress in white lupin: Effects on nodule structure and functioning. Plant Physiology and Biochemistry, 41(10), 911–919. https://doi.org/10.1016/S0981-9428(03)00136-0Castro, A. V, De Almeida, A.-A. F., Pirovani, C. P., Reis, G. S. M., Almeida, N. M., & Mangabeira, P. A. O. (2015). Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. Ecotoxicology and Environmental Safety, 115, 174–186. https://doi.org/10.1016/j.ecoenv.2015.02.003Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106Chen, L., Long, X. H., Zhang, Z. H., Zheng, X. T., Rengel, Z., & Liu, Z. P. (2011). Cadmium Accumulation and Translocation in Two Jerusalem Artichoke (Helianthus tuberosus L.) Cultivars. Pedosphere, 21(5), 573–580. https://doi.org/10.1016/S1002-0160(11)60159-8Chen, Y. E., Liu, W. J., Su, Y. Q., Cui, J. M., Zhang, Z. W., Yuan, M., Zhang, H. Y., & Yuan, S. (2016). Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 158(2), 225–235. https://doi.org/10.1111/ppl.12438Cho, U. H., & Kim, I. T. (2003). Effect of Cadmium on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings. In The Korean Journal of Ecology (Vol. 26, Issue 3, pp. 115–121). https://doi.org/10.5141/jefb.2003.26.3.115Cho, U. H., & Seo, N. H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168(1), 113–120. https://doi.org/10.1016/j.plantsci.2004.07.021Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003De Almeida, J., Tezara, W., & Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management, 171, 80–88. https://doi.org/10.1016/j.agwat.2016.03.012De Almeida, N. M., Furtado De Almeida, A.-A., De Almeida, N. S., Do Nascimento, L. J., De Carvalho Neto, C. H., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2022). Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Scientia Horticulturae, 300. https://doi.org/10.1016/j.scienta.2022.111086de Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of Experimental Botany, 63(16), 5957–5966. https://doi.org/doi:10.1093/jxb/ers241Deng, X., Joly, R. J., & Hahn, D. T. (1990). The influence of plant water deficit on photosynthesis and translocation of 14C‐labeled assimilates in cacao seedlings. Physiologia Plantarum, 78(4), 623–627. https://doi.org/10.1111/j.1399-3054.1990.tb05251.xDietz, K. J. (2016). Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Molecules and Cells, 39(1), 20–25. https://doi.org/10.14348/molcells.2016.2324Dobrikova, A. G., Apostolova, E. L., Han´c, A. H., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.-D. S., Moustakas, M., & Sibley, P. (2021). Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicology and Environmental Safety, 209. https://doi.org/10.1016/j.ecoenv.2020.111851Dos Santos, I. C., De Almeida, A. A. F., Anhert, D., Da Conceiҫão, A. S., Pirovani, C. P., Pires, J. L., Valle, R. R., & Baligar, V. C. (2014). Molecular, physiological and biochemical responses of theobroma cacao L. genotypes to soil water deficit. PLoS ONE, 9(12), 1–31. https://doi.org/10.1371/journal.pone.0115746Dos Santos, J. V., Baligar, V. C., Ahrnet, D., & de Almeida, A. A. F. (2023). Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao. Plant Physiology and Biochemistry, 196, 624–633. https://doi.org/10.1016/J.PLAPHY.2023.01.053Dos Santos Souza, L. M., Furtado De Almeida, A.-A., Martins Da Silva, N., Rafaela, B., Oliveira, M., Victor, J., Silva, S., Olímpio, J., Junior, S., Ahnert, D., & Baligar, V. C. (2020). Mitigation of cadmium toxicity by zinc in juvenile cacao: Physiological, biochemical, molecular and micromorphological responses. Environmental and Experimental Botany, 179. https://doi.org/10.1016/j.envexpbot.2020.104201Drake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D., Maier, C., Pfautsch, S., Smith, R. A., Tjoelker, M. G., & Tissue, D. T. (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 247(December 2016), 454–466. https://doi.org/10.1016/j.agrformet.2017.08.026Dutta, A., Patra, A., Singh Jatav, H., Singh Jatav, S., Kumar Singh, S., Sathyanarayana, E., Sudhanshu, V., & Singh, P. (2020). Toxicity of Cadmium in Soil-Plant-Human Continuum and Its Bioremediation Techniques. In Soil Contamination - Threats and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.94307Dzandu, E., Enu-Kwesi, L., Markwei, C. M., & Ayeh, K. O. (2021). Screening for drought tolerance potential of nine cocoa (Theobroma cacao L.) genotypes from Ghana. Heliyon, 7(11), e08389. https://doi.org/10.1016/j.heliyon.2021.e08389El-Mahdy, M. T., Abdel-Wahab, D. A., & Youssef, M. (2021). In vitro morpho-physiological performance and DNA stability of banana under cadmium and drought stresses. In Vitro Cellular and Developmental Biology - Plant, 57(3), 460–469. https://doi.org/10.1007/s11627-020-10142-4Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660–670. https://doi.org/10.1016/j.scitotenv.2019.05.001Fernández-Paz, J., Cortés, A. J., Hernández-Varela, C. A., Mejía-de-Tafur, M. S., Rodriguez-Medina, C., & Baligar, V. C. (2021). Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao (Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. Frontiers in Plant Science, 12, 2848. https://doi.org/10.3389/FPLS.2021.777842/BIBTEXFlorida Rofner, N. (2021). Revision sobre limites máximos de cadmio en cacao (Theobrama cacao l.). Granja, 34(2), 113–126.Furcal-Beriguete, P., & Torres-Morales, L. J. (2020). Determination of cadmium concentrations in cocoa plantations (Theobroma cacao L.) in Costa Rica. Tecnología En Marcha, 33. https://doi.org/10.18845/tm.v33i1.5027Furlan, A. L., Bianucci, E., Giordano, W., Castro, S., & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151(December 2019), 566–578. https://doi.org/10.1016/j.plaphy.2020.04.010García Lozano, J., & Moreno Fonseca, L. P. (2016). Respuestas fisiológicas de Theobroma cacao L. En etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronomica, 65(1), 44–50. https://doi.org/10.15446/acag.v65n1.48161Garrett, R. G., Porter, A. R. D., Hunt, P. A., & Lalor, G. C. (2008). The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites. Applied Geochemistry, 23(4), 822–834. https://doi.org/10.1016/j.apgeochem.2007.08.008Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: a case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-xGill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant Signaling and Behavior, 6(2), 215–222. https://doi.org/10.4161/psb.6.2.14880Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 390(2–3), 301–310. https://doi.org/10.1016/j.scitotenv.2007.10.038Gu, J., Zou, G., Su, S., Li, S., Liu, W., Zhao, H., Liu, L., Jin, L., Tian, Y., Zhang, X., Wang, Y., Zhao, T., Du, L., & Wei, D. (2022). Effects of pH on Available Cadmium in Calcareous Soils and Culture Substrates. Eurasian Soil Science, 55(12), 1714–1719. https://doi.org/10.1134/S1064229322601391Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614Gutiérrez-Martínez, P. B., Torres-Morán, M. I., Romero-Puertas, M. C., Casas-Solís, J., Zarazúa-Villaseñor, P., Sandoval-Pinto, E., & Ramírez-Hernández, B. C. (2020). Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress//Evaluación de enzimas antioxidantes en hojas y raíces de plantas Phaseolus vulgaris bajo estrés de cadmio. Biotecnia, 22(2), 110–118. https://doi.org/10.18633/biotecnia.v22i2.1252Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy, 134, 135–225. https://doi.org/10.1016/bs.agron.2015.06.005He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16(3), 259–272. https://doi.org/10.1007/s12298-010-0028-4Hu, P. J., Qiu, R. L., Senthilkumar, P., Jiang, D., Chen, Z. W., Tang, Y. T., & Liu, F. J. (2009). Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany, 66(2), 317–325. https://doi.org/10.1016/j.envexpbot.2009.02.014Ibrahim, M. H., & Jaafar, H. Z. E. (2012). Primary, secondary metabolites, H 2O 2, malondialdehyde and photosynthetic responses of Orthosiphon stimaneus benth. to different irradiance levels. Molecules, 17(2), 1159–1176. https://doi.org/10.3390/molecules17021159Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004Jaimes, Y., Agudelo, G., Monrealegre, F., Rengifo, G., & Rojas, J. (2022). Cultivo de cacao ( Theobroma cacao L .) en el departamento de Santander (2a ed.). Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA. https://editorial.agrosavia.co/index.php/publicaciones/catalog/view/276/258/1646-1Jaraba, A. B., Buriticá, Á. J., Vega, F. N., Urrego, J. E., Bautista, J. F., Puerta, J. A., & Yepes, J. E. (2021a). Modelo Productivo Para El Cultivo De Cacao (Theobroma cacao L.) - Nutrición y Fertilización. In Campaña Nacional de Chocolates - CNCH. www.chocolates.com.coJaraba, A. B., Buriticá, Á. J., Vega, F. N., Urrego, J. E., Bautista, J. F., Puerta, J. A., & Yepes, J. E. (2021b). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) - Origen, Botánica y Generalidades. Campaña Nacional de Chocolates - CNCH. https://chocolates.com.co/wp-content/uploads/2021/12/AF-FOLLETO-ORIGEN-BOTANICA-Y-GENERALIDADES-1.pdfJiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J. J., Moreno, M. A., & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33(10), 1061–1075. https://doi.org/10.1093/treephys/tpt074Juby, B., Minimol, J. S., Suma, B., Santhoshkumar, A. V., Jiji, J., & Panchami, P. S. (2021). Drought mitigation in cocoa (Theobroma cacao L.) through developing tolerant hybrids. BMC Plant Biology, 21(1), 1–12. https://doi.org/10.1186/s12870-021-03352-4Juenger, T. E., & Verslues, P. E. (2023). Time for a drought experiment: Do you know your plants’ water status? Plant Cell, 35(1), 10–23. https://doi.org/10.1093/plcell/koac324Kabata-Pendias, A. (1993). Behavioural properties of trace metals in soils. Applied Geochemistry, 8, 3–9. https://doi.org/10.1016/S0883-2927(09)80002-4Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1–2), 19–32. https://doi.org/10.1016/j.geoderma.2006.08.024Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review EPA Public Access. Appl Geochem, 108, 1–16. https://doi.org/10.1016/j.apgeochem.2019.104388Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(1). https://doi.org/10.1007/s13593-018-0552-0Lahive, F., Handley, L. R., Hadley, P., & Daymond, A. J. (2021). Climate change impacts on cacao: Genotypic variation in responses of mature cacao to elevated co2 and water deficit. Agronomy, 11(5). https://doi.org/10.3390/agronomy11050818Lajayer, B. A., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145(June), 377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035Lanza, J. G., Churión, P. C., Liendo, N. J., & López, V. H. (2016). Evaluación del contenido de metales pesados en cacao (Teobroma cacao L.) de Sabta Bárbara del Zulia, Venezuela. Saber, Universidad de Oriente, 28, 106–115.Lettens, S., Vandecasteele, B., De Vos, B., Vansteenkiste, D., & Verschelde, P. (2011). Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Science of the Total Environment, 409(11), 2306–2316. https://doi.org/10.1016/j.scitotenv.2011.02.029Lewis, C., Lennon, A. M., Eudoxie, G., Umaharan, P., & Campus, A. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365Lewis, V. R., Farrell, A. D., Umaharan, P., & Lennon, A. M. (2021). Genetic variation in high light responses of Theobroma cacao L. accessions. Heliyon, 7(6), e07404. https://doi.org/10.1016/J.HELIYON.2021.E07404Li, R., Guo, P., Baum, M., Grando, S., & Ceccarelli, S. (2006). Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators. Agricultural Sciences in China, 5(October), 751–757.Li, S., Liu, J., Liu, H., Qiu, R., Gao, Y., & Duan, A. (2021). Role of Hydraulic Signal and ABA in Decrease of Leaf Stomatal and Mesophyll Conductance in Soil Drought-Stressed Tomato. Frontiers in Plant Science, 12(April), 1–12. https://doi.org/10.3389/fpls.2021.653186Li, T., Wang, R., Zhao, D., & Tao, J. (2020). Effects of drought stress on physiological responses and gene expression changes in herbaceous peony (Paeonia lactiflora Pall.). Plant Signaling and Behavior, 15(5). https://doi.org/10.1080/15592324.2020.1746034Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., & Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 121433. https://doi.org/10.1016/j.envpol.2023.121433Lisar, S., Seyed, Y., Motafakkerazad, R., Mosharraf, M., Rahm, M., & Ismail, M. (2012). Introductory Chapter: Water Stress. Water Stress in Plants: Causes, Effects and Responses, 1–15. www.intechopen.comLiu, C., Yu, R., & Shi, G. (2016). Effects of drought on the accumulation and redistribution of cadmium in peanuts at different developmental stages. Archives of Agronomy and Soil Science, 63(8), 1049–1057. https://doi.org/10.1080/03650340.2016.1271120Liu, X., Peng, K., Wang, A., Lian, C., & Shen, Z. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78(9), 1136–1141. https://doi.org/10.1016/j.chemosphere.2009.12.030Liu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y., & Ning, Z. (2017). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42–49. https://doi.org/10.1016/j.gexplo.2016.04.004Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 119(3), 1091–1099. https://doi.org/10.1104/pp.119.3.1091Lorentzen, E. M. L., & Kingston, H. M. (1996). Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Analytical Chemistry, 68(24), 4316–4320. https://doi.org/10.1021/ac960553lLux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21–37. https://doi.org/10.1093/jxb/erq281Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137645Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580–585.Makholwa, K., Malambane, G., Moseki, B., & Nthupisang, B. (2021). Water Stress Response in Different Jatropha curcas Accessions from Different Geographical Zones of Botswana: Biochemical & Physiological Perceptive. American Journal of Plant Sciences, 12(09), 1305–1318. https://doi.org/10.4236/ajps.2021.129091Maréchaux, I., Bartlett, M. K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., & Chave, J. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29(10), 1268–1277. https://doi.org/10.1111/1365-2435.12452Martínez-Ferri, E., Moreno-Ortega, G., Van Den Berg, N., & Pliego, C. (2019). Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2016-3Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378. https://doi.org/10.1016/S0269-7491(03)00060-5Matysik, J., Alia, Bhalu, B., & Mohanty P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants on JSTOR. Current Science Association. Vol. 82, No. 5. https://www.jstor.org/stable/24105959Medina, V., & Laliberte, B. (2017). A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change. Bioversity International.Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, e02952. https://doi.org/10.1016/j.heliyon.2019.e02952Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao from Latin America and the Caribbean – A Review of Research and Potential Mitigation Solutions. Bioversity International.Mingorance, M. D., Valdés, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514–520. https://doi.org/10.1016/j.envint.2007.01.005Moore, R. E. T., Ullah, I., de Oliveira, V. H., Hammond, S. J., Strekopytov, S., Tibbett, M., Dunwell, J. M., & Rehkämper, M. (2020). Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Horticulture Research, 7(1). https://doi.org/10.1038/s41438-020-0292-6Mori, S., Uraguchi, S., Ishikawa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67(1), 127–132. https://doi.org/10.1016/j.envexpbot.2009.05.006Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311Mukherjee, M. (2017). Lead and Cadmium Toxicity on Seedling Growth and Metabolism of Trigonellafoenum-graecum L. International Journal of Science and Research (IJSR), 6(7), 1685–1689. https://doi.org/10.21275/art20175574Nadarajah, K. K. (2020). Ros homeostasis in abiotic stress tolerance in plants. In International Journal of Molecular Sciences (Vol. 21, Issue 15, pp. 1–29). MDPI AG. https://doi.org/10.3390/ijms21155208Najeeb, U., Jilani, G., Ali, S., Sarwar, M., Xu, L., & Zhou, W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials, 186(1), 565–574. https://doi.org/10.1016/j.jhazmat.2010.11.037Nguyen, H. M., Kim, M., Ralph, P. J., Marín-Guirao, L., Pernice, M., & Procaccini, G. (2020). Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications. Frontiers in Plant Science, 11(April), 1–18. https://doi.org/10.3389/fpls.2020.00494Niether, W., Glawe, A., Pfohl, K., Adamtey, N., Schneider, M., Karlovsky, P., & Pawelzik, E. (2020). The effect of short-term vs. long-term soil moisture stress on the physiological response of three cocoa (Theobroma cacao L.) cultivars. Plant Growth Regulation, 92(2), 295–306. https://doi.org/10.1007/s10725-020-00638-9Nirola, R., Megharaj, M., Palanisami, T., Aryal, R., Venkateswarlu, K., & Ravi Naidu. (2015). Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization. Journal of Sustainable Mining, 14(3), 115–123. https://doi.org/10.1016/j.jsm.2015.11.001Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., & Yildiz, M. (2022). Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia, 2(4), 180–197. https://doi.org/10.3390/physiologia2040015Oliveira, R. B. M., Furtado De Almeida, A.-A., De Almeida Santos, N., & Pirovani, C. P. (2022). Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Scientia Horticulturae, 293, 110733. https://doi.org/10.1016/j.scienta.2021.110733Oono, Y., Yazawa, T., Kawahara, Y., Kanamori, H., Kobayashi, F., Sasaki, H., Mori, S., Wu, J., Handa, H., Itoh, T., & Matsumoto, T. (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096946Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(MAR), 1–8. https://doi.org/10.3389/fpls.2014.00086Osorio Zambrano, M. A., Castillo, D. A., Rodríguez Pérez, L., & Terán, W. (2021). Cacao (Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.700855Palencia, G., Gómez, R., & Mejia, L. A. (2007). Patrones de cacao (Vol. 1, pp. 1–24). Corporación Colombiana de Investigación Agropecuaria (Corpoica). https://repository.agrosavia.co/bitstream/handle/20.500.12324/2222/42973_48680.pdf?sequence=1&isAllowed=yParmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6. https://doi.org/10.1186/1999-3110-54-45Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197Pereira de Araújo, R., Furtado De Almeida, A.-A., Pereira, L. S., Mangabeira, P. A. O., Souza, J. O., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006Pereira, M. P., Rodrigues, L. C. de A., Corrêa, F. F., de Castro, E. M., Ribeiro, V. E., & Pereira, F. J. (2015). Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees - Structure and Function, 30(3), 807–814. https://doi.org/10.1007/s00468-015-1322-0Pompelli, M. F., Barata-Luís, R., Vitorino, H. S., Gonçalves, E. R., Rolim, E. V., Santos, M. G., Almeida-Cortez, J. S., Ferreira, V. M., Lemos, E. E., & Endres, L. (2010). Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass and Bioenergy, 34(8), 1207–1215. https://doi.org/10.1016/j.biombioe.2010.03.011Rada, F., Jaimez, R. E., García-Nuñez, C., Azócar, a, & Ramírez, M. E. (2005). Relaciones hídricas e intercambio de gases en Theobroma cacao var. Guasare bajo períodos de deficit hídrico. Rev. Fac. Agron, 22(April), 120.Ramalho, J. C., Rodrigues, A. P., Lidon, F. C., Marques, L. M. C., Leitão, A. E., Fortunato, A. S., Pais, I. P., Silva, M. J., Scotti-Campos, P., Lopes, A., Reboredo, F. H., & Ribeiro-Barros, A. I. (2018). Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0198694Redjala, T., Sterckeman, T., & Morel, J. L. (2009). Cadmium uptake by roots: Contribution of apoplast and of high- and low-affinity membrane transport systems. Environmental and Experimental Botany, 67(1), 235–242. https://doi.org/10.1016/j.envexpbot.2009.05.012Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Campo, F. F. D., & Hernández, L. E. (2006). Stress responses of Zea mays to cadmium and mercury. Plant and Soil, 279(1–2), 41–50. https://doi.org/10.1007/s11104-005-3900-1Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8(September). https://doi.org/10.3389/fpls.2017.01608Romero Navarro, J. A., Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., Haiminen, N., Mustiga, G., Livingstone, D., Van Bakel, H., Kuhn, D. N., Parida, L., Kasarskis, A., & Motamayor, J. C. (2017). Application of genome wide association and genomic prediction for improvement of cacao productivity and resistance to black and frosty pod diseases. Frontiers in Plant Science, 8(November). https://doi.org/10.3389/fpls.2017.01905Rouphael, Y., Cardarelli, M., Schwarz, D., Franken, P., & Colla, G. (2012). Effects of Drought on Nutrient Uptake and Assimilation in Vegetable Crops. In Plant Responses to Drought Stress (pp. 171–195). https://doi.org/10.1007/978-3-642-32653-0Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 13(5), 468–474. https://doi.org/doi:10.1038/nbt0595-468Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156–161. https://doi.org/10.1016/j.scienta.2010.09.011Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. How to Recruit Voluntary Donors in the Third World?, 241, 73–137. https://doi.org/10.1007/398_2016_8Sharma, S. S., Schat, H., & Vooijs, R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49(6), 1531–1535. https://doi.org/10.1016/S0031-9422(98)00282-9Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8(November), 1–8. https://doi.org/10.3389/fpls.2017.01950Shawon, R. A., Kang, B. S., Kim, H. C., Lee, S. G., Kim, S. K., Lee, H. J., Bae, J. H., & Ku, Y. G. (2018). Changes in Free Amino Acid, Carotenoid, and Proline Content in Chinese Cabbage (Brassica rapa subsp. Pekinensis) in Response to Drought Stress. Korean Journal of Plant Resources, 31(6), 622–633.Shi, G., Xia, S., Ye, J., Huang, Y., Liu, C., & Zhang, Z. (2015). PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 111, 127–134. https://doi.org/10.1016/j.envexpbot.2014.11.008Singh, S., & Prasad, S. M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Scientia Horticulturae, 176, 1–10. https://doi.org/10.1016/J.SCIENTA.2014.06.022Solís-Domínguez, F. A., González-Chávez, M. C., Carrillo-González, R., & Rodríguez-Vázquez, R. (2007). Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials, 141(3), 630–636. https://doi.org/10.1016/j.jhazmat.2006.07.014Song, C., Shen, W., Du, L., Wen, J., Lin, J., & Li, R. (2019). Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata). Trees - Structure and Function, 33(3), 827–836. https://doi.org/10.1007/s00468-019-01820-xSong, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598Standtman, E. R., Moskovitz, J., & Levine, R. L. (2003). Oxidation of Methionine Residues of Proteins: Biological Consequences. Antioxidants & Redox Signaling, 5(5), 577–582.Stankovic, S., Baptista, P., Carillo, P., & Bandurska, H. (2022). Drought Stress Responses: Coping Strategy and Resistance. Plants, MDPI. https://doi.org/10.3390/plants11070922Su, Y., Wang, X., Liu, C., & Shi, G. (2013). Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency. Plant and Soil, 363(1–2), 201–213. https://doi.org/10.1007/s11104-012-1310-8Suchithra, M., Suma, B., Js, M., & Mathew, D. (2023). Biochemical Response of Cocoa ( Theobroma cacao L .) Genotypes to Water Deficit Stress Condition Biochemical Response of Cocoa ( Theobroma cacao L .) Genotypes to Water Deficit Stress Condition. Environment and Ecology, 41(2), 824–830.Suh, N. N., & Molua, E. L. (2022). Cocoa production under climate variability and farm management challenges: Some farmers’ perspective. Journal of Agriculture and Food Research, 8(February), 100282. https://doi.org/10.1016/j.jafr.2022.100282Sun, T., Rao, S., Zhou, X., & Li, L. (2022). Plant carotenoids: recent advances and future perspectives. Molecular Horticulture, 2(1), 1–21. https://doi.org/10.1186/s43897-022-00023-2Telfer, A. (2005). Too much light? How β-carotene protects the photosystem II reaction centre. Photochemical & Photobiological Sciences, 4(12), 950–956. https://doi.org/doi:10.1039/b507888cTerzi, R., & Kadioglu, A. (2006). Drought stress tolerance and the antioxidant enzyme system in Ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica, 48(2), 89–96.Tran, T. A., & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turkish Journal of Botany, 37(1), 1–13. https://doi.org/10.3906/bot-1112-16Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102. https://doi.org/10.1038/ng.2725Umar, M., & Siddiqui, Z. S. (2018). Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Botanica Croatica, 77(1), 36–44. https://doi.org/10.2478/botcro-2018-0002Ünyayar, S., Keleş, Y., & Çekiç, F. Ö. (2005). The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant, Soil and Environment, 51(2), 57–64. https://doi.org/10.17221/3556-pseVanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of the Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779Varone, L., Ribas-Carbo, M., Cardona, C., Gallé, A., Medrano, H., Gratani, L., & Flexas, J. (2012). Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany, 75, 235–247. https://doi.org/10.1016/j.envexpbot.2011.07.007Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35(4), 753–759. https://doi.org/10.1007/s00726-008-0061-6Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12(3), 364–372. https://doi.org/10.1016/j.pbi.2009.05.001Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLoS ONE, 17(2 February). https://doi.org/10.1371/journal.pone.0261989Wang, H. zheng, Zhang, L. he, Ma, J., Li, X. yi, Li, Y., Zhang, R. ping, & Wang, R. quan. (2010). Effects of Water Stress on Reactive Oxygen Species Generation and Protection System in Rice During Grain-Filling Stage. Agricultural Sciences in China, 9(5), 633–641. https://doi.org/10.1016/S1671-2927(09)60138-3Warren, C. R. (2008). Rapid measurement of chlorophylls with a microplate reader. Journal of Plant Nutrition, 31(7), 1321–1332. https://doi.org/10.1080/01904160802135092White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080. https://doi.org/10.1093/aob/mcq085Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33(4), 510–525. https://doi.org/10.1111/j.1365-3040.2009.02052.xXia, S., Wang, X., Su, G., & Shi, G. (2015). Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Environmental Science and Pollution Research, 22(23), 18707–18717. https://doi.org/10.1007/s11356-015-5063-9Xiao, X., Xu, X., & Yang, F. (2008). Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 42(5), 705–719. https://doi.org/10.14214/sf.224Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. In Horticulturae (Vol. 7, Issue 3). MDPI AG. https://doi.org/10.3390/horticulturae7030050Yilmaz, D. D., & Parlak, K. U. (2011). Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecological Indicators, 11(2), 417–423. https://doi.org/10.1016/j.ecolind.2010.06.012Zakariyya, F., & Indradewa, D. (2018). Drought Stress Affecting Growth and Some Physiological Characters of Three Cocoa Clones at Seedling Phase. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 34(3), 156–165. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v34i3.330Zakariyya, F., Setyawan, B., & Wahyu Susilo, A. (2017). Stomatal, Proline, and Leaf Water Status Characters of Some Cocoa Clones (Theobroma cacao L.) on Prolonged Dry Season. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 33(2), 109–117. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v33i2.264Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-89322-0Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169(4), 737–745. https://doi.org/10.1016/j.plantsci.2005.05.030Živanović, B., Komić, S. M., Tosti, T., Vidović, M., Prokić, L., & Jovanović, S. V. (2020). Leaf soluble sugars and free amino acids as important components of abscisic acid—mediated drought response in tomato. Plants, 9(9), 1–17. https://doi.org/10.3390/plants9091147Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F. U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M., & Mustafa, A. (2022). Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.773815Corporación Colombiana de Investigación Agropecuaria AGROSAVIAEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85483/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1094579566.2023.pdf1094579566.2023.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2208139https://repositorio.unal.edu.co/bitstream/unal/85483/2/1094579566.2023.pdf97675df90aee66fb37031695a79db161MD52THUMBNAIL1094579566.2023.pdf.jpg1094579566.2023.pdf.jpgGenerated Thumbnailimage/jpeg4584https://repositorio.unal.edu.co/bitstream/unal/85483/3/1094579566.2023.pdf.jpgcc2928b3a1023379a145fc9c9756f1dbMD53unal/85483oai:repositorio.unal.edu.co:unal/854832024-08-22 23:10:13.298Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=