Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences

ilustraciones, fotografías, graficas

Autores:
Jaramillo González, María
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83139
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83139
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
620 - Ingeniería y operaciones afines
Neoplasias Pancreáticas
Diagnóstico por Imagen
Pancreatic Neoplasms
Diagnostic Imaging
Pancreatic cancer
Adenocarcinoma
Detection
Differentiation
Endoscopic ultrasound
Echoendoscopy
Image classification
Cáncer de páncreas
Adenocarcinoma
Detección
Diferenciación
Ecoendoscopia
Clasificación de imágenes
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_4332ed568323f3ca5bdcc6f2dc980859
oai_identifier_str oai:repositorio.unal.edu.co:unal/83139
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
dc.title.translated.spa.fl_str_mv Detección de tumores pancreáticos malignos basado en la caracterización de textura durante secuencias de video de ultrasonido endoscópico
title Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
spellingShingle Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
610 - Medicina y salud
620 - Ingeniería y operaciones afines
Neoplasias Pancreáticas
Diagnóstico por Imagen
Pancreatic Neoplasms
Diagnostic Imaging
Pancreatic cancer
Adenocarcinoma
Detection
Differentiation
Endoscopic ultrasound
Echoendoscopy
Image classification
Cáncer de páncreas
Adenocarcinoma
Detección
Diferenciación
Ecoendoscopia
Clasificación de imágenes
title_short Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
title_full Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
title_fullStr Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
title_full_unstemmed Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
title_sort Detection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequences
dc.creator.fl_str_mv Jaramillo González, María
dc.contributor.advisor.none.fl_str_mv Romero Castro, Edgar Eduardo
dc.contributor.author.none.fl_str_mv Jaramillo González, María
dc.contributor.researcher.none.fl_str_mv Gómez Zuleta, Martín Alonso
dc.contributor.researchgroup.spa.fl_str_mv Cim@Lab
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001598592
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Maria-Gonzalez-468
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
620 - Ingeniería y operaciones afines
topic 610 - Medicina y salud
620 - Ingeniería y operaciones afines
Neoplasias Pancreáticas
Diagnóstico por Imagen
Pancreatic Neoplasms
Diagnostic Imaging
Pancreatic cancer
Adenocarcinoma
Detection
Differentiation
Endoscopic ultrasound
Echoendoscopy
Image classification
Cáncer de páncreas
Adenocarcinoma
Detección
Diferenciación
Ecoendoscopia
Clasificación de imágenes
dc.subject.other.spa.fl_str_mv Neoplasias Pancreáticas
Diagnóstico por Imagen
dc.subject.other.eng.fl_str_mv Pancreatic Neoplasms
Diagnostic Imaging
dc.subject.proposal.eng.fl_str_mv Pancreatic cancer
Adenocarcinoma
Detection
Differentiation
Endoscopic ultrasound
Echoendoscopy
Image classification
dc.subject.proposal.spa.fl_str_mv Cáncer de páncreas
Adenocarcinoma
Detección
Diferenciación
Ecoendoscopia
Clasificación de imágenes
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-26T14:06:30Z
dc.date.available.none.fl_str_mv 2023-01-26T14:06:30Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83139
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83139
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Akiba, Takuya ; Sano, Shotaro ; Yanase, Toshihiko ; Ohta, Takeru ; Koyama, Masanori: Optuna: A Next-generation Hyperparameter Optimization Framework, 2019. ISBN 978-1-4503-6201-6, p. 2623-2631
[2] Amin, Sunil ; DiMaio, Christopher J. ; Kim, Michelle K.: Advanced EUS Imaging for Early Detection of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 23 (2013), Nr. 3, p. 607 - 623. ISSN 1052-5157
[3] Bafaraj, Ahmed S.: Performance Analysis of Best Speckle Filter for Noise Reduction in Ultrasound Medical Images. En: International Journal of Applied Engineering Research 14 (2019), p. 1340-1351. - ISSN 0973-4562
[4] Bay, Herbert ; Ess, Andreas ; Tuytelaars, Tinne ; Gool, Luc V.: Speeded-Up Robust Features (SURF). En: Computer Vision and Image Understanding 110 (2008), Nr. 3, p. 346 - 359. - Similarity Matching in Computer Vision and Multimedia. - ISSN 1077-3142
[5] Brand, B ; Pfaff, T ; Binmoeller, KF ; Sriram, PVJ ; Fritscher-Ravens, A ; Kn ofel, WT ; J ackle, S ; Soehendra, N: Endoscopic ultrasound for di_erential diagnosis of focal pancreatic lesions, con_rmed by surgery. En: Scandinavian journal of gastroenterology 35 (2000), Nr. 11, p. 1221-1228 [6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424
[6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle ; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424
[7] Instituto Nacional de Cancerología, Instituto Geográfico Agustín C.: Atlas de mortalidad por cáncer en Colombia. Fourth. 2017
[8] Chen, Chien-Hua: EUS in Diagnosis and Treatment of GI Tract. En: Ultrasound in Medicine & Biology 43 (2017), p. S147. - ISSN 0301-5629
[9] Chen, Wei-Ming ; Chang, Ruey-Feng ; Kuo, Shou-Jen ; Chang, Cheng-Shyong ; Moon, Woo K. ; Chen, Shou-Tung ; Chen, Dar-Ren: 3-D ultrasound texture classification using run difference matrix. En: Ultrasound in Medicine Biology 31 (2005), Nr. 6, p. 763 - 770. - ISSN 0301-5629
[10] Chen, Xu ; Hu, Yiqun ; Zhang, Zhihong ; Wang, Beizhan ; Zhang, Lichi ; Shi, Fei ; Chen, Xinjian ; Jiang, Xiaoyi: A graph-based approach to automated EUS image layer segmentation and abnormal region detection. En: Neurocomputing 336 (2019), p. 79 - 91. - Advances in Graph Algorithm and Applications. - ISSN 0925-2312
[11] Costache, M-I ; S Aƒftoiu, A ; Gheonea, D-I: Detection and Characterization of Solid Pancreatic Lesions (Contrast-Enhancement, Elastography, EUS-Guided Fine Needle Aspiration). En: Video Journal and Encyclopedia of GI Endoscopy 1 (2013), Nr. 2, p. 545-547. - Special Issue: Expert Encyclopedia - Lower GI Tract, Bile Duct and Ampullary Region. - ISSN 2212-0971
[12] Cui, Xin-Wu ; Chang, Jian-Min ; Kan, Quan-Cheng ; Chiorean, Liliana ; Ignee, Andre ; Dietrich, Christoph F.: Endoscopic ultrasound elastography: Current status and future perspectives. En: World journal of gastroenterology 21 (2015), Nr. 47, p.13212
[13] Dallongeville, Axel ; Corno, Lucie ; Silvera, St~ A©phane ; Boulay-Coletta, Isabelle ; Zins, Marc: Initial Diagnosis and Staging of Pancreatic Cancer Including Main Di_erentials. En: Seminars in Ultrasound, CT and MRI 40 (2019), Nr. 6, p. 436 - 468. - ISSN 0887-2171
[14] Das, Ananya ; Nguyen, Cuong C. ; Li, Feng ; Li, Baoxin: Digital image analysis of EUS images accurately di_erentiates pancreatic cancer from chronic pancreatitis and normal tissue. En: Gastrointestinal Endoscopy 67 (2008), Nr. 6, p. 861 - 867. – ISSN 0016-5107
[15] Deng, J. ; Dong, W. ; Socher, R. ; Li, L.-J. ; Li, K. ; Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. En: CVPR09, 2009
[16] DeWitt, John ; Devereaux, Benedict M. ; Lehman, Glen A. ; Sherman, Stuart ; Imperiale, Thomas F.: Comparison of Endoscopic Ultrasound and Computed Tomography for the Preoperative Evaluation of Pancreatic Cancer: A Systematic Review. En: Clinical Gastroenterology and Hepatology 4 (2006), p. 717 – 725
[17] Giovannini, M. ; Hookey, L. ; Bories, E. ; Pesenti, C. ; Monges, G. ; Delpero, J.: Endoscopic Ultrasound Elastography: the First Step towards Virtual Biopsy: Preliminary Results in 49 Patients. En: Endoscopy 38 (2006), Nr. 4, p. 344-348
[18] Giovannini, Marc ; Botelberge, Thomas ; Bories, Erwan ; Pesenti, Christian ; Caillol, Fabrice ; Esterni, Benjamin ; Monges, Genevi_eve ; Arcidiacono, Paolo ; Deprez, Pierre ; Yeung, Robert ; Schimdt, Walter ; Schrader, Hanz ; Szymanski, Carl ; Dietrich, Christoph ; Eisendrath, Pierre ; Laethem, Jean-Luc V. ; Devi_ere, Jacques ; Vilmann, Peter ; Saftoiu, Adrian: Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: A multicenter study. En: World Journal of Gastroenterology 15 (2009), Nr. 13, p. 1587
[19] Goggins, Michael ; Overbeek, Kasper A. ; Brand, Randall ; Syngal, Sapna ; Chiaro, Marco D. ; Bartsch, Detlef K. ; Bassi, Claudio ; Carrato, Alfredo ; Farrell, James ; Fishman, Elliot K. ; Fockens, Paul ; Gress, Thomas M. ; van Hooft, Jeanin E. ; Hruban, R H. ; Kastrinos, Fay ; Klein, Allison ; Lennon, Anne M. ; Lucas, Aimee ; Park, Walter ; Rustgi, Anil ; Simeone, Diane ; Stoffel, Elena ; Vasen, Hans F A. ; Cahen, Djuna L. ; Canto, Marcia I. ; Bruno, Marco: Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. En: Gut 69 (2019), Oktober, Nr. 1, p. 7-17
[20] Guo, J. ; Sun, Siyu: Endoscopic Ultrasound for the Diagnosis of Chronic Pancreatitis, Pancreapedia: Exocrine Pancreas Knowledge Base, 2015
[21] Han, Seokmin ; Kang, Ho-Kyung ; Jeong, Ja-Yeon ; Park, Moon-Ho ; Kim, Wonsik ; Bang, Won-Chul ; Seong, Yeong-Kyeong: A deep learning framework for supporting the classification of breast lesions in ultrasound images. En: Physics in Medicine &amp Biology 62 (2017), sep, Nr. 19, p. 7714-7728
[22] Harinck, F ; Konings, I C A W. ; Kluijt, I ; Poley, J W. ; van Hooft, J E. ; van Dullemen, H M. ; Nio, C Y. ; Krak, N C. ; Hermans, J J. ; Aalfs, C M. ;Wagner, A ; Sijmons, R H. ; Biermann, K ; van Eijck, C H. ; Gouma, D J. ; Dijkgraaf, M G W. ; Fockens, P ; Bruno, M J.: A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. En: Gut 65 (2015), Mai, Nr. 9, p. 1505-1513
[23] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual Learning for Image Recognition. En: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p. 770-778
[24] In: Hermanek, P. ; Hutter, R. V. P. ; Sobin, L. H. ; Wagner, G. ; Wittekind, Ch.: Digestive System Tumours. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997, p. 71-152. - ISBN 978-3-662-03432-3
[25] Hidalgo, Manuel: Pancreatic Cancer. En: New England Journal of Medicine 362 (2010), Nr. 17, p. 1605-1617
[26] Hirche, T. ; Ignee, A. ; Barreiros, A. ; Schreiber-Dietrich, D. ; Jungblut, S. ; Ott, M. ; Hirche, H. ; Dietrich, C.: Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. En: Endoscopy 40 (2008), November, Nr. 11, p. 910-917
[27] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: EUS elastography for the characterization of solid pancreatic masses. En: Gastrointestinal Endoscopy 70 (2009), Dezember, Nr. 6, p. 1101-1108
[28] Iglesias-Garc__a, Julio ; no Noia, Jose L. ; noz, Juan Enrique Dom__nguez-Mu New Imaging Techniques: Endoscopic Ultrasound-Guided Elastography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), p. 551 - 567
[29] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: Quantitative Endoscopic Ultrasound Elastography: An Accurate Method for the Di_erentiation of Solid Pancreatic Masses. En: Gastroenterology 139 (2010), Oktober, Nr. 4, p. 1172-1180
[30] Ihnatsenka, Barys ; Boezaart, Andre: Ultrasound: Basic understanding and learning the language. En: International journal of shoulder surgery 4 (2010), 07, p. 55-62
[31] Jain, Akriti G. ; Saleem, Tabinda ; Kumar, Ranjeet ; Khetpal, Neelam ; Zafar, Hammad ; Rashid, Mamoon U. ; Ali, Saeed ; Majeed, Umair ; Ahmad, Sarfraz: En: Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy Vol. 5. 2019, p. 1 – 11
[32] Janssen, Jan ; Schlorer, Eva ; Greiner, Lucas: EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. En: Gastrointestinal Endoscopy 65 (2007), Juni, Nr. 7, p. 971-978
[33] Jaramillo, María ; Ruano, Josué ; Gómez, Martín ; Romero, Eduardo: Endoscopic ultrasound database of the pancreas. En: 16th International Symposium on Medical Information Processing and Analysis Vol. 11583 International Society for Optics and Photonics, 2020, p. 115830G
[34] Jaramillo, María ; Ruano, Josué ; M.D., Martín G. ; Romero, Eduardo: Automatic detection of pancreatic tumors in endoscopic ultrasound videos using deep learning techniques. En: Bottenus, Nick (Ed.) ; Ruiter, Nicole V. (Ed.): Medical Imaging 2022: Ultrasonic Imaging and Tomography Vol. 12038 International Society for Optics and Photonics, SPIE, 2022, p. 106 – 115
[35] Kawada, Natsuko ; Tanaka, Sachiko: Elastography for the pancreas: Current status and future perspective. En: World J Gastroenterol 22 (2016), p. 3712-3724
[36] Kitano, Masayuki ; Yamashita, Yasunobu: New Imaging Techniques for Endoscopic Ultrasonography: Contrast-Enhanced Endoscopic Ultrasonography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), Nr. 4, p. 569-583. - Progress in Endoscopic Ultrasonography. - ISSN 1052-5157
[37] Kitano, Masayuki ; Yoshida, Takeichi ; Itonaga, Masahiro ; Tamura, Takashi ; Hatamaru, Keiichi ; Yamashita, Yasunobu: Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. En: Journal of gastroenterology 54 (2019), Nr. 1, p. 19-32
[38] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Haba, Shin ; Okuno, Nozomi ; Koda, Hiroki ; Miyano, Akira ; Fumihara, Daiki: Current status of artificial intelligence analysis for endoscopic ultrasonography. En: Digestive Endoscopy (2020)
[39] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Okuno, Nozomi ; Matsumoto, Shimpei ; Obata, Masahiro ; Kurita, Yusuke ; Koda, Hiroki ; Toriyama, Kazuhiro ; Onishi, Sachiyo [u. a.]: Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. En: Clinical and translational gastroenterology 10 (2019), Nr. 5
[40] Lee, Je_rey H. ; Ahmed, Osman: Endoscopic Management of Pancreatic Cancer. En: Surgical Oncology Clinics of North America 28 (2019), p. 147 - 159
[41] Lee, Linda S. ; Andersen, Dana K. ; Ashida, Reiko ; Brugge, William R. ; Canto, Mimi I. ; Chang, Kenneth J. ; Chari, Suresh T. ; DeWitt, John ; Hwang, Joo H. ; Khashab, Mouen A. [u. a.]: EUS and related technologies for the diagnosis and treatment of pancreatic disease: research gaps and opportunities^a€"Summary of a National Institute of Diabetes and Digestive and Kidney Diseases workshop. En: Gastrointestinal endoscopy 86 (2017), Nr. 5, p. 768-778
[42] Liu, Mengchen ; Liu, Shixia ; Su, Hang ; Cao, Kelei ; Zhu, Jun. Analyzing the Noise Robustness of Deep Neural Networks. 2018
[43] Liu, Shengfeng ; Wang, Yi ; Yang, Xin ; Lei, Baiying ; Liu, Li ; Li, Shawn X. ; Ni, Dong ; Wang, Tianfu: Deep Learning in Medical Ultrasound Analysis: A Review. En: Engineering 5 (2019), Nr. 2, p. 261 - 275. - ISSN 2095-8099
[44] Llop, Esther ; Guerrero, Pedro ; Duran, AdriA ; Barrabes, SAlvia ; Massaguer, Anna ; Iglesias, MarAa ; Quer, M.T. ; De Llorens, Rafael ; Peracaula, Rosa: Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. En: World Journal of Gastroenterology 24 (2018), 06
[45] Mahadevan, Vishy: Anatomy of the pancreas and spleen. En: Surgery (Oxford) 37 (2019), Nr. 6, p. 297-301. - ISSN 0263-9319
[46] Maisonneuve, Patrick: Epidemiology and burden of pancreatic cancer. En: La Presse Medicale 48 (2019), p. e113 - e123
[47] Mateo, Juan L. ; Fernández-Caballero, Antonio: Finding out general tendencias in speckle noise reduction in ultrasound images. En: Expert Systems with Applications 36 (2009), Nr. 4, p. 7786 - 7797. - ISSN 0957-4174
[48] McGuckin, Ellen ; Cade, Jennifer E. ; Hanison, James: The pancreas. En: Anaesthesia Intensive Care Medicine 21 (2020), Nr. 11, p. 604-610. - ISSN 1472-0299
[49] Mei, Mei ; Ni, Jingmei ; Liu, Dan ; Jin, Piaopiao ; Sun, Leimin: EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. En: Gastrointestinal endoscopy 77 (2013), Nr. 4, p. 578-589
[50] Miura, Fumihiko ; Takada, Tadahiro ; Amano, Hodaka ; Yoshida, Masahiro ; Furui, Shigeru ; Takeshita, Koji: Diagnosis of pancreatic cancer. En: HPB 8 (2006), p. 337 - 342
[51] Moutinho-Ribeiro, Pedro ; Iglesias-Garcia, Julio ; Gaspar, Rui ; Macedo, Guilherme: Early pancreatic cancer: The role of endoscopic ultrasound with or without tissue acquisition in diagnosis and staging. En: Digestive and Liver Disease 51 (2019), p. 4 - 9
[52] Moutinho-Ribeiro, Pedro ; Liberal, Rodrigo ; Macedo, Guilherme: Endoscopic ultrasound in pancreatic cancer treatment: Facts and hopes. En: Clinics and Research in Hepatology and Gastroenterology 43 (2019), Nr. 5, p. 513 - 521. - ISSN 2210-7401 [53] Norton, Ian D. ; Zheng, Yi ; Wiersema, Maurits S. ; Greenleaf, James ; Clain, Jonathan E. ; DiMagno, Eugene P.: Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. En: Gastrointestinal Endoscopy 54 (2001), Nr. 5, p. 625 - 629. - ISSN 0016-5107
[54] Omary, M. B. ; Lugea, Aurelia ; Lowe, Anson W. ; Pandol, Stephen J.: The pancreatic stellate cell: a star on the rise in pancreatic diseases. En: The Journal of Clinical Investigation 117 (2007), 1, Nr. 1, p. 50-59
[55] Owens, David J. ; Savides, Thomas J.: Endoscopic Ultrasound Staging and Novel Therapeutics for Pancreatic Cancer. En: Surgical Oncology Clinics of North America 19 (2010), Nr. 2, p. 255 - 266. - ISSN 1055-3207
[56] Park, RichardD. ; Nyland, ThomasG. ; Lattimer, JimmyC. ; Miller, CharlesW. ; Lebel, JackL.: B-MODE GRAY-SCALE ULTRASOUND: IMAGING ARTIFACTS AND INTERPRETATION PRINCIPLES. En: Veterinary Radiology 22 (1981), Nr. 5, p. 204-210
[57] Patey, Susannah J. ; Corcoran, James P.: Physics of ultrasound. En: Anaesthesia Intensive Care Medicine 22 (2021), Nr. 1, p. 58-63. - ISSN 1472-0299
[58] Peng, Hanchuan ; Long, Fuhui ; Ding, Chris: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. En: IEEE Transactions on pattern analysis and machine intelligence 27 (2005), Nr. 8, p. 1226- 1238
[59] Rosenthal, Michael H. ; Lee, Alexander ; Jajoo, Kunal: Imaging and Endoscopic Approaches to Pancreatic Cancer. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 675 - 699. - ISSN 0889-8588
[60] Ruano, Josué ; Jaramillo, María ; Gómez;Martín;Romero;Eduardo : Robust Descriptor of Pancreatic Tissue for Automatic Detection of Pancreatic Cancer in Endoscopic Ultrasonography: En ISSN - 0301 -5629
[61] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. En: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, p. 211-252
[62] S_aftoiu, A. ; Vilmann, P. ; Gorunescu, F. ; Janssen, J. ; Hocke, M. ; Larsen, M. ; Iglesias-Garcia, J. ; Arcidiacono, P. ; Will, U. ; Giovannini, M. ; Dietrich, C. ; Havre, R. ; Gheorghe, C. ; McKay, C. ; Gheonea, D. ; Ciurea, T.: Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. En: Endoscopy 43 (2011), M arz, Nr. 07, p. 596-603
[63] S_aftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Januar, Nr. 1, p. 84-90.e1
[64] Sakamoto, Hiroki ; Kitano, Masayuki ; Suetomi, Yoichiro ; Maekawa, Kiyoshi ; Takeyama, Yoshifumi ; Kudo, Masatoshi: Utility of Contrast- Enhanced Endoscopic Ultrasonography for Diagnosis of Small Pancreatic Carcinomas. En: Ultrasound in Medicine & Biology 34 (2008), April, Nr. 4, p. 525-532
[65] Singh, Ajaypal ; Faulx, Ashley L.: Endoscopic Evaluation in the Workup of Pancreatic Cancer. En: Surgical Clinics of North America 96 (2016), Nr. 6, p. 1257 - 1270. - ISSN 0039-6109
[66] Singh, Karamjeet ; Ranade, Sukhjeet K. ; Singh, Chandan: A hybrid algorithm for speckle noise reduction of ultrasound images. En: Computer Methods and Programs in Biomedicine 148 (2017), p. 55-69. - ISSN 0169-2607
[67] Slack, J.M.: Developmental biology of the pancreas. En: Development 121 (1995), 06, Nr. 6, p. 1569-1580. - ISSN 0950-1991
[68] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), Jun, Nr. 23, p. 2841-2850. - 20556829[pmid]. - ISSN 2219-2840
[69] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), 06, p. 2841-50
[70] Stolzenberg-Solomon, Rachael Z. ; Amundadottir, Laufey T.: Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 619 - 640
[71] Sung, Hyuna ; Ferlay, Jacques ; Siegel, Rebecca L. ; Laversanne, Mathieu ; Soerjomataram, Isabelle ; Jemal, Ahmedin ; Bray, Freddie: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. En: CA: A Cancer Journal for Clinicians 71 (2021), Nr. 3, p. 209-249
[72] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ; Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke, Vincent ; Rabinovich, Andrew: Going Deeper with Convolutions. En: Computer Vision and Pattern Recognition (CVPR), 2015
[73] Saƒftoiu, Adrian ; Vilmann, Peter ; Dietrich, Christoph F. ; Iglesias-Garcia, Julio ; Hocke, Michael ; Seicean, Andrada ; Ignee, Andre ; Hassan, Hazem ; Streba, Costin T. ; IoncicAƒ, Ana M. ; Gheonea, Dan I. ; Ciurea, Tudorel: Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). En: Gastrointestinal Endoscopy 82 (2015), Nr. 1, p. 59 - 69. - ISSN 0016-5107
[74] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Gheonea, Dan I. ; Gorunescu, Marina ; Ciurea, Tudorel ; Popescu, Gabriel L. ; Iordache, Alexandru ; Hassan, Hazem ; Iordache, Sevasti_A£a: Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. En: Gastrointestinal Endoscopy 68 (2008), Nr. 6, p. 1086 - 1094. - ISSN 0016-5107
[75] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Nr. 1, p. 84 - 90.e1. - ISSN 1542-3565
[76] Takhar, Arjun S. ; Palaniappan, Ponni ; Dhingsa, Rajpal ; Lobo, Dileep N.: Recent developments in diagnosis of pancreatic cancer. En: BMJ 329 (2004), Nr. 7467, p. 668-673. - ISSN 0959-8138
[77] Tonozuka, Ryosuke ; Itoi, Takao ; Nagata, Naoyoshi ; Kojima, Hiroyuki ; Sofuni, Atsushi ; Tsuchiya, Takayoshi ; Ishii, Kentaro ; Tanaka, Reina ; Nagakawa, Yuichi ; Mukai, Shuntaro: Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. En: Journal of Hepato-Biliary-Pancreatic Sciences (2020)
[78] Walling, Anne ; Freelove, Robert: Pancreatitis and Pancreatic Cancer. En: Primary Care: Clinics in O_ce Practice 44 (2017), Nr. 4, p. 609 - 620. - ISSN 0095-4543
[79] Wani, Sachin ; Hall, Matthew ; Keswani, Rajesh N. ; Aslanian, Harry R. ; Casey, Brenna ; Burbridge, Rebecca ; Chak, Amitabh ; Chen, Ann M. ; Cote, Gregory ; Edmundowicz, Steven A. ; Faulx, Ashley L. ; Hollander, Thomas G. ; Lee, Linda S. ; Mullady, Daniel ; Murad, Faris ; Muthusamy, V. R. ; Pfau, Patrick R. ; Scheiman, James M. ; Tokar, Jeffrey ; Wagh, Mihir S. ; Watson, Rabindra ; Early, Dayna: Variation in Aptitude of Trainees in Endoscopic Ultrasonography, Based on Cumulative Sum Analysis. En: Clinical Gastroenterology and Hepatology 13 (2015), Nr. 7, p. 1318 - 1325.e2. - ISSN 1542-3565
[80] Wani, Sachin ; Han, Samuel ; Simon, Violette ; et al.: Setting minimum standards for training in EUS and ERCP: results^A from a prospective multicenter study evaluating learning curves and competence among advanced endoscopy trainees. En: Gastrointestinal Endoscopy 89 (2019), Nr. 6, p. 1160 - 1168.e9. - ISSN 0016-5107
[81] Wani, Sachin ; Muthusamy, V. R. ; Komanduri, Srinadh: EUS-guided tissue acquisition: an evidence-based approach (with videos). En: Gastrointestinal Endoscopy 80 (2014), p. 939 - 959.e7
[82] Wen-Li Lee ; Yung-Chang Chen ; Kai-Sheng Hsieh: Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. En: IEEE Transactions on Medical Imaging 22 (2003), March, Nr. 3, p. 382-392. - ISSN 1558-254X
[83] Yasuda, Kenjiro ; Mukai, Hidekazu ; Nakajima, Masatsugu: Endoscopic Ultrasonography Diagnosis of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 5 (1995), Nr. 4, p. 699 - 712. - ISSN 1052-5157
[84] Younan, George: Pancreas Solid Tumors. En: Surgical Clinics of North America 100 (2020), Nr. 3, p. 565-580. - Surgical Oncology for the General Surgeon. - ISSN 0039-6109
[85] Zhang, Jun ; Zhu, Liangru ; Yao, Liwen ; Ding, Xiangwu ; Chen, Di ; Wu, Huiling ; Lu, Zihua ; Zhou, Wei ; Zhang, Lihui ; An, Ping ; Xu, Bo ; Tan, Wei ; Hu, Shan ; Cheng, Fan ; Yu, Honggang: Deep-learning based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). En: Gastrointestinal Endoscopy (2020). - ISSN 0016-5107
[86] Zhang, Min-Min ; Yang, Hua ; Jin, Zhen-Dong ; Yu, Jian-Guo ; Cai, Zhe- Yuan ; Li, Zhao-Shen: Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. En: Gastrointestinal Endoscopy 72 (2010), Nr. 5, p. 978 - 985. - ISSN 0016-5107
[87] Zhu, Maoling ; Xu, Can ; Yu, Jianguo ; Wu, Yijun ; Li, Chunguang ; Zhang, Minmin ; Jin, Zhendong ; Li, Zhaoshen: Differentiation of Pancreatic Cancer and Chronic Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images: A Diagnostic Test. En: PLOS ONE 8 (2013), 05, Nr. 5, p. 1-6
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 77 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83139/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83139/2/1053835990.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83139/3/1053835990.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
988bceab03eb58b773c20f60e7ee2a8b
591512404031a9b9cba0356baa2bb2ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090124766478336
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, Edgar Eduardod49b2499bdf2c07e42f8b4dc9715ef18Jaramillo González, María77c84f0374987295175e6a938622011aGómez Zuleta, Martín AlonsoCim@Labhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001598592https://www.researchgate.net/profile/Maria-Gonzalez-4682023-01-26T14:06:30Z2023-01-26T14:06:30Z2022https://repositorio.unal.edu.co/handle/unal/83139Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasPancreatic Cancer (PC) is one of the most aggressive cancers, constituting the seventh leading cause of cancer-related death globally in 2020. Usually, the asymptomatic response of PC causes the delayed diagnosis of the disease. Diagnosis of PC usually includes ultrasonography (US), computed tomography (CT), magnetic resonance (MRI), and endoscopic ultrasound (EUS). Although EUS is the diagnostic method with the highest sensitivity reported, the procedure is highly operator-dependent. A gastroenterologist requires more than 150 supervised procedures to interpret the anatomy blurred by several noise sources. Therefore, a second reader may be desirable to support the procedure and assist the training process in a gastroenterology service. Some computational strategies have been developed to detect PC in EUS images, but those methods are semi-automatic in practice and very susceptible to noise. Hence, the main contribution of this work is an automatic strategy to detect PC in complete video sequences of EUS procedures. The proposed methodology describes the mixture of echo patterns using the Speeded-Up Robust Features (SURF) method. A set of interest points are defined and described correlating the echo patterns in a multiscale analysis, and filtering the noise sources, usually uncorrelated among different scales. Then, images with PC are differentiated by a binary classification method, evaluating Support Vector Machines and Adaboost models. Additionally, the proposed method is assessed using a public EUS database constructed and released in this work, with 55 cases. Finally, the proposed method was compared with typical Deep Learning approaches, reaching an accuracy of 92.1\% and 90.0\%, respectively. In addition, the method herein proposed is also stable in experiments with added noise, while the nets fail to maintain a similar performance.El Cáncer de Páncreas (CP) fue la séptima causa de muerte por cáncer en el mundo en 2020. Es uno de los más agresivos y en la mayoría de los casos se diagnostica en etapas avanzadas por su respuesta asintomática. El diagnóstico del CP se realiza mediante técnicas de imágen como ultrasonido (US), tomografía computarizada(TAC), resonancia magnética(RMN) y Ecoendoscopia(EE). Aunque la EE tiene la más alta sensibilidad, el proceso de entrenamiento de los especialistas requiere más de 150 procedimientos supervisados, convirtiendose en un procedimiento altamente dependiente de la experticia del gastroenterólogo y del manejo de las múltiples fuentes de ruido durante el procedimiento. Por lo tanto, es deseable un segundo lector para apoyar el procedimiento y asistir el proceso de entrenamiento. Se han desarrollado estrategias computacionales para apoyar la detección del CP, pero son semi-automáticos en la práctica y altamente suceptibles a las fuentes de ruido. La principal contribución de este trabajo es el desarrollo de una estrategia automática para detectar CP en secuencias de video completas de procedimientos de EE. El método describe los eco-patrones en imágenes de EE utilizando el algoritmo “SURF” por sus siglas en inglés. Se definen y describen un conjunto de puntos de interés correlacionados en un análisis multiecala y se filtran las fuentes de ruido que usualmente no se correlacionan entre escalas. Luego, las imágenes con CP se diferencian mediante una clasificación binaria utilizando métodos de soporte vectorial y árboles de decisión. Adicionalmente, el método se evalúa utilizando una base de datos pública construida en este trabajo con 55 casos en total. Finalmente, el rendimiento se compara con los enfoques típicos de aprendizaje profundo, obteniendo un rendimiento de 92.1\% y 90.0\%, respectivamente. Adicionalmente, el metodo propuesto es estable en experimentos al adicionar ruido, en los que las redes fallan en mantener un rendimiento similar. (Texto tomado de la fuente)Further author information: (Send correspondence to María Jaramillo) Diego Bravo: E-mail: marjaramillogon@unal.edu.co, Telephone: +57 3137214469MaestríaMagíster en Ingeniería BiomédicaDigital Anatomy by Images ResearchApplied Computing - Image Processingxvi, 77 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud620 - Ingeniería y operaciones afinesNeoplasias PancreáticasDiagnóstico por ImagenPancreatic NeoplasmsDiagnostic ImagingPancreatic cancerAdenocarcinomaDetectionDifferentiationEndoscopic ultrasoundEchoendoscopyImage classificationCáncer de páncreasAdenocarcinomaDetecciónDiferenciaciónEcoendoscopiaClasificación de imágenesDetection of pancreatic malignant tumors based on texture characterization during endoscopy ultrasound video sequencesDetección de tumores pancreáticos malignos basado en la caracterización de textura durante secuencias de video de ultrasonido endoscópicoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] Akiba, Takuya ; Sano, Shotaro ; Yanase, Toshihiko ; Ohta, Takeru ; Koyama, Masanori: Optuna: A Next-generation Hyperparameter Optimization Framework, 2019. ISBN 978-1-4503-6201-6, p. 2623-2631[2] Amin, Sunil ; DiMaio, Christopher J. ; Kim, Michelle K.: Advanced EUS Imaging for Early Detection of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 23 (2013), Nr. 3, p. 607 - 623. ISSN 1052-5157[3] Bafaraj, Ahmed S.: Performance Analysis of Best Speckle Filter for Noise Reduction in Ultrasound Medical Images. En: International Journal of Applied Engineering Research 14 (2019), p. 1340-1351. - ISSN 0973-4562[4] Bay, Herbert ; Ess, Andreas ; Tuytelaars, Tinne ; Gool, Luc V.: Speeded-Up Robust Features (SURF). En: Computer Vision and Image Understanding 110 (2008), Nr. 3, p. 346 - 359. - Similarity Matching in Computer Vision and Multimedia. - ISSN 1077-3142[5] Brand, B ; Pfaff, T ; Binmoeller, KF ; Sriram, PVJ ; Fritscher-Ravens, A ; Kn ofel, WT ; J ackle, S ; Soehendra, N: Endoscopic ultrasound for di_erential diagnosis of focal pancreatic lesions, con_rmed by surgery. En: Scandinavian journal of gastroenterology 35 (2000), Nr. 11, p. 1221-1228 [6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424[6] Bray, Freddie ; Ferlay, Jacques ; Soerjomataram, Isabelle ; Siegel, Rebecca L.; Torre, Lindsey A. ; Jemal, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: A Cancer Journal for Clinicians 68 (2018), Nr. 6, p. 394-424[7] Instituto Nacional de Cancerología, Instituto Geográfico Agustín C.: Atlas de mortalidad por cáncer en Colombia. Fourth. 2017[8] Chen, Chien-Hua: EUS in Diagnosis and Treatment of GI Tract. En: Ultrasound in Medicine & Biology 43 (2017), p. S147. - ISSN 0301-5629[9] Chen, Wei-Ming ; Chang, Ruey-Feng ; Kuo, Shou-Jen ; Chang, Cheng-Shyong ; Moon, Woo K. ; Chen, Shou-Tung ; Chen, Dar-Ren: 3-D ultrasound texture classification using run difference matrix. En: Ultrasound in Medicine Biology 31 (2005), Nr. 6, p. 763 - 770. - ISSN 0301-5629[10] Chen, Xu ; Hu, Yiqun ; Zhang, Zhihong ; Wang, Beizhan ; Zhang, Lichi ; Shi, Fei ; Chen, Xinjian ; Jiang, Xiaoyi: A graph-based approach to automated EUS image layer segmentation and abnormal region detection. En: Neurocomputing 336 (2019), p. 79 - 91. - Advances in Graph Algorithm and Applications. - ISSN 0925-2312[11] Costache, M-I ; S Aƒftoiu, A ; Gheonea, D-I: Detection and Characterization of Solid Pancreatic Lesions (Contrast-Enhancement, Elastography, EUS-Guided Fine Needle Aspiration). En: Video Journal and Encyclopedia of GI Endoscopy 1 (2013), Nr. 2, p. 545-547. - Special Issue: Expert Encyclopedia - Lower GI Tract, Bile Duct and Ampullary Region. - ISSN 2212-0971[12] Cui, Xin-Wu ; Chang, Jian-Min ; Kan, Quan-Cheng ; Chiorean, Liliana ; Ignee, Andre ; Dietrich, Christoph F.: Endoscopic ultrasound elastography: Current status and future perspectives. En: World journal of gastroenterology 21 (2015), Nr. 47, p.13212[13] Dallongeville, Axel ; Corno, Lucie ; Silvera, St~ A©phane ; Boulay-Coletta, Isabelle ; Zins, Marc: Initial Diagnosis and Staging of Pancreatic Cancer Including Main Di_erentials. En: Seminars in Ultrasound, CT and MRI 40 (2019), Nr. 6, p. 436 - 468. - ISSN 0887-2171[14] Das, Ananya ; Nguyen, Cuong C. ; Li, Feng ; Li, Baoxin: Digital image analysis of EUS images accurately di_erentiates pancreatic cancer from chronic pancreatitis and normal tissue. En: Gastrointestinal Endoscopy 67 (2008), Nr. 6, p. 861 - 867. – ISSN 0016-5107[15] Deng, J. ; Dong, W. ; Socher, R. ; Li, L.-J. ; Li, K. ; Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. En: CVPR09, 2009[16] DeWitt, John ; Devereaux, Benedict M. ; Lehman, Glen A. ; Sherman, Stuart ; Imperiale, Thomas F.: Comparison of Endoscopic Ultrasound and Computed Tomography for the Preoperative Evaluation of Pancreatic Cancer: A Systematic Review. En: Clinical Gastroenterology and Hepatology 4 (2006), p. 717 – 725[17] Giovannini, M. ; Hookey, L. ; Bories, E. ; Pesenti, C. ; Monges, G. ; Delpero, J.: Endoscopic Ultrasound Elastography: the First Step towards Virtual Biopsy: Preliminary Results in 49 Patients. En: Endoscopy 38 (2006), Nr. 4, p. 344-348[18] Giovannini, Marc ; Botelberge, Thomas ; Bories, Erwan ; Pesenti, Christian ; Caillol, Fabrice ; Esterni, Benjamin ; Monges, Genevi_eve ; Arcidiacono, Paolo ; Deprez, Pierre ; Yeung, Robert ; Schimdt, Walter ; Schrader, Hanz ; Szymanski, Carl ; Dietrich, Christoph ; Eisendrath, Pierre ; Laethem, Jean-Luc V. ; Devi_ere, Jacques ; Vilmann, Peter ; Saftoiu, Adrian: Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: A multicenter study. En: World Journal of Gastroenterology 15 (2009), Nr. 13, p. 1587[19] Goggins, Michael ; Overbeek, Kasper A. ; Brand, Randall ; Syngal, Sapna ; Chiaro, Marco D. ; Bartsch, Detlef K. ; Bassi, Claudio ; Carrato, Alfredo ; Farrell, James ; Fishman, Elliot K. ; Fockens, Paul ; Gress, Thomas M. ; van Hooft, Jeanin E. ; Hruban, R H. ; Kastrinos, Fay ; Klein, Allison ; Lennon, Anne M. ; Lucas, Aimee ; Park, Walter ; Rustgi, Anil ; Simeone, Diane ; Stoffel, Elena ; Vasen, Hans F A. ; Cahen, Djuna L. ; Canto, Marcia I. ; Bruno, Marco: Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. En: Gut 69 (2019), Oktober, Nr. 1, p. 7-17[20] Guo, J. ; Sun, Siyu: Endoscopic Ultrasound for the Diagnosis of Chronic Pancreatitis, Pancreapedia: Exocrine Pancreas Knowledge Base, 2015[21] Han, Seokmin ; Kang, Ho-Kyung ; Jeong, Ja-Yeon ; Park, Moon-Ho ; Kim, Wonsik ; Bang, Won-Chul ; Seong, Yeong-Kyeong: A deep learning framework for supporting the classification of breast lesions in ultrasound images. En: Physics in Medicine &amp Biology 62 (2017), sep, Nr. 19, p. 7714-7728[22] Harinck, F ; Konings, I C A W. ; Kluijt, I ; Poley, J W. ; van Hooft, J E. ; van Dullemen, H M. ; Nio, C Y. ; Krak, N C. ; Hermans, J J. ; Aalfs, C M. ;Wagner, A ; Sijmons, R H. ; Biermann, K ; van Eijck, C H. ; Gouma, D J. ; Dijkgraaf, M G W. ; Fockens, P ; Bruno, M J.: A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. En: Gut 65 (2015), Mai, Nr. 9, p. 1505-1513[23] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual Learning for Image Recognition. En: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p. 770-778[24] In: Hermanek, P. ; Hutter, R. V. P. ; Sobin, L. H. ; Wagner, G. ; Wittekind, Ch.: Digestive System Tumours. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997, p. 71-152. - ISBN 978-3-662-03432-3[25] Hidalgo, Manuel: Pancreatic Cancer. En: New England Journal of Medicine 362 (2010), Nr. 17, p. 1605-1617[26] Hirche, T. ; Ignee, A. ; Barreiros, A. ; Schreiber-Dietrich, D. ; Jungblut, S. ; Ott, M. ; Hirche, H. ; Dietrich, C.: Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. En: Endoscopy 40 (2008), November, Nr. 11, p. 910-917[27] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: EUS elastography for the characterization of solid pancreatic masses. En: Gastrointestinal Endoscopy 70 (2009), Dezember, Nr. 6, p. 1101-1108[28] Iglesias-Garc__a, Julio ; no Noia, Jose L. ; noz, Juan Enrique Dom__nguez-Mu New Imaging Techniques: Endoscopic Ultrasound-Guided Elastography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), p. 551 - 567[29] Iglesias-Garcia, Julio ; Larino-Noia, Jose ; Abdulkader, Ihab ; Forteza, Jeronimo ; Dominguez-Munoz, J. E.: Quantitative Endoscopic Ultrasound Elastography: An Accurate Method for the Di_erentiation of Solid Pancreatic Masses. En: Gastroenterology 139 (2010), Oktober, Nr. 4, p. 1172-1180[30] Ihnatsenka, Barys ; Boezaart, Andre: Ultrasound: Basic understanding and learning the language. En: International journal of shoulder surgery 4 (2010), 07, p. 55-62[31] Jain, Akriti G. ; Saleem, Tabinda ; Kumar, Ranjeet ; Khetpal, Neelam ; Zafar, Hammad ; Rashid, Mamoon U. ; Ali, Saeed ; Majeed, Umair ; Ahmad, Sarfraz: En: Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy Vol. 5. 2019, p. 1 – 11[32] Janssen, Jan ; Schlorer, Eva ; Greiner, Lucas: EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. En: Gastrointestinal Endoscopy 65 (2007), Juni, Nr. 7, p. 971-978[33] Jaramillo, María ; Ruano, Josué ; Gómez, Martín ; Romero, Eduardo: Endoscopic ultrasound database of the pancreas. En: 16th International Symposium on Medical Information Processing and Analysis Vol. 11583 International Society for Optics and Photonics, 2020, p. 115830G[34] Jaramillo, María ; Ruano, Josué ; M.D., Martín G. ; Romero, Eduardo: Automatic detection of pancreatic tumors in endoscopic ultrasound videos using deep learning techniques. En: Bottenus, Nick (Ed.) ; Ruiter, Nicole V. (Ed.): Medical Imaging 2022: Ultrasonic Imaging and Tomography Vol. 12038 International Society for Optics and Photonics, SPIE, 2022, p. 106 – 115[35] Kawada, Natsuko ; Tanaka, Sachiko: Elastography for the pancreas: Current status and future perspective. En: World J Gastroenterol 22 (2016), p. 3712-3724[36] Kitano, Masayuki ; Yamashita, Yasunobu: New Imaging Techniques for Endoscopic Ultrasonography: Contrast-Enhanced Endoscopic Ultrasonography. En: Gastrointestinal Endoscopy Clinics of North America 27 (2017), Nr. 4, p. 569-583. - Progress in Endoscopic Ultrasonography. - ISSN 1052-5157[37] Kitano, Masayuki ; Yoshida, Takeichi ; Itonaga, Masahiro ; Tamura, Takashi ; Hatamaru, Keiichi ; Yamashita, Yasunobu: Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. En: Journal of gastroenterology 54 (2019), Nr. 1, p. 19-32[38] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Haba, Shin ; Okuno, Nozomi ; Koda, Hiroki ; Miyano, Akira ; Fumihara, Daiki: Current status of artificial intelligence analysis for endoscopic ultrasonography. En: Digestive Endoscopy (2020)[39] Kuwahara, Takamichi ; Hara, Kazuo ; Mizuno, Nobumasa ; Okuno, Nozomi ; Matsumoto, Shimpei ; Obata, Masahiro ; Kurita, Yusuke ; Koda, Hiroki ; Toriyama, Kazuhiro ; Onishi, Sachiyo [u. a.]: Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. En: Clinical and translational gastroenterology 10 (2019), Nr. 5[40] Lee, Je_rey H. ; Ahmed, Osman: Endoscopic Management of Pancreatic Cancer. En: Surgical Oncology Clinics of North America 28 (2019), p. 147 - 159[41] Lee, Linda S. ; Andersen, Dana K. ; Ashida, Reiko ; Brugge, William R. ; Canto, Mimi I. ; Chang, Kenneth J. ; Chari, Suresh T. ; DeWitt, John ; Hwang, Joo H. ; Khashab, Mouen A. [u. a.]: EUS and related technologies for the diagnosis and treatment of pancreatic disease: research gaps and opportunities^a€"Summary of a National Institute of Diabetes and Digestive and Kidney Diseases workshop. En: Gastrointestinal endoscopy 86 (2017), Nr. 5, p. 768-778[42] Liu, Mengchen ; Liu, Shixia ; Su, Hang ; Cao, Kelei ; Zhu, Jun. Analyzing the Noise Robustness of Deep Neural Networks. 2018[43] Liu, Shengfeng ; Wang, Yi ; Yang, Xin ; Lei, Baiying ; Liu, Li ; Li, Shawn X. ; Ni, Dong ; Wang, Tianfu: Deep Learning in Medical Ultrasound Analysis: A Review. En: Engineering 5 (2019), Nr. 2, p. 261 - 275. - ISSN 2095-8099[44] Llop, Esther ; Guerrero, Pedro ; Duran, AdriA ; Barrabes, SAlvia ; Massaguer, Anna ; Iglesias, MarAa ; Quer, M.T. ; De Llorens, Rafael ; Peracaula, Rosa: Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. En: World Journal of Gastroenterology 24 (2018), 06[45] Mahadevan, Vishy: Anatomy of the pancreas and spleen. En: Surgery (Oxford) 37 (2019), Nr. 6, p. 297-301. - ISSN 0263-9319[46] Maisonneuve, Patrick: Epidemiology and burden of pancreatic cancer. En: La Presse Medicale 48 (2019), p. e113 - e123[47] Mateo, Juan L. ; Fernández-Caballero, Antonio: Finding out general tendencias in speckle noise reduction in ultrasound images. En: Expert Systems with Applications 36 (2009), Nr. 4, p. 7786 - 7797. - ISSN 0957-4174[48] McGuckin, Ellen ; Cade, Jennifer E. ; Hanison, James: The pancreas. En: Anaesthesia Intensive Care Medicine 21 (2020), Nr. 11, p. 604-610. - ISSN 1472-0299[49] Mei, Mei ; Ni, Jingmei ; Liu, Dan ; Jin, Piaopiao ; Sun, Leimin: EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. En: Gastrointestinal endoscopy 77 (2013), Nr. 4, p. 578-589[50] Miura, Fumihiko ; Takada, Tadahiro ; Amano, Hodaka ; Yoshida, Masahiro ; Furui, Shigeru ; Takeshita, Koji: Diagnosis of pancreatic cancer. En: HPB 8 (2006), p. 337 - 342[51] Moutinho-Ribeiro, Pedro ; Iglesias-Garcia, Julio ; Gaspar, Rui ; Macedo, Guilherme: Early pancreatic cancer: The role of endoscopic ultrasound with or without tissue acquisition in diagnosis and staging. En: Digestive and Liver Disease 51 (2019), p. 4 - 9[52] Moutinho-Ribeiro, Pedro ; Liberal, Rodrigo ; Macedo, Guilherme: Endoscopic ultrasound in pancreatic cancer treatment: Facts and hopes. En: Clinics and Research in Hepatology and Gastroenterology 43 (2019), Nr. 5, p. 513 - 521. - ISSN 2210-7401 [53] Norton, Ian D. ; Zheng, Yi ; Wiersema, Maurits S. ; Greenleaf, James ; Clain, Jonathan E. ; DiMagno, Eugene P.: Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. En: Gastrointestinal Endoscopy 54 (2001), Nr. 5, p. 625 - 629. - ISSN 0016-5107[54] Omary, M. B. ; Lugea, Aurelia ; Lowe, Anson W. ; Pandol, Stephen J.: The pancreatic stellate cell: a star on the rise in pancreatic diseases. En: The Journal of Clinical Investigation 117 (2007), 1, Nr. 1, p. 50-59[55] Owens, David J. ; Savides, Thomas J.: Endoscopic Ultrasound Staging and Novel Therapeutics for Pancreatic Cancer. En: Surgical Oncology Clinics of North America 19 (2010), Nr. 2, p. 255 - 266. - ISSN 1055-3207[56] Park, RichardD. ; Nyland, ThomasG. ; Lattimer, JimmyC. ; Miller, CharlesW. ; Lebel, JackL.: B-MODE GRAY-SCALE ULTRASOUND: IMAGING ARTIFACTS AND INTERPRETATION PRINCIPLES. En: Veterinary Radiology 22 (1981), Nr. 5, p. 204-210[57] Patey, Susannah J. ; Corcoran, James P.: Physics of ultrasound. En: Anaesthesia Intensive Care Medicine 22 (2021), Nr. 1, p. 58-63. - ISSN 1472-0299[58] Peng, Hanchuan ; Long, Fuhui ; Ding, Chris: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. En: IEEE Transactions on pattern analysis and machine intelligence 27 (2005), Nr. 8, p. 1226- 1238[59] Rosenthal, Michael H. ; Lee, Alexander ; Jajoo, Kunal: Imaging and Endoscopic Approaches to Pancreatic Cancer. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 675 - 699. - ISSN 0889-8588[60] Ruano, Josué ; Jaramillo, María ; Gómez;Martín;Romero;Eduardo : Robust Descriptor of Pancreatic Tissue for Automatic Detection of Pancreatic Cancer in Endoscopic Ultrasonography: En ISSN - 0301 -5629[61] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. En: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, p. 211-252[62] S_aftoiu, A. ; Vilmann, P. ; Gorunescu, F. ; Janssen, J. ; Hocke, M. ; Larsen, M. ; Iglesias-Garcia, J. ; Arcidiacono, P. ; Will, U. ; Giovannini, M. ; Dietrich, C. ; Havre, R. ; Gheorghe, C. ; McKay, C. ; Gheonea, D. ; Ciurea, T.: Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. En: Endoscopy 43 (2011), M arz, Nr. 07, p. 596-603[63] S_aftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Januar, Nr. 1, p. 84-90.e1[64] Sakamoto, Hiroki ; Kitano, Masayuki ; Suetomi, Yoichiro ; Maekawa, Kiyoshi ; Takeyama, Yoshifumi ; Kudo, Masatoshi: Utility of Contrast- Enhanced Endoscopic Ultrasonography for Diagnosis of Small Pancreatic Carcinomas. En: Ultrasound in Medicine & Biology 34 (2008), April, Nr. 4, p. 525-532[65] Singh, Ajaypal ; Faulx, Ashley L.: Endoscopic Evaluation in the Workup of Pancreatic Cancer. En: Surgical Clinics of North America 96 (2016), Nr. 6, p. 1257 - 1270. - ISSN 0039-6109[66] Singh, Karamjeet ; Ranade, Sukhjeet K. ; Singh, Chandan: A hybrid algorithm for speckle noise reduction of ultrasound images. En: Computer Methods and Programs in Biomedicine 148 (2017), p. 55-69. - ISSN 0169-2607[67] Slack, J.M.: Developmental biology of the pancreas. En: Development 121 (1995), 06, Nr. 6, p. 1569-1580. - ISSN 0950-1991[68] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), Jun, Nr. 23, p. 2841-2850. - 20556829[pmid]. - ISSN 2219-2840[69] Stevens, Tyler ; Parsi, Mansour A.: Endoscopic ultrasound for the diagnosis of chronic pancreatitis. En: World journal of gastroenterology 16 (2010), 06, p. 2841-50[70] Stolzenberg-Solomon, Rachael Z. ; Amundadottir, Laufey T.: Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. En: Hematology/Oncology Clinics of North America 29 (2015), Nr. 4, p. 619 - 640[71] Sung, Hyuna ; Ferlay, Jacques ; Siegel, Rebecca L. ; Laversanne, Mathieu ; Soerjomataram, Isabelle ; Jemal, Ahmedin ; Bray, Freddie: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. En: CA: A Cancer Journal for Clinicians 71 (2021), Nr. 3, p. 209-249[72] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ; Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke, Vincent ; Rabinovich, Andrew: Going Deeper with Convolutions. En: Computer Vision and Pattern Recognition (CVPR), 2015[73] Saƒftoiu, Adrian ; Vilmann, Peter ; Dietrich, Christoph F. ; Iglesias-Garcia, Julio ; Hocke, Michael ; Seicean, Andrada ; Ignee, Andre ; Hassan, Hazem ; Streba, Costin T. ; IoncicAƒ, Ana M. ; Gheonea, Dan I. ; Ciurea, Tudorel: Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). En: Gastrointestinal Endoscopy 82 (2015), Nr. 1, p. 59 - 69. - ISSN 0016-5107[74] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Gheonea, Dan I. ; Gorunescu, Marina ; Ciurea, Tudorel ; Popescu, Gabriel L. ; Iordache, Alexandru ; Hassan, Hazem ; Iordache, Sevasti_A£a: Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. En: Gastrointestinal Endoscopy 68 (2008), Nr. 6, p. 1086 - 1094. - ISSN 0016-5107[75] SAƒftoiu, Adrian ; Vilmann, Peter ; Gorunescu, Florin ; Janssen, Jan ; Hocke, Michael ; Larsen, Michael ; Iglesias-Garcia, Julio ; Arcidiacono, Paolo ; Will, Uwe ; Giovannini, Marc ; Dietrich, Cristoph F. ; Havre, Roald ; Gheorghe, Cristian ; McKay, Colin ; Gheonea, Dan I. ; Ciurea, Tudorel: Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. En: Clinical Gastroenterology and Hepatology 10 (2012), Nr. 1, p. 84 - 90.e1. - ISSN 1542-3565[76] Takhar, Arjun S. ; Palaniappan, Ponni ; Dhingsa, Rajpal ; Lobo, Dileep N.: Recent developments in diagnosis of pancreatic cancer. En: BMJ 329 (2004), Nr. 7467, p. 668-673. - ISSN 0959-8138[77] Tonozuka, Ryosuke ; Itoi, Takao ; Nagata, Naoyoshi ; Kojima, Hiroyuki ; Sofuni, Atsushi ; Tsuchiya, Takayoshi ; Ishii, Kentaro ; Tanaka, Reina ; Nagakawa, Yuichi ; Mukai, Shuntaro: Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. En: Journal of Hepato-Biliary-Pancreatic Sciences (2020)[78] Walling, Anne ; Freelove, Robert: Pancreatitis and Pancreatic Cancer. En: Primary Care: Clinics in O_ce Practice 44 (2017), Nr. 4, p. 609 - 620. - ISSN 0095-4543[79] Wani, Sachin ; Hall, Matthew ; Keswani, Rajesh N. ; Aslanian, Harry R. ; Casey, Brenna ; Burbridge, Rebecca ; Chak, Amitabh ; Chen, Ann M. ; Cote, Gregory ; Edmundowicz, Steven A. ; Faulx, Ashley L. ; Hollander, Thomas G. ; Lee, Linda S. ; Mullady, Daniel ; Murad, Faris ; Muthusamy, V. R. ; Pfau, Patrick R. ; Scheiman, James M. ; Tokar, Jeffrey ; Wagh, Mihir S. ; Watson, Rabindra ; Early, Dayna: Variation in Aptitude of Trainees in Endoscopic Ultrasonography, Based on Cumulative Sum Analysis. En: Clinical Gastroenterology and Hepatology 13 (2015), Nr. 7, p. 1318 - 1325.e2. - ISSN 1542-3565[80] Wani, Sachin ; Han, Samuel ; Simon, Violette ; et al.: Setting minimum standards for training in EUS and ERCP: results^A from a prospective multicenter study evaluating learning curves and competence among advanced endoscopy trainees. En: Gastrointestinal Endoscopy 89 (2019), Nr. 6, p. 1160 - 1168.e9. - ISSN 0016-5107[81] Wani, Sachin ; Muthusamy, V. R. ; Komanduri, Srinadh: EUS-guided tissue acquisition: an evidence-based approach (with videos). En: Gastrointestinal Endoscopy 80 (2014), p. 939 - 959.e7[82] Wen-Li Lee ; Yung-Chang Chen ; Kai-Sheng Hsieh: Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. En: IEEE Transactions on Medical Imaging 22 (2003), March, Nr. 3, p. 382-392. - ISSN 1558-254X[83] Yasuda, Kenjiro ; Mukai, Hidekazu ; Nakajima, Masatsugu: Endoscopic Ultrasonography Diagnosis of Pancreatic Cancer. En: Gastrointestinal Endoscopy Clinics of North America 5 (1995), Nr. 4, p. 699 - 712. - ISSN 1052-5157[84] Younan, George: Pancreas Solid Tumors. En: Surgical Clinics of North America 100 (2020), Nr. 3, p. 565-580. - Surgical Oncology for the General Surgeon. - ISSN 0039-6109[85] Zhang, Jun ; Zhu, Liangru ; Yao, Liwen ; Ding, Xiangwu ; Chen, Di ; Wu, Huiling ; Lu, Zihua ; Zhou, Wei ; Zhang, Lihui ; An, Ping ; Xu, Bo ; Tan, Wei ; Hu, Shan ; Cheng, Fan ; Yu, Honggang: Deep-learning based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video). En: Gastrointestinal Endoscopy (2020). - ISSN 0016-5107[86] Zhang, Min-Min ; Yang, Hua ; Jin, Zhen-Dong ; Yu, Jian-Guo ; Cai, Zhe- Yuan ; Li, Zhao-Shen: Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. En: Gastrointestinal Endoscopy 72 (2010), Nr. 5, p. 978 - 985. - ISSN 0016-5107[87] Zhu, Maoling ; Xu, Can ; Yu, Jianguo ; Wu, Yijun ; Li, Chunguang ; Zhang, Minmin ; Jin, Zhendong ; Li, Zhaoshen: Differentiation of Pancreatic Cancer and Chronic Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images: A Diagnostic Test. En: PLOS ONE 8 (2013), 05, Nr. 5, p. 1-6EstudiantesGrupos comunitariosInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83139/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053835990.2022.pdf1053835990.2022.pdfTesis de Maestría en Ingeniería Biomédicaapplication/pdf16180863https://repositorio.unal.edu.co/bitstream/unal/83139/2/1053835990.2022.pdf988bceab03eb58b773c20f60e7ee2a8bMD52THUMBNAIL1053835990.2022.pdf.jpg1053835990.2022.pdf.jpgGenerated Thumbnailimage/jpeg4795https://repositorio.unal.edu.co/bitstream/unal/83139/3/1053835990.2022.pdf.jpg591512404031a9b9cba0356baa2bb2efMD53unal/83139oai:repositorio.unal.edu.co:unal/831392024-08-15 23:15:08.293Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=