A Question answering model for requirements elicitation in the context of software development
ilustraciones, gráficos
- Autores:
-
Calle Gallego, Johnathan Mauricio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83008
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Ingeniería de software
Desarrollo del software
Procesamiento del lenguaje natural (Ciencia de computador)
Requirements elicitation
Educción de requisitos
Sistemas pregunta respuesta
Procesamiento de lenguaje natural
Reconocimiento de entidades nombradas
Meta-ontología
Question answering systems
Natural language processing
Named entity recognition
Meta-ontology
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_4330d7ce0df29c390eabac0c8a5e5233 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83008 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A Question answering model for requirements elicitation in the context of software development |
dc.title.translated.spa.fl_str_mv |
Un modelo preguta-respuesta para la educción de requisitos en el contexto del desarrollo de software |
title |
A Question answering model for requirements elicitation in the context of software development |
spellingShingle |
A Question answering model for requirements elicitation in the context of software development 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Ingeniería de software Desarrollo del software Procesamiento del lenguaje natural (Ciencia de computador) Requirements elicitation Educción de requisitos Sistemas pregunta respuesta Procesamiento de lenguaje natural Reconocimiento de entidades nombradas Meta-ontología Question answering systems Natural language processing Named entity recognition Meta-ontology |
title_short |
A Question answering model for requirements elicitation in the context of software development |
title_full |
A Question answering model for requirements elicitation in the context of software development |
title_fullStr |
A Question answering model for requirements elicitation in the context of software development |
title_full_unstemmed |
A Question answering model for requirements elicitation in the context of software development |
title_sort |
A Question answering model for requirements elicitation in the context of software development |
dc.creator.fl_str_mv |
Calle Gallego, Johnathan Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Zapata Jaramillo, Carlos Mario |
dc.contributor.author.none.fl_str_mv |
Calle Gallego, Johnathan Mauricio |
dc.contributor.researchgroup.spa.fl_str_mv |
Lenguajes Computacionales |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Ingeniería de software Desarrollo del software Procesamiento del lenguaje natural (Ciencia de computador) Requirements elicitation Educción de requisitos Sistemas pregunta respuesta Procesamiento de lenguaje natural Reconocimiento de entidades nombradas Meta-ontología Question answering systems Natural language processing Named entity recognition Meta-ontology |
dc.subject.lemb.none.fl_str_mv |
Ingeniería de software Desarrollo del software Procesamiento del lenguaje natural (Ciencia de computador) |
dc.subject.proposal.spa.fl_str_mv |
Requirements elicitation Educción de requisitos Sistemas pregunta respuesta Procesamiento de lenguaje natural Reconocimiento de entidades nombradas Meta-ontología |
dc.subject.proposal.eng.fl_str_mv |
Question answering systems Natural language processing Named entity recognition Meta-ontology |
description |
ilustraciones, gráficos |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-04-04 |
dc.date.accessioned.none.fl_str_mv |
2023-01-18T15:51:17Z |
dc.date.available.none.fl_str_mv |
2023-01-18T15:51:17Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83008 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83008 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abbott, R. J. (1983). Program Design by Informal English Descriptions. Commun. ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441 Adam, S. (2012). Providing software product line knowledge to requirements engineers - A template for elicitation instructions. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, B. Regnell, & D. Damian (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7195 LNCS (pp. 147–164). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28714-5_13 Adikara, F., Hendradjaya, B., & Sitohang, B. (2016). Organization goal-oriented requirements elicitation process to enhance information system. International Journal of Electrical and Computer Engineering, 6(6), 3188–3195. https://doi.org/10.11591/ijece.v6i6.12802 Aguilar, C., & Sierra M., G. (2017). Tratamiento de información textual y generación de taxonomías (1st ed.). Instituto de Ingeniería, de la Universidad Autónoma de México. Aguilera, C., & Berry, D. M. (1990). The use of a repeated phrase finder in requirements extraction. Journal of Systems and Software, 13(3), 209–230. https://doi.org/https://doi.org/10.1016/0164-1212(90)90097-6 Al-Hroob, A., Imam, A. T., & Al-Heisa, R. (2018). The use of artificial neural networks for extracting actions and actors from requirements document. Information and Software Technology, 101, 1–15. https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010 Alwadain, A., & Alshargi, M. (2019). Crowd-Generated Data Mining for Continuous Requirements Elicitation. International Journal of Advanced Computer Science and Applications, 10(9). https://doi.org/10.14569/IJACSA.2019.0100907 Apaza, R. D. G., Barrios, J. E. M., Becerra, D. A. I., & Quispe, J. A. H. (2018). ERS-TOOL: Hybrid Model for Software Requirements Elicitation in Spanish Language. Proceedings of the International Conference on Geoinformatics and Data Analysis, 27–30. https://doi.org/10.1145/3220228.3220255 Arruda, D., Marinho, M., Souza, E., & Wanderley, F. (2019). A Chatbot for Goal-Oriented Requirements Modeling. In S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, & E. Tarantino (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11622 LNCS (pp. 506–519). Springer International Publishing. https://doi.org/10.1007/978-3-030-24305-0_38 Bakar, N. H., Kasirun, Z. M., Salleh, N., & A.Halim, A. H. (2017). Extracting Software Features From Online Reviews to Demonstrate Requirements Reuse in Software Engineering. 6th International Conference on Computing & Informatics, 49(157), 184–190. Becu, N., Bousquet, F., Barreteau, O., Perez, P., & Walker, A. (2003). A methodology for eliciting and modelling stakeholders’ representations with agent based modelling. In G. Goos, J. Hartmanis, J. van Leeuwen, D. Hales, B. Edmonds, E. Norling, & J. Rouchier (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2927, pp. 131–148). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24613-8_10 Bisong, E. (2019). Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7 Boquist, E. (2014). Automated Dialogue System for Requirements Elicitation Practice. Towson University. Bouziane, A., Bouchiha, D., Doumi, N., & Malki, M. (2015). Question Answering Systems: Survey and Trends. Procedia Computer Science, 73(Awict), 366–375. https://doi.org/10.1016/j.procs.2015.12.005 Burnay, C., Jureta, I., & Faulkner, S. (2012). Context-Driven Elicitation of Default Requirements: an Empirical Validation. ArXiv: Software Engineering, February 2014. http://arxiv.org/abs/1211.2620 Burnay, C., Jureta, I. J., & Faulkner, S. (2014). What stakeholders will or will not say: A theoretical and empirical study of topic importance in Requirements Engineering elicitation interviews. Information Systems, 46, 61–81. https://doi.org/10.1016/j.is.2014.05.006 Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., & Sampaio, A. (2015). NAT2TEST Tool: From Natural Language Requirements to Test Cases Based on CSP. In R. Calinescu & B. Rumpe (Eds.), Software Engineering and Formal Methods (pp. 283–290). Springer International Publishing. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., & Blackburn, M. (2014). NAT2TESTSCR: Test case generation from natural language requirements based on SCR specifications. Science of Computer Programming, 95, 275–297. https://doi.org/https://doi.org/10.1016/j.scico.2014.06.007 Casagrande, E., Woldeamlak, S., Woon, W. L., Zeineldin, H. H., & Svetinovic, D. (2014). NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study. IEEE Transactions on Software Engineering, 40(10), 941–956. https://doi.org/10.1109/TSE.2014.2339811 Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in textual specifications: A semi-supervised learning approach. Information and Software Technology, 52(4), 436–445. https://doi.org/10.1016/j.infsof.2009.10.010 Chen, P. P.-S. (1983). English sentence structure and entity-relationship diagrams. Information Sciences, 29(2), 127–149. https://doi.org/https://doi.org/10.1016/0020-0255(83)90014-2 Christel, M., & Kang, K. (1992). Issues in Requirements Elicitation (Issue CMU/SEI-92-TR-012). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553 Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-functional requirements. Requirements Engineering, 12(2), 103–120. https://doi.org/10.1007/s00766-007-0045-1 Cockburn, A. (1997). Structuring use cases with goals. Journal of Object-Oriented Programming, 10(5), 56–62. Coulin, C., & Zowghi, D. (2005). Requirements Elicitation: A Survey of Techniques, Approaches, and Tools Didar. Engineering and Managing Software Requirement, 1, 19–41. Cysneiros, L. M., & Yu, E. (2003). Requirements engineering for large-scale multi-agent systems. In G. Goos, J. Hartmanis, J. van Leeuwen, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, & J. Castro (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2603, pp. 39–56). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-35828-5_3 Dalpiaz, F., Ferrari, A., Franch, X., & Palomares, C. (2018). Natural Language Processing for Requirements Engineering: The Best Is Yet to Come. IEEE Software, 35(5), 115–119. https://doi.org/10.1109/MS.2018.3571242 Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50. https://doi.org/10.1016/0167-6423(93)90021-G Dick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer, Chan. Do Prado Leite, J. C. S., & Gilvaz, A. P. P. (1996). Requirements elicitation driven by interviews: The use of viewpoints. Proceedings of the 8th International Workshop on Software Specification and Design, IWSSD 1996, April 1996, 85–94. https://doi.org/10.1109/iwssd.1996.501150 Dubois, E., Hagelstein, J., Rifaut, A., Lahou, E., & Ponsaert, F. (1986). A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE, 74(10), 1431–1444. https://doi.org/10.1109/PROC.1986.13644 Düchting, M., Zimmermann, D., & Nebe, K. (2007). Incorporating user centered requirement engineering into agile software development. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, & J. A. Jacko (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 4550 LNCS (Issue PART 1, pp. 58–67). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73105-4_7 Dwitama, F., & Rusli, A. (2020). User stories collection via interactive chatbot to support requirements gathering. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18, 870. https://doi.org/10.12928/telkomnika.v18i2.14866 Escalona, M. J., & Koch, N. (2006). Metamodeling the requirements of Web systems. WEBIST 2006 - 2nd International Conference on Web Information Systems and Technologies, Proceedings, IT(WIA/-), 310–317. https://doi.org/10.1007/978-3-540-74063-6_21 Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). An Automatic Quality Evaluation for Natural Language Requirements. In Proceedings of the Seventh International Workshop on RE: Foundation for Software Quality (REFSQ’2001, 4–5. Ferrari, A., Spagnolo, G. O., & Gnesi, S. (2017). PURE: A Dataset of Public Requirements Documents. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, September, 502–505. https://doi.org/10.1109/RE.2017.29 Gacitua, R., Sawyer, P., & Gervasi, V. (2010). On the Effectiveness of Abstraction Identification in Requirements Engineering. 2010 18th IEEE International Requirements Engineering Conference, 5–14. https://doi.org/10.1109/RE.2010.12 García, M. (2018). Using NLP and Information Visualization to analyze app reviews. Universiteit Utrecht. Garzoli, F., Croce, D., Nardini, M., Ciambra, F., & Basili, R. (2013). Robust Requirements Analysis in Complex Systems through Machine Learning. Communications in Computer and Information Science, 379 CCIS, 44–58. https://doi.org/10.1007/978-3-642-45260-4_4 Gause, D. C., & Weinberg, G. M. (1989). Context-Free Questions. In Exploring Requirements: Quality before Design (1st ed., pp. 59–65). Dorset House. Gelbukh, A. (2013). Natutal language processing: Perspective of CIC-IPN. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2112–2121. https://doi.org/10.1109/ICACCI.2013.6637507 Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Ghosh, S., Mukherjee, P., Chakraborty, B., & Bashar, R. (2018). Automated Generation of E-R Diagram from a Given Text in Natural Language. 2018 International Conference on Machine Learning and Data Engineering (ICMLDE), 91–96. https://doi.org/10.1109/iCMLDE.2018.00026 Giannakopoulou, D., Pressburger, T., Mavridou, A., & Schumann, J. (2021). Automated formalization of structured natural language requirements. Information and Software Technology, 137, 10–12. https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590 Gilvaz, A. P. P., & do Prado Leite, J. C. S. (1995). FAES: a case tool for information acquisition. Proceedings of the International Workshop on Computer-Aided Software Engineering, July 2014, 260–269. https://doi.org/10.1109/case.1995.465307 Goldin, L., & Berry, D. (1994). AbstFinder, A Prototype Natural Language Text Abstraction Finder for Use in Requirements Elicitation. Automated Software Engineering, 4. https://doi.org/10.1023/A:1008617922496 Gorschek, T., & Wohlin, C. (2006). Requirements abstraction model. Requirements Engineering, 11(1), 79–101. https://doi.org/10.1007/s00766-005-0020-7 Grigorious, R., & Symeonidis, A. (2014). Towards the Design of User Friendly Search Engines for Software Projects. In Natural Language Processing and Information Systems (pp. 164–167). Springer, Chan. Hayes, J. H., Dekhtyar, A., & Osborne, J. (2003). Improving requirements tracing via information retrieval. Proceedings. 11th IEEE International Requirements Engineering Conference, 2003., 138–147. https://doi.org/10.1109/ICRE.2003.1232745 Honnibal, M., & Montani, I. (2017). {spaCy 2}: Natural language understanding with {B}loom embeddings, convolutional neural networks and incremental parsing. Hunt, J. (1997). The Object Modeling Technique. Smalltalk and Object Orientation, 184–195. https://doi.org/10.1007/978-1-4471-0961-7_19 Iqbal, S., Al-Azzoni, I., Allen, G., & Khan, H. U. (2020). Extending UML use case diagrams to represent non-interactive functional requirements. E-Informatica Software Engineering Journal, 14(1), 97–115. https://doi.org/10.37190/E-INF200104 Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., & Zettlemoyer, L. (2017). Learning a Neural Semantic Parser from User Feedback. 963–973. https://doi.org/10.18653/v1/P17-1089 Jacobson, I., Spence, I., & Kerr, B. (2016). Use-case 2.0: The hub of software development. Queue, 14(1), 94–123. https://doi.org/10.1145/2898442.2912151 Janssens, D. (2019). Natural Language Processing in Requirements Elicitation and Analysis: A Systematic Literature Review. Universiteit Utrecht. Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., & Horkoff, J. (2014). An Exploratory Study of Topic Importance in Requirements Elicitation Interviews. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8484 LNCS(October). https://doi.org/10.1007/978-3-319-07881-6 Johann, T., Stanik, C., Alizadeh B., A. M., & Maalej, W. (2017). SAFE: A Simple Approach for Feature Extraction from App Descriptions and App Reviews. 2017 IEEE 25th International Requirements Engineering Conference (RE), 21–30. https://doi.org/10.1109/RE.2017.71 Jurafsky, D., & Martin, J. (2021). Speech and Language Processing. 3rd. (Draft). Prentice Hall. Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd Edition). Prentice-Hall, Inc. Jureta, I. J., Mylopoulos, J., & Faulkner, S. (2008). Revisiting the core ontology and problem in requirements engineering. Proceedings of the 16th IEEE International Requirements Engineering Conference, RE’08, December, 71–80. https://doi.org/10.1109/RE.2008.13 Kaiya, H., Shinbara, D., Kawano, J., & Saeki, M. (2005). Improving the detection of requirements discordances among stakeholders. Requirements Engineering, 10(4), 289–303. https://doi.org/10.1007/s00766-005-0017-2 Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. Conference on Empirical Methods in Natural Language Processing (EMNLP), 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550 Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic Literature Reviews in Software Engineering - A Systematic Literature Review. Inf. Softw. Technol., 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009 Kiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I., Cordy, J. R., Luisa, M., & Mylopoulos, J. (2008). Automating the Extraction of Rights and Obligations for Regulatory Compliance. International Conference on Conceptual Modeling, 5231, 154–168. Knublauch, H., Fergerson, R. W., Noy, N., & Musen, M. A. (2004). The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. SEMWEB. Kof, L. (2004). Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents. Proceedings of the Workshops, 19th International Conference Conference on Automated Software Engineering, 1–11. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5849&rep=rep1&type=pdf Körner, S. J., & Landhäußer, M. (2010). Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation. In Springer-Verlag (Ed.), Proceedings of the Natural language processing and information systems, and 15th international conference on Applications of natural language to information systems (pp. 92–99). http://dl.acm.org/citation.cfm?id=1894525.1894537 Krish, S. (2006). An Ontology Based Approach To Automated Domain-Specific SRS Development. National Conference on Recent Advances in Computing. Kücherer, C., & Paech, B. (2018). Task-oriented requirements engineering for personal decision support systems. In S. Hammoudi, M. Śmiałek, O. Camp, & J. Filipe (Eds.), Lecture Notes in Business Information Processing (Vol. 321, pp. 212–238). Springer International Publishing. https://doi.org/10.1007/978-3-319-93375-7_11 Laiq, M., & Dieste, O. (2020). Chatbot-based Interview Simulator: A Feasible Approach to Train Novice Requirements Engineers. 2020 10th International Workshop on Requirements Engineering Education and Training (REET), 1–8. https://doi.org/10.1109/REET51203.2020.00007 Lapouchnian, A. (2005). Goal-Oriented Requirements Engineering : An Overview of the Current Research. Requirements Engineering, 8(3), 32. https://doi.org/10.1007/s00766-003-0178-9 Ledeneva, Y. (2010). Recent Advances in Computational Linguistics Levels of language and areas of computational linguistic research. Informatica, 34, 3–18. Li, M., Yang, Y., Shi, L., Wang, Q., Hu, J., Peng, X., Liao, W., & Pi, G. (2020). Automated Extraction of Requirement Entities by Leveraging LSTM-CRF and Transfer Learning. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), 208–219. https://doi.org/10.1109/ICSME46990.2020.00029 Lian, X., Liu, W., & Zhang, L. (2020). Assisting engineers extracting requirements on components from domain documents. Information and Software Technology, 118, 106196. https://doi.org/https://doi.org/10.1016/j.infsof.2019.106196 Lim, S., Henriksson, A., & Zdravkovic, J. (2021). Data-Driven Requirements Elicitation: A Systematic Literature Review. SN Computer Science, 2(1), 16. https://doi.org/10.1007/s42979-020-00416-4 Maalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016). On the automatic classification of app reviews. Requirements Engineering, 21(3), 311–331. https://doi.org/10.1007/s00766-016-0251-9 Madala, K., Piparia, S., Blanco, E., Do, H., & Bryce, R. (2021). Model elements identification using neural networks: a comprehensive study. Requirements Engineering, 26(1), 67–96. https://doi.org/10.1007/s00766-020-00332-2 Maiden, N., Lockerbie, J., Zachos, K., Bertolino, A., De Angelis, G., & Lonetti, F. (2014). A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies: An Experience Report BT - Requirements Engineering: Foundation for Software Quality (C. Salinesi & I. van de Weerd (eds.); pp. 239–253). Springer International Publishing. Manago, M., Conruyt, N., & Le Renard, J. (1992). Acquiring descriptive knowledge for classification and identification. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 599 LNAI (pp. 392–405). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_52 Manrique, B. (2014). A formalization for mapping discourses from business-based technical documents into controlled language texts for requirements elicitation [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/46419/ McZara, J., Sarkani, S., Holzer, T., & Eveleigh, T. (2015). Software requirements prioritization and selection using linguistic tools and constraint solvers—a controlled experiment. Empirical Software Engineering, 20(6), 1721–1761. https://doi.org/10.1007/s10664-014-9334-8 Mich, L. (1996). NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Natural Language Engineering, 2, 161–187. https://doi.org/10.1017/S1351324996001337 Minock, M. (2005). Where are the ‘killer applications’ of restricted domain question answering. Proceedings of the IJCAI Workshop on Knowledge Reasoning in Question Answering, 4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.5922&rep=rep1&type=pdf Mohammadi, N. G., & Heisel, M. (2016). A framework for systematic analysis and modeling of trustworthiness requirements using i* and BPMN. In S. Katsikas, C. Lambrinoudakis, & S. Furnell (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9830 LNCS (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-44341-6_1 Moitra, A., Siu, K., Crapo, A. W., Durling, M., Li, M., Manolios, P., Meiners, M., & McMillan, C. (2019). Automating requirements analysis and test case generation. Requirements Engineering, 24(3), 341–364. https://doi.org/10.1007/s00766-019-00316-x Montani, I., & Honnibal, M. (2018). Prodigy: A new annotation tool for radically efficient machine teaching. Artificial Intelligence, to appear. Morales-Ramirez, I., Kifetew, F. M., & Perini, A. (2019). Speech-acts based analysis for requirements discovery from online discussions. Information Systems, 86, 94–112. https://doi.org/https://doi.org/10.1016/j.is.2018.08.003 Morales-Ramirez, I., Vergne, M., Morandini, M., Sabatucci, L., Perini, A., & Susi, A. (2012). Where did the requirements come from? A retrospective case study. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. Castano, P. Vassiliadis, L. V Lakshmanan, & M. L. Lee (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7518 LNCS (pp. 185–194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_23 Murugesh, S., & Jaya, A. (2021). An integrated approach towards automated software requirements elicitation from unstructured documents. J. Ambient Intell. Humaniz. Comput., 12(3), 3763–3773. https://doi.org/10.1007/s12652-019-01667-7 Nath, R. (2007). Object Oriented Design and Modeling. www.ddegjust.ac.in/studymaterial/mca-5/mca-503.pdf Nguyen, T. H., Grundy, J., & Almorsy, M. (2015). Rule-Based Extraction of Goal-Use Case Models from Text. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 591–601. https://doi.org/10.1145/2786805.2786876 Nwana, H. S., Paton, R. C., Shave, M. J. R., & Bench-Capon, T. J. M. (1992). Domain-driven knowledge modelling: Mediating intermediate representations for knowledge acquisition. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science: Vol. 599 LNAI (pp. 250–263). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_44 Ochodek, M., & Nawrocki, J. (2008). Automatic transactions identification in use cases. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5082 LNCS (pp. 55–68). https://doi.org/10.1007/978-3-540-85279-7_5 Pacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: a systematic literature review based on the maturity of the techniques. IET Software, 12(4), 365–378. Perepletchikov, M., & Padgham, L. (2005). Use case and actor driven requirements engineering: An evaluation of modifications to prometheus. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Pěchouček, P. Petta, & L. Z. Varga (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 3690 LNAI (pp. 203–212). Springer Berlin Heidelberg. https://doi.org/10.1007/11559221_21 Prendergast, M. D. (2021). Automated Extraction and Classification of Slot Machine Requirements from Gaming Regulations. 2021 IEEE International Systems Conference (SysCon), 1–6. https://doi.org/10.1109/SysCon48628.2021.9447144 Raharjana, I. K., Siahaan, D., & Fatichah, C. (2019). User Story Extraction from Online News for Software Requirements Elicitation: A Conceptual Model. JCSSE 2019 - 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence, 342–347. https://doi.org/10.1109/JCSSE.2019.8864199 Raharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User Stories and Natural Language Processing: A Systematic Literature Review. IEEE Access, 9, 53811–53826. https://doi.org/10.1109/ACCESS.2021.3070606 Rajender Kumar Surana, C. S., Shriya, Gupta, Di. B., & Shankar, S. P. (2019). Intelligent Chatbot for Requirements Elicitation and Classification. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019 - Proceedings, 866–870. https://doi.org/10.1109/RTEICT46194.2019.9016907 Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Conference on Empirical Methods in Natural Language Processing, 2383–2392. https://doi.org/10.18653/v1/D16-1264 Rana, Y., & Tamara, A. (2015). An enhanced requirements elicitation framework based on business process models. Scientific Research and Essays, 10(7), 279–286. https://doi.org/10.5897/sre2014.6138 Reddy, A. C. O., & Madhavi, K. (2017). A Survey on Types of Question Answering System. 19(6), 19–23. https://doi.org/10.9790/0661-1906041923 Rizk, N. M., Nasr, E. S., & Gheith, M. H. (2019). Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram Evaluation. 2019 15th International Computer Engineering Conference (ICENCO), 222–226. https://doi.org/10.1109/ICENCO48310.2019.9027371 Robertson, S., & Robertson, J. (2012). Mastering the requirement process: getting requirements right (Third). Pearson Education. Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M., Haumer, P., Pohl, K., Dubois, E., & Heymans, P. (1998). A proposal for a scenario classification framework. Requirements Engineering, 3(1), 23–47. https://doi.org/10.1007/bf02802919 Rolland, C., & Proix, C. (1992). A natural language approach for Requirements Engineering. In P. Loucopoulos (Ed.), Advanced Information Systems Engineering (pp. 257–277). Springer Berlin Heidelberg. Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6–15. https://doi.org/10.1109/TSE.1977.229899 Salleh, N. M., & Nohuddin, P. N. E. (2019). Hybrid requirement elicitation techniques with lean six sigma methodology for an enhanced framework. In H. Badioze Zaman, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, N. Mohamad Ali, & M. N. Ahmad (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11870 LNCS (pp. 190–201). Springer International Publishing. https://doi.org/10.1007/978-3-030-34032-2_18 Sannier, N., Adedjouma, M., Sabetzadeh, M., & Briand, L. (2017). An automated framework for detection and resolution of cross references in legal texts. Requirements Engineering, 22(2), 215–237. https://doi.org/10.1007/s00766-015-0241-3 Shakeri Hossein Abad, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. 2018 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 8–14. https://doi.org/10.1109/AIRE.2018.00007 hakeri, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018, July 20). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. IEEE 26th International Requirements Engineering Conference Workshops. Shi, L., Chen, C., Wang, Q., & Boehm, B. W. (2021). Automatically detecting feature requests from development emails by leveraging semantic sequence mining. Requir. Eng., 26(2), 255–271. https://doi.org/10.1007/s00766-020-00344-y Sleimi, A., Ceci, M., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2019). A Query System for Extracting Requirements-Related Information from Legal Texts. 2019 IEEE 27th International Requirements Engineering Conference (RE), 319–329. https://doi.org/10.1109/RE.2019.00041 Sleimi, A., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2018). Automated Extraction of Semantic Legal Metadata using Natural Language Processing. 2018 IEEE 26th International Requirements Engineering Conference (RE), 124–135. https://doi.org/10.1109/RE.2018.00022 Sommerville, I. (2015). Software Engineering (10th ed.). Pearson. Souag, A., Salinesi, C., Mazo, R., & Comyn-Wattiau, I. (2015). A security ontology for security requirements elicitation. In F. Piessens, J. Caballero, & N. Bielova (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8978, pp. 157–177). Springer International Publishing. https://doi.org/10.1007/978-3-319-15618-7_13 Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based generation of requirements traceability relations. Journal of Systems and Software, 72(2), 105–127. https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5 Sun, P., Yang, X., Zhao, X., & Wang, Z. (2019). An Overview of Named Entity Recognition. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 273–278. https://doi.org/10.1109/IALP.2018.8629225 Suryn, W. (2014). Software Engineering: A Practitioner’s Approach. In Software Quality Engineering: A Practitioner’s Approach (Vol. 9781118592). https://doi.org/10.1002/9781118830208 Sutcliffe, A., Thew, S., & Jarvis, P. (2011). Experience with user-centred requirements engineering. Requirements Engineering, 16(4), 267–280. https://doi.org/10.1007/s00766-011-0118-z Van Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research Perspective. ICSE ’00 Proceedings of the 22nd International Conference on Software Engineering, 5–19. https://doi.org/10.1145/337180.337184 Vlas, R., & Robinson, W. N. (2011). A rule-based natural language technique for requirements discovery and classification in open-source software development projects. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10. https://doi.org/10.1109/HICSS.2011.28 Wang, M., & Zeng, Y. (2009). Asking the right questions to elicit product requirements. International Journal of Computer Integrated Manufacturing, 22(4), 283–298. https://doi.org/10.1080/09511920802232902 Wieringa, R. J. (2014). Design science methodology: For information systems and software engineering. In Design Science Methodology: For Information Systems and Software Engineering. https://doi.org/10.1007/978-3-662-43839-8 Wijers, G. M., & Heijes, H. (1990). Automated support of the modelling process: A view based on experiments with expert information engineers. In R. King (Ed.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 436 LNCS (pp. 88–108). Springer International Publishing. https://doi.org/10.1007/BFb0000588 Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. In Experimentation in Software Engineering (Vol. 9783642290442). https://doi.org/10.1007/978-3-642-29044-2 Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J. (2020). Break It Down: A Question Understanding Benchmark. Transactions of the Association for Computational Linguistics, 8, 183–198. https://doi.org/10.1162/tacl_a_00309 Xu, J. Y., & Wang, Y. (2020). Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive Computing. 2020 IEEE 19th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 187–194. https://doi.org/10.1109/ICCICC50026.2020.9450275 Yamanaka, T., Noguchi, H., Yato, S., & Komiya, S. (2010). Proposal of a method to navigate interview-driven software requirements elicitation work. Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering, ACE ’10, December 2010, 125–131. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738 Zapata, Carlos M., Giraldo, G. L., & Mesa, J. E. (2010). Una propuesta de metaontología para la educción de requisitos. Ingeniare, 18(1), 26–37. https://doi.org/10.4067/s0718-33052010000100004 Zapata, Carlos Mario, & Carmona, N. (2010). Un Modelo De Dialogo Para Los Requisitos De Software. Dyna, 77(164), 209–219. http://www.scielo.org.co/pdf/dyna/v77n164/a21v77n164.pdf182301&partnerID=40&md5=bb027d0537c4a06b753bbcd1590e41ea Zapata, Carlos Mario, Chaverra, J., & Vill, H. (2012). Un caso de estudio para la generación automática de código a partir de esquemas preconceptuales A study case for automatic code generation based on pre-conceptual schemas. Cuaderno ACTIVA, Tecnológico de Antioquia, 4(4), 9–24. Zelle, J. M., & Mooney, R. J. (1996). Learning to Parse Database Queries Using Inductive Logic Programming. Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 1050–1055. Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J. R., & Mylopoulos, J. (2015). GaiusT: supporting the extraction of rights and obligations for regulatory compliance. Requirements Engineering, 20(1), 1–22. https://doi.org/10.1007/s00766-013-0181-8 Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E.-V., & Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering: A Systematic Mapping Study. ACM Comput. Surv., 54(3). https://doi.org/10.1145/3444689 Zhong, H., Zhang, L., Xie, T., & Mei, H. (2009). Inferring Resource Specifications from Natural Language API Documentation. ASE2009 - 24th IEEE/ACM International Conference on Automated Software Engineering, 307–318. https://doi.org/10.1109/ASE.2009.94 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 115 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83008/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83008/2/1128443432.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83008/3/1128443432.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a d44ac2b087cc64d905cf4cc716154503 7e4f08f2a9947125b9a771115cd4ce11 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089914809057280 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata Jaramillo, Carlos Mario1f6ccc2b9bc8fd5381ffd55aef7e7d86Calle Gallego, Johnathan Mauricioe7674ecf77f58ed93f971d947a9711b6Lenguajes Computacionales2023-01-18T15:51:17Z2023-01-18T15:51:17Z2022-04-04https://repositorio.unal.edu.co/handle/unal/83008Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosRequirements Elicitation (RE) is focused on identifying and characterizing the stakeholders and their requirements. Such an activity may be challenging as the scope of the software product domain grows, generating errors and delays. Natural Language Processing (NLP) deals with automatically analyzing, understanding, and generating natural language. Software analysts use NLP-based approaches for improving RE, making it more efficient and reliable. However, domain scope and limitation for understanding the writing styles of requirements documents generate significant drawbacks for such approaches. In this Ph.D. Thesis we propose SQUARE (Scalable QUestion Answering for Requirements Elicitation), a novel approach for improving the NLP-based approaches for RE based on Question Answering Systems (QASs), comprising a meta-restricted domain for RE and a rule-based approach for generating RE-related questions and answers. QASs are used for extracting precise and concise answers to natural language questions. The SQUARE model represents a contribution for the NLP-based approaches for RE, allowing software analysts for identifying, extracting, and structuring key abstractions from requirements documents such as actors, actions, and concepts in a more natural way due to its proximity to a real-life RE domain. We validate our proposal by using an experimental process. The SQUARE model is included as a new work product for eliciting requirements. Therefore, the SQUARE model is intended to be an NLP-based approach to RE for software analysts.La Educción de Requisitos (ER) se enfoca en identificar y caracterizar a los interesados y sus requisitos. Esta actividad puede ser desafiante a medida que el alcance del dominio del producto de software crece, generando errores y retrasos. El Procesamiento de Lenguaje Natural (PLN) se usa para analizar, entender y generar lenguaje natural automáticamente. Los analistas de software usan enfoques basados en PLN para mejorar la ER, haciéndola más eficiente y confiable. Sin embargo, el alcance del dominio y la limitación para comprender los estilos de escritura de los documentos de requisitos generan inconvenientes importantes para estos enfoques. En esta Tesis Doctoral se presenta SQUARE (Scalable QUestion Answering for Requirements Elicitation por sus siglas en inglés), un enfoque novedoso para mejorar los enfoques basados en PLN para ER basado en Sistemas Pregunta-Respuesta (SPR), que comprende un dominio meta-restringido para ER y un enfoque basado en reglas para generar preguntas y respuestas relacionadas con la ER. Los SPR se usan para extraer respuestas precisas y concisas a preguntas en lenguaje natural. El modelo SQUARE representa una contribución a los enfoques basados en PLN para ER, permitiendo a los analistas de software identificar, extraer y estructurar abstracciones clave a partir de documentos de requisitos tales como actores, acciones y conceptos de una manera más natural debido a su proximidad con un dominio real de ER. Esta propuesta se valida usando un proceso experimental. El modelo SQUARE se incluye como un nuevo producto de trabajo para educir requisitos. Por lo tanto, el modelo SQUARE se espera que sea un enfoque de ER basado en PLN para analistas de software. (texto tomado de la fuente)Convocatoria Doctorados nacionales 785 de 2017, ColcienciasDoctoradoDoctor en IngenieríaIngeniería de requisitosProcesamiento de lenguaje naturalÁrea Curricular de Ingeniería de Sistemas e Informáticaxv, 115 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresIngeniería de softwareDesarrollo del softwareProcesamiento del lenguaje natural (Ciencia de computador)Requirements elicitationEducción de requisitosSistemas pregunta respuestaProcesamiento de lenguaje naturalReconocimiento de entidades nombradasMeta-ontologíaQuestion answering systemsNatural language processingNamed entity recognitionMeta-ontologyA Question answering model for requirements elicitation in the context of software developmentUn modelo preguta-respuesta para la educción de requisitos en el contexto del desarrollo de softwareTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaAbbott, R. J. (1983). Program Design by Informal English Descriptions. Commun. ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441Adam, S. (2012). Providing software product line knowledge to requirements engineers - A template for elicitation instructions. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, B. Regnell, & D. Damian (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7195 LNCS (pp. 147–164). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28714-5_13Adikara, F., Hendradjaya, B., & Sitohang, B. (2016). Organization goal-oriented requirements elicitation process to enhance information system. International Journal of Electrical and Computer Engineering, 6(6), 3188–3195. https://doi.org/10.11591/ijece.v6i6.12802Aguilar, C., & Sierra M., G. (2017). Tratamiento de información textual y generación de taxonomías (1st ed.). Instituto de Ingeniería, de la Universidad Autónoma de México.Aguilera, C., & Berry, D. M. (1990). The use of a repeated phrase finder in requirements extraction. Journal of Systems and Software, 13(3), 209–230. https://doi.org/https://doi.org/10.1016/0164-1212(90)90097-6Al-Hroob, A., Imam, A. T., & Al-Heisa, R. (2018). The use of artificial neural networks for extracting actions and actors from requirements document. Information and Software Technology, 101, 1–15. https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010Alwadain, A., & Alshargi, M. (2019). Crowd-Generated Data Mining for Continuous Requirements Elicitation. International Journal of Advanced Computer Science and Applications, 10(9). https://doi.org/10.14569/IJACSA.2019.0100907Apaza, R. D. G., Barrios, J. E. M., Becerra, D. A. I., & Quispe, J. A. H. (2018). ERS-TOOL: Hybrid Model for Software Requirements Elicitation in Spanish Language. Proceedings of the International Conference on Geoinformatics and Data Analysis, 27–30. https://doi.org/10.1145/3220228.3220255Arruda, D., Marinho, M., Souza, E., & Wanderley, F. (2019). A Chatbot for Goal-Oriented Requirements Modeling. In S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, & E. Tarantino (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11622 LNCS (pp. 506–519). Springer International Publishing. https://doi.org/10.1007/978-3-030-24305-0_38Bakar, N. H., Kasirun, Z. M., Salleh, N., & A.Halim, A. H. (2017). Extracting Software Features From Online Reviews to Demonstrate Requirements Reuse in Software Engineering. 6th International Conference on Computing & Informatics, 49(157), 184–190.Becu, N., Bousquet, F., Barreteau, O., Perez, P., & Walker, A. (2003). A methodology for eliciting and modelling stakeholders’ representations with agent based modelling. In G. Goos, J. Hartmanis, J. van Leeuwen, D. Hales, B. Edmonds, E. Norling, & J. Rouchier (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2927, pp. 131–148). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24613-8_10Bisong, E. (2019). Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7Boquist, E. (2014). Automated Dialogue System for Requirements Elicitation Practice. Towson University.Bouziane, A., Bouchiha, D., Doumi, N., & Malki, M. (2015). Question Answering Systems: Survey and Trends. Procedia Computer Science, 73(Awict), 366–375. https://doi.org/10.1016/j.procs.2015.12.005Burnay, C., Jureta, I., & Faulkner, S. (2012). Context-Driven Elicitation of Default Requirements: an Empirical Validation. ArXiv: Software Engineering, February 2014. http://arxiv.org/abs/1211.2620Burnay, C., Jureta, I. J., & Faulkner, S. (2014). What stakeholders will or will not say: A theoretical and empirical study of topic importance in Requirements Engineering elicitation interviews. Information Systems, 46, 61–81. https://doi.org/10.1016/j.is.2014.05.006Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., & Sampaio, A. (2015). NAT2TEST Tool: From Natural Language Requirements to Test Cases Based on CSP. In R. Calinescu & B. Rumpe (Eds.), Software Engineering and Formal Methods (pp. 283–290). Springer International Publishing.Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., & Blackburn, M. (2014). NAT2TESTSCR: Test case generation from natural language requirements based on SCR specifications. Science of Computer Programming, 95, 275–297. https://doi.org/https://doi.org/10.1016/j.scico.2014.06.007Casagrande, E., Woldeamlak, S., Woon, W. L., Zeineldin, H. H., & Svetinovic, D. (2014). NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study. IEEE Transactions on Software Engineering, 40(10), 941–956. https://doi.org/10.1109/TSE.2014.2339811Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in textual specifications: A semi-supervised learning approach. Information and Software Technology, 52(4), 436–445. https://doi.org/10.1016/j.infsof.2009.10.010Chen, P. P.-S. (1983). English sentence structure and entity-relationship diagrams. Information Sciences, 29(2), 127–149. https://doi.org/https://doi.org/10.1016/0020-0255(83)90014-2Christel, M., & Kang, K. (1992). Issues in Requirements Elicitation (Issue CMU/SEI-92-TR-012). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-functional requirements. Requirements Engineering, 12(2), 103–120. https://doi.org/10.1007/s00766-007-0045-1Cockburn, A. (1997). Structuring use cases with goals. Journal of Object-Oriented Programming, 10(5), 56–62.Coulin, C., & Zowghi, D. (2005). Requirements Elicitation: A Survey of Techniques, Approaches, and Tools Didar. Engineering and Managing Software Requirement, 1, 19–41.Cysneiros, L. M., & Yu, E. (2003). Requirements engineering for large-scale multi-agent systems. In G. Goos, J. Hartmanis, J. van Leeuwen, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, & J. Castro (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2603, pp. 39–56). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-35828-5_3Dalpiaz, F., Ferrari, A., Franch, X., & Palomares, C. (2018). Natural Language Processing for Requirements Engineering: The Best Is Yet to Come. IEEE Software, 35(5), 115–119. https://doi.org/10.1109/MS.2018.3571242Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50. https://doi.org/10.1016/0167-6423(93)90021-GDick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer, Chan.Do Prado Leite, J. C. S., & Gilvaz, A. P. P. (1996). Requirements elicitation driven by interviews: The use of viewpoints. Proceedings of the 8th International Workshop on Software Specification and Design, IWSSD 1996, April 1996, 85–94. https://doi.org/10.1109/iwssd.1996.501150Dubois, E., Hagelstein, J., Rifaut, A., Lahou, E., & Ponsaert, F. (1986). A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE, 74(10), 1431–1444. https://doi.org/10.1109/PROC.1986.13644Düchting, M., Zimmermann, D., & Nebe, K. (2007). Incorporating user centered requirement engineering into agile software development. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, & J. A. Jacko (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 4550 LNCS (Issue PART 1, pp. 58–67). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73105-4_7Dwitama, F., & Rusli, A. (2020). User stories collection via interactive chatbot to support requirements gathering. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18, 870. https://doi.org/10.12928/telkomnika.v18i2.14866Escalona, M. J., & Koch, N. (2006). Metamodeling the requirements of Web systems. WEBIST 2006 - 2nd International Conference on Web Information Systems and Technologies, Proceedings, IT(WIA/-), 310–317. https://doi.org/10.1007/978-3-540-74063-6_21Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). An Automatic Quality Evaluation for Natural Language Requirements. In Proceedings of the Seventh International Workshop on RE: Foundation for Software Quality (REFSQ’2001, 4–5.Ferrari, A., Spagnolo, G. O., & Gnesi, S. (2017). PURE: A Dataset of Public Requirements Documents. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, September, 502–505. https://doi.org/10.1109/RE.2017.29Gacitua, R., Sawyer, P., & Gervasi, V. (2010). On the Effectiveness of Abstraction Identification in Requirements Engineering. 2010 18th IEEE International Requirements Engineering Conference, 5–14. https://doi.org/10.1109/RE.2010.12García, M. (2018). Using NLP and Information Visualization to analyze app reviews. Universiteit Utrecht.Garzoli, F., Croce, D., Nardini, M., Ciambra, F., & Basili, R. (2013). Robust Requirements Analysis in Complex Systems through Machine Learning. Communications in Computer and Information Science, 379 CCIS, 44–58. https://doi.org/10.1007/978-3-642-45260-4_4Gause, D. C., & Weinberg, G. M. (1989). Context-Free Questions. In Exploring Requirements: Quality before Design (1st ed., pp. 59–65). Dorset House.Gelbukh, A. (2013). Natutal language processing: Perspective of CIC-IPN. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2112–2121. https://doi.org/10.1109/ICACCI.2013.6637507Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation.Ghosh, S., Mukherjee, P., Chakraborty, B., & Bashar, R. (2018). Automated Generation of E-R Diagram from a Given Text in Natural Language. 2018 International Conference on Machine Learning and Data Engineering (ICMLDE), 91–96. https://doi.org/10.1109/iCMLDE.2018.00026Giannakopoulou, D., Pressburger, T., Mavridou, A., & Schumann, J. (2021). Automated formalization of structured natural language requirements. Information and Software Technology, 137, 10–12. https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590Gilvaz, A. P. P., & do Prado Leite, J. C. S. (1995). FAES: a case tool for information acquisition. Proceedings of the International Workshop on Computer-Aided Software Engineering, July 2014, 260–269. https://doi.org/10.1109/case.1995.465307Goldin, L., & Berry, D. (1994). AbstFinder, A Prototype Natural Language Text Abstraction Finder for Use in Requirements Elicitation. Automated Software Engineering, 4. https://doi.org/10.1023/A:1008617922496Gorschek, T., & Wohlin, C. (2006). Requirements abstraction model. Requirements Engineering, 11(1), 79–101. https://doi.org/10.1007/s00766-005-0020-7Grigorious, R., & Symeonidis, A. (2014). Towards the Design of User Friendly Search Engines for Software Projects. In Natural Language Processing and Information Systems (pp. 164–167). Springer, Chan.Hayes, J. H., Dekhtyar, A., & Osborne, J. (2003). Improving requirements tracing via information retrieval. Proceedings. 11th IEEE International Requirements Engineering Conference, 2003., 138–147. https://doi.org/10.1109/ICRE.2003.1232745Honnibal, M., & Montani, I. (2017). {spaCy 2}: Natural language understanding with {B}loom embeddings, convolutional neural networks and incremental parsing.Hunt, J. (1997). The Object Modeling Technique. Smalltalk and Object Orientation, 184–195. https://doi.org/10.1007/978-1-4471-0961-7_19Iqbal, S., Al-Azzoni, I., Allen, G., & Khan, H. U. (2020). Extending UML use case diagrams to represent non-interactive functional requirements. E-Informatica Software Engineering Journal, 14(1), 97–115. https://doi.org/10.37190/E-INF200104Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., & Zettlemoyer, L. (2017). Learning a Neural Semantic Parser from User Feedback. 963–973. https://doi.org/10.18653/v1/P17-1089Jacobson, I., Spence, I., & Kerr, B. (2016). Use-case 2.0: The hub of software development. Queue, 14(1), 94–123. https://doi.org/10.1145/2898442.2912151Janssens, D. (2019). Natural Language Processing in Requirements Elicitation and Analysis: A Systematic Literature Review. Universiteit Utrecht.Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., & Horkoff, J. (2014). An Exploratory Study of Topic Importance in Requirements Elicitation Interviews. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8484 LNCS(October). https://doi.org/10.1007/978-3-319-07881-6Johann, T., Stanik, C., Alizadeh B., A. M., & Maalej, W. (2017). SAFE: A Simple Approach for Feature Extraction from App Descriptions and App Reviews. 2017 IEEE 25th International Requirements Engineering Conference (RE), 21–30. https://doi.org/10.1109/RE.2017.71Jurafsky, D., & Martin, J. (2021). Speech and Language Processing. 3rd. (Draft). Prentice Hall.Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd Edition). Prentice-Hall, Inc.Jureta, I. J., Mylopoulos, J., & Faulkner, S. (2008). Revisiting the core ontology and problem in requirements engineering. Proceedings of the 16th IEEE International Requirements Engineering Conference, RE’08, December, 71–80. https://doi.org/10.1109/RE.2008.13Kaiya, H., Shinbara, D., Kawano, J., & Saeki, M. (2005). Improving the detection of requirements discordances among stakeholders. Requirements Engineering, 10(4), 289–303. https://doi.org/10.1007/s00766-005-0017-2Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. Conference on Empirical Methods in Natural Language Processing (EMNLP), 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic Literature Reviews in Software Engineering - A Systematic Literature Review. Inf. Softw. Technol., 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009Kiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I., Cordy, J. R., Luisa, M., & Mylopoulos, J. (2008). Automating the Extraction of Rights and Obligations for Regulatory Compliance. International Conference on Conceptual Modeling, 5231, 154–168.Knublauch, H., Fergerson, R. W., Noy, N., & Musen, M. A. (2004). The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. SEMWEB.Kof, L. (2004). Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents. Proceedings of the Workshops, 19th International Conference Conference on Automated Software Engineering, 1–11. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5849&rep=rep1&type=pdfKörner, S. J., & Landhäußer, M. (2010). Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation. In Springer-Verlag (Ed.), Proceedings of the Natural language processing and information systems, and 15th international conference on Applications of natural language to information systems (pp. 92–99). http://dl.acm.org/citation.cfm?id=1894525.1894537Krish, S. (2006). An Ontology Based Approach To Automated Domain-Specific SRS Development. National Conference on Recent Advances in Computing. Kücherer, C., & Paech, B. (2018). Task-oriented requirements engineering for personal decision support systems. In S. Hammoudi, M. Śmiałek, O. Camp, & J. Filipe (Eds.), Lecture Notes in Business Information Processing (Vol. 321, pp. 212–238). Springer International Publishing. https://doi.org/10.1007/978-3-319-93375-7_11Laiq, M., & Dieste, O. (2020). Chatbot-based Interview Simulator: A Feasible Approach to Train Novice Requirements Engineers. 2020 10th International Workshop on Requirements Engineering Education and Training (REET), 1–8. https://doi.org/10.1109/REET51203.2020.00007Lapouchnian, A. (2005). Goal-Oriented Requirements Engineering : An Overview of the Current Research. Requirements Engineering, 8(3), 32. https://doi.org/10.1007/s00766-003-0178-9Ledeneva, Y. (2010). Recent Advances in Computational Linguistics Levels of language and areas of computational linguistic research. Informatica, 34, 3–18.Li, M., Yang, Y., Shi, L., Wang, Q., Hu, J., Peng, X., Liao, W., & Pi, G. (2020). Automated Extraction of Requirement Entities by Leveraging LSTM-CRF and Transfer Learning. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), 208–219. https://doi.org/10.1109/ICSME46990.2020.00029Lian, X., Liu, W., & Zhang, L. (2020). Assisting engineers extracting requirements on components from domain documents. Information and Software Technology, 118, 106196. https://doi.org/https://doi.org/10.1016/j.infsof.2019.106196Lim, S., Henriksson, A., & Zdravkovic, J. (2021). Data-Driven Requirements Elicitation: A Systematic Literature Review. SN Computer Science, 2(1), 16. https://doi.org/10.1007/s42979-020-00416-4Maalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016). On the automatic classification of app reviews. Requirements Engineering, 21(3), 311–331. https://doi.org/10.1007/s00766-016-0251-9Madala, K., Piparia, S., Blanco, E., Do, H., & Bryce, R. (2021). Model elements identification using neural networks: a comprehensive study. Requirements Engineering, 26(1), 67–96. https://doi.org/10.1007/s00766-020-00332-2Maiden, N., Lockerbie, J., Zachos, K., Bertolino, A., De Angelis, G., & Lonetti, F. (2014). A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies: An Experience Report BT - Requirements Engineering: Foundation for Software Quality (C. Salinesi & I. van de Weerd (eds.); pp. 239–253). Springer International Publishing.Manago, M., Conruyt, N., & Le Renard, J. (1992). Acquiring descriptive knowledge for classification and identification. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 599 LNAI (pp. 392–405). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_52Manrique, B. (2014). A formalization for mapping discourses from business-based technical documents into controlled language texts for requirements elicitation [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/46419/McZara, J., Sarkani, S., Holzer, T., & Eveleigh, T. (2015). Software requirements prioritization and selection using linguistic tools and constraint solvers—a controlled experiment. Empirical Software Engineering, 20(6), 1721–1761. https://doi.org/10.1007/s10664-014-9334-8Mich, L. (1996). NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Natural Language Engineering, 2, 161–187. https://doi.org/10.1017/S1351324996001337Minock, M. (2005). Where are the ‘killer applications’ of restricted domain question answering. Proceedings of the IJCAI Workshop on Knowledge Reasoning in Question Answering, 4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.5922&rep=rep1&type=pdfMohammadi, N. G., & Heisel, M. (2016). A framework for systematic analysis and modeling of trustworthiness requirements using i* and BPMN. In S. Katsikas, C. Lambrinoudakis, & S. Furnell (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9830 LNCS (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-44341-6_1Moitra, A., Siu, K., Crapo, A. W., Durling, M., Li, M., Manolios, P., Meiners, M., & McMillan, C. (2019). Automating requirements analysis and test case generation. Requirements Engineering, 24(3), 341–364. https://doi.org/10.1007/s00766-019-00316-xMontani, I., & Honnibal, M. (2018). Prodigy: A new annotation tool for radically efficient machine teaching. Artificial Intelligence, to appear.Morales-Ramirez, I., Kifetew, F. M., & Perini, A. (2019). Speech-acts based analysis for requirements discovery from online discussions. Information Systems, 86, 94–112. https://doi.org/https://doi.org/10.1016/j.is.2018.08.003Morales-Ramirez, I., Vergne, M., Morandini, M., Sabatucci, L., Perini, A., & Susi, A. (2012). Where did the requirements come from? A retrospective case study. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. Castano, P. Vassiliadis, L. V Lakshmanan, & M. L. Lee (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7518 LNCS (pp. 185–194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_23Murugesh, S., & Jaya, A. (2021). An integrated approach towards automated software requirements elicitation from unstructured documents. J. Ambient Intell. Humaniz. Comput., 12(3), 3763–3773. https://doi.org/10.1007/s12652-019-01667-7Nath, R. (2007). Object Oriented Design and Modeling. www.ddegjust.ac.in/studymaterial/mca-5/mca-503.pdfNguyen, T. H., Grundy, J., & Almorsy, M. (2015). Rule-Based Extraction of Goal-Use Case Models from Text. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 591–601. https://doi.org/10.1145/2786805.2786876Nwana, H. S., Paton, R. C., Shave, M. J. R., & Bench-Capon, T. J. M. (1992). Domain-driven knowledge modelling: Mediating intermediate representations for knowledge acquisition. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science: Vol. 599 LNAI (pp. 250–263). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_44Ochodek, M., & Nawrocki, J. (2008). Automatic transactions identification in use cases. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5082 LNCS (pp. 55–68). https://doi.org/10.1007/978-3-540-85279-7_5Pacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: a systematic literature review based on the maturity of the techniques. IET Software, 12(4), 365–378.Perepletchikov, M., & Padgham, L. (2005). Use case and actor driven requirements engineering: An evaluation of modifications to prometheus. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Pěchouček, P. Petta, & L. Z. Varga (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 3690 LNAI (pp. 203–212). Springer Berlin Heidelberg. https://doi.org/10.1007/11559221_21Prendergast, M. D. (2021). Automated Extraction and Classification of Slot Machine Requirements from Gaming Regulations. 2021 IEEE International Systems Conference (SysCon), 1–6. https://doi.org/10.1109/SysCon48628.2021.9447144Raharjana, I. K., Siahaan, D., & Fatichah, C. (2019). User Story Extraction from Online News for Software Requirements Elicitation: A Conceptual Model. JCSSE 2019 - 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence, 342–347. https://doi.org/10.1109/JCSSE.2019.8864199Raharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User Stories and Natural Language Processing: A Systematic Literature Review. IEEE Access, 9, 53811–53826. https://doi.org/10.1109/ACCESS.2021.3070606Rajender Kumar Surana, C. S., Shriya, Gupta, Di. B., & Shankar, S. P. (2019). Intelligent Chatbot for Requirements Elicitation and Classification. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019 - Proceedings, 866–870. https://doi.org/10.1109/RTEICT46194.2019.9016907Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Conference on Empirical Methods in Natural Language Processing, 2383–2392. https://doi.org/10.18653/v1/D16-1264Rana, Y., & Tamara, A. (2015). An enhanced requirements elicitation framework based on business process models. Scientific Research and Essays, 10(7), 279–286. https://doi.org/10.5897/sre2014.6138Reddy, A. C. O., & Madhavi, K. (2017). A Survey on Types of Question Answering System. 19(6), 19–23. https://doi.org/10.9790/0661-1906041923Rizk, N. M., Nasr, E. S., & Gheith, M. H. (2019). Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram Evaluation. 2019 15th International Computer Engineering Conference (ICENCO), 222–226. https://doi.org/10.1109/ICENCO48310.2019.9027371Robertson, S., & Robertson, J. (2012). Mastering the requirement process: getting requirements right (Third). Pearson Education.Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M., Haumer, P., Pohl, K., Dubois, E., & Heymans, P. (1998). A proposal for a scenario classification framework. Requirements Engineering, 3(1), 23–47. https://doi.org/10.1007/bf02802919Rolland, C., & Proix, C. (1992). A natural language approach for Requirements Engineering. In P. Loucopoulos (Ed.), Advanced Information Systems Engineering (pp. 257–277). Springer Berlin Heidelberg.Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6–15. https://doi.org/10.1109/TSE.1977.229899Salleh, N. M., & Nohuddin, P. N. E. (2019). Hybrid requirement elicitation techniques with lean six sigma methodology for an enhanced framework. In H. Badioze Zaman, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, N. Mohamad Ali, & M. N. Ahmad (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11870 LNCS (pp. 190–201). Springer International Publishing. https://doi.org/10.1007/978-3-030-34032-2_18Sannier, N., Adedjouma, M., Sabetzadeh, M., & Briand, L. (2017). An automated framework for detection and resolution of cross references in legal texts. Requirements Engineering, 22(2), 215–237. https://doi.org/10.1007/s00766-015-0241-3Shakeri Hossein Abad, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. 2018 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 8–14. https://doi.org/10.1109/AIRE.2018.00007hakeri, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018, July 20). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. IEEE 26th International Requirements Engineering Conference Workshops.Shi, L., Chen, C., Wang, Q., & Boehm, B. W. (2021). Automatically detecting feature requests from development emails by leveraging semantic sequence mining. Requir. Eng., 26(2), 255–271. https://doi.org/10.1007/s00766-020-00344-ySleimi, A., Ceci, M., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2019). A Query System for Extracting Requirements-Related Information from Legal Texts. 2019 IEEE 27th International Requirements Engineering Conference (RE), 319–329. https://doi.org/10.1109/RE.2019.00041Sleimi, A., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2018). Automated Extraction of Semantic Legal Metadata using Natural Language Processing. 2018 IEEE 26th International Requirements Engineering Conference (RE), 124–135. https://doi.org/10.1109/RE.2018.00022Sommerville, I. (2015). Software Engineering (10th ed.). Pearson.Souag, A., Salinesi, C., Mazo, R., & Comyn-Wattiau, I. (2015). A security ontology for security requirements elicitation. In F. Piessens, J. Caballero, & N. Bielova (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8978, pp. 157–177). Springer International Publishing. https://doi.org/10.1007/978-3-319-15618-7_13Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based generation of requirements traceability relations. Journal of Systems and Software, 72(2), 105–127. https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5Sun, P., Yang, X., Zhao, X., & Wang, Z. (2019). An Overview of Named Entity Recognition. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 273–278. https://doi.org/10.1109/IALP.2018.8629225Suryn, W. (2014). Software Engineering: A Practitioner’s Approach. In Software Quality Engineering: A Practitioner’s Approach (Vol. 9781118592). https://doi.org/10.1002/9781118830208Sutcliffe, A., Thew, S., & Jarvis, P. (2011). Experience with user-centred requirements engineering. Requirements Engineering, 16(4), 267–280. https://doi.org/10.1007/s00766-011-0118-zVan Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research Perspective. ICSE ’00 Proceedings of the 22nd International Conference on Software Engineering, 5–19. https://doi.org/10.1145/337180.337184Vlas, R., & Robinson, W. N. (2011). A rule-based natural language technique for requirements discovery and classification in open-source software development projects. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10. https://doi.org/10.1109/HICSS.2011.28Wang, M., & Zeng, Y. (2009). Asking the right questions to elicit product requirements. International Journal of Computer Integrated Manufacturing, 22(4), 283–298. https://doi.org/10.1080/09511920802232902Wieringa, R. J. (2014). Design science methodology: For information systems and software engineering. In Design Science Methodology: For Information Systems and Software Engineering. https://doi.org/10.1007/978-3-662-43839-8Wijers, G. M., & Heijes, H. (1990). Automated support of the modelling process: A view based on experiments with expert information engineers. In R. King (Ed.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 436 LNCS (pp. 88–108). Springer International Publishing. https://doi.org/10.1007/BFb0000588Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. In Experimentation in Software Engineering (Vol. 9783642290442). https://doi.org/10.1007/978-3-642-29044-2Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J. (2020). Break It Down: A Question Understanding Benchmark. Transactions of the Association for Computational Linguistics, 8, 183–198. https://doi.org/10.1162/tacl_a_00309Xu, J. Y., & Wang, Y. (2020). Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive Computing. 2020 IEEE 19th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 187–194. https://doi.org/10.1109/ICCICC50026.2020.9450275Yamanaka, T., Noguchi, H., Yato, S., & Komiya, S. (2010). Proposal of a method to navigate interview-driven software requirements elicitation work. Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering, ACE ’10, December 2010, 125–131.Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738Zapata, Carlos M., Giraldo, G. L., & Mesa, J. E. (2010). Una propuesta de metaontología para la educción de requisitos. Ingeniare, 18(1), 26–37. https://doi.org/10.4067/s0718-33052010000100004Zapata, Carlos Mario, & Carmona, N. (2010). Un Modelo De Dialogo Para Los Requisitos De Software. Dyna, 77(164), 209–219. http://www.scielo.org.co/pdf/dyna/v77n164/a21v77n164.pdf182301&partnerID=40&md5=bb027d0537c4a06b753bbcd1590e41eaZapata, Carlos Mario, Chaverra, J., & Vill, H. (2012). Un caso de estudio para la generación automática de código a partir de esquemas preconceptuales A study case for automatic code generation based on pre-conceptual schemas. Cuaderno ACTIVA, Tecnológico de Antioquia, 4(4), 9–24.Zelle, J. M., & Mooney, R. J. (1996). Learning to Parse Database Queries Using Inductive Logic Programming. Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 1050–1055.Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J. R., & Mylopoulos, J. (2015). GaiusT: supporting the extraction of rights and obligations for regulatory compliance. Requirements Engineering, 20(1), 1–22. https://doi.org/10.1007/s00766-013-0181-8Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E.-V., & Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering: A Systematic Mapping Study. ACM Comput. Surv., 54(3). https://doi.org/10.1145/3444689Zhong, H., Zhang, L., Xie, T., & Mei, H. (2009). Inferring Resource Specifications from Natural Language API Documentation. ASE2009 - 24th IEEE/ACM International Conference on Automated Software Engineering, 307–318. https://doi.org/10.1109/ASE.2009.94A question answering model for eliciting requirements in the context of software developmentMincienciasEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83008/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1128443432.2022.pdf1128443432.2022.pdfTesis Doctorado en Ingeniería - Sistemas e Informáticaapplication/pdf3098728https://repositorio.unal.edu.co/bitstream/unal/83008/2/1128443432.2022.pdfd44ac2b087cc64d905cf4cc716154503MD52THUMBNAIL1128443432.2022.pdf.jpg1128443432.2022.pdf.jpgGenerated Thumbnailimage/jpeg4823https://repositorio.unal.edu.co/bitstream/unal/83008/3/1128443432.2022.pdf.jpg7e4f08f2a9947125b9a771115cd4ce11MD53unal/83008oai:repositorio.unal.edu.co:unal/830082024-08-05 23:10:47.667Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |