Dynamics of the cold solar chromosphere observed with ALMA

ilustraciones, diagramas

Autores:
Ordoñez Araujo, Francisco Javier
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85838
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85838
https://repositorio.unal.edu.co/
Palabra clave:
Shock waves
Wave propagation
Solar chromosphere
Formation height
Solar image alignment
Ondas de choque
Propagación de ondas
Cromosfera solar
Altura de formación
Alineación de imágenes solares
Actividad solar
Astrofísica
Ciencias del espacio
Solar activity
Astrophysics
Space sciences
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_432f279b5a18ecbf7282c31ea8b527ea
oai_identifier_str oai:repositorio.unal.edu.co:unal/85838
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Dynamics of the cold solar chromosphere observed with ALMA
dc.title.translated.spa.fl_str_mv Dinámica de la cromosfera solar fría observada con ALMA
title Dynamics of the cold solar chromosphere observed with ALMA
spellingShingle Dynamics of the cold solar chromosphere observed with ALMA
Shock waves
Wave propagation
Solar chromosphere
Formation height
Solar image alignment
Ondas de choque
Propagación de ondas
Cromosfera solar
Altura de formación
Alineación de imágenes solares
Actividad solar
Astrofísica
Ciencias del espacio
Solar activity
Astrophysics
Space sciences
title_short Dynamics of the cold solar chromosphere observed with ALMA
title_full Dynamics of the cold solar chromosphere observed with ALMA
title_fullStr Dynamics of the cold solar chromosphere observed with ALMA
title_full_unstemmed Dynamics of the cold solar chromosphere observed with ALMA
title_sort Dynamics of the cold solar chromosphere observed with ALMA
dc.creator.fl_str_mv Ordoñez Araujo, Francisco Javier
dc.contributor.advisor.spa.fl_str_mv Calvo Mozo, Benjamín
dc.contributor.author.spa.fl_str_mv Ordoñez Araujo, Francisco Javier
dc.contributor.referee.spa.fl_str_mv Jafarzadeh, Shahin
Pinzon Estrada, Giovanni
Larrañaga, Eduard
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Astronomía, Astrofísica y Cosmología, línea de Astrofísica Solar, GoSA
dc.contributor.supervisor.spa.fl_str_mv Guevara Gómez, Juan Camilo
dc.contributor.orcid.spa.fl_str_mv Ordoñez Araujo, Francisco Javier [https://orcid.org/0000-0002-7329-4877]
dc.contributor.googlescholar.spa.fl_str_mv Francisco Javier Ordonez Araujo [https://scholar.google.com/citations?user=mxqYk8gAAAAJ&hl=en&authuser=1]
dc.subject.proposal.eng.fl_str_mv Shock waves
Wave propagation
Solar chromosphere
Formation height
Solar image alignment
topic Shock waves
Wave propagation
Solar chromosphere
Formation height
Solar image alignment
Ondas de choque
Propagación de ondas
Cromosfera solar
Altura de formación
Alineación de imágenes solares
Actividad solar
Astrofísica
Ciencias del espacio
Solar activity
Astrophysics
Space sciences
dc.subject.proposal.spa.fl_str_mv Ondas de choque
Propagación de ondas
Cromosfera solar
Altura de formación
Alineación de imágenes solares
dc.subject.unesco.spa.fl_str_mv Actividad solar
Astrofísica
Ciencias del espacio
dc.subject.unesco.eng.fl_str_mv Solar activity
Astrophysics
Space sciences
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-02T01:16:53Z
dc.date.available.none.fl_str_mv 2024-04-02T01:16:53Z
dc.date.issued.none.fl_str_mv 2024-04-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85838
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85838
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv D. G. Altman and J. M. Bland. Standard deviations and standard errors. BMJ: British Medical Journal, 331(7521):903, October 15 2005. ISSN 0959-8138. doi: 10.1136/bmj.331. 7521.903.
T. R. Ayres. Thermal bifurcation in the solar outer atmosphere. The Astrophysical Journal, 244:1064, Mar. 1981. ISSN 0004-637X, 1538-4357. doi: 10.1086/158776. URL http: //adsabs.harvard.edu/doi/10.1086/158776.
T. R. Ayres. CO and the Temperature Structure of the Solar Atmosphere. Journal Article, New Eyes to See Inside the Sun and Stars, Jan. 1997. URL https://ui.adsabs.harvard. edu/abs/1997STIN...9914335A. Provided by the SAO/NASA Astrophysics Data System
T. R. Ayres. Carbon Monoxide and the Temperature Structure of the Solar Atmosphere. In F.-L. Deubner, J. Christensen-Dalsgaard, and D. Kurtz, editors, New Eyes to See Inside the Sun and Stars, pages 403–414. Springer Netherlands, Dordrecht, 1998. ISBN 978-0-7923-5076-7 978-94-011-4982-2. doi: 10.1007/978-94-011-4982-2_92. URL https: //ui.adsabs.harvard.edu/abs/1997STIN...9914335A/abstract.
T. R. Ayres. Does the sun have a full-time COmosphere? The Astrophysical Journal, 575 (2):1104–1115, aug 2002. doi: 10.1086/341428. URL https://ui.adsabs.harvard.edu/ abs/1981ApJ...244.1064A/abstract
T. R. Ayres. Resolution of the COmosphere Controversy. In A. A. Pevtsov and H. Uiten- broek, editors, Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST, volume 286 of Astronomical Society of the Pacific Conference Series, page 431, Jan. 2003
T. R. Ayres and D. Rabin. Observations of Solar Carbon Monoxide with an Imaging Infrared Spectrograph. I. Thermal Bifurcation Revisited. ApJ, 460:1042, Apr. 1996. doi: 10.1086/ 177031
Ayres, T. R. and Linsky, J. L. The MG II H and K lines. II. Comparison with synthesized pro- files and CA II K. Final Report National Bureau of Standards, Boulder, CO. Astrophysics Div., Aug. 1975. URL https://ui.adsabs.harvard.edu/abs/1975STIN...7722038A. Provided by the SAO/NASA Astrophysics Data System
J. M. Beckers and P. E. Tallant. Chromospheric Inhomogeneities in Sunspot Umbrae. solphys, 7(3):351–365, June 1969. doi: 10.1007/BF00146140. URL https://ui.adsabs.harvard. edu/abs/1969SoPh....7..351B. Provided by the SAO/NASA Astrophysics Data System
D. Brown, S. Regnier, M. Marsh, and D. Bewsher. Working with data from the Solar Dynamics Observatory. 2010
D. J. Callaghan. Development of a two element correlating radio telescope interferometer. Master of Engineering in Electronic Engineering, Durban University of Technology, Dur- ban, South Africa, 2015. URL http://hdl.handle.net/10321/1386
M. Carlsson and R. Stein. Chromospheric dynamics. In M. Carlsson, editor, Chromospheric Dynamics, page 47. University of Oslo, Oslo, Norway, 1994. ISBN 82-7121-013-0 (converted 978-82-7121-013-7)
M. Carlsson and R. Stein. Astrophys. j. lett. 440:L29, 1995
M. Carlsson and R. F. Stein. Non-LTE Radiating Acoustic Shocks and CA II K2V Bright Points. ApJ, 397:L59, Sept. 1992, 1994, 1997, 2002. doi: 10.1086/186544
P. Cortes, C. Vlahakis, A. Hales, J. Carpenter, B. Dent, S. Kameno, R. Loomis, B. Vila Vi- laro, A. Biggs, A. Miotello, R. Rosen, F. Stoehr, and K. Saini. ALMA Cycle 10 Technical Handbook. Apr. 2023. doi: 10.5281/ZENODO.4511521. URL https://zenodo.org/ record/4511521. Publisher: Zenodo Version Number: Cycle 10; Doc. 10.3; version 1.1
J. M. Da Silva Santos, J. De La Cruz Rodríguez, S. M. White, J. Leenaarts, G. J. M. Vissers, and V. H. Hansteen. ALMA observations of transient heating in a solar active region. Astronomy & Astrophysics, 643:A41, Nov. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202038755. URL https://www.aanda.org/10.1051/0004-6361/202038755
B. De Pontieu, A. M. Title, J. R. Lemen, G. D. Kushner, D. J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J. F. Drake, D. W. Duncan, S. Freeland, G. F. Hey- man, C. Hoffman, N. E. Hurlburt, R. W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C. J. Schrijver, T. D. Tarbell, J.-P. Wülser, C. J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P. N. Cheimets, E. E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W. A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Ec- cles, S. A. Jaeggli, C. C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T. M. D. Pereira, S. Sawyer, J. Strong, S. P. Wor- den, M. Carlsson, V. H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.-C. Chu, R. I. Bush, P. H. Scherrer, P. Brekke, J. Martinez-Sykora, B. W. Lites, S. W. McIn- tosh, H. Uitenbroek, T. J. Okamoto, M. A. Gummin, G. Auker, P. Jerram, P. Pool, and N. Waltham. The Interface Region Imaging Spectrograph (IRIS). Solar Physics, 289(7): 2733–2779, July 2014. ISSN 0038-0938, 1573-093X. doi: 10.1007/s11207-014-0485-y. URL http://link.springer.com/10.1007/s11207-014-0485-y
G. A. Doschek, U. Feldman, and H. E. Mason. EUV limb spectra of a surge observed from Skylab. A&A, 78(3):342–348, Oct. 1979
H. Eklund. Deep solar ALMA neural network estimator for image refinement and estimates of small-scale dynamics. Astronomy & Astrophysics, 669:A106, Jan. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244484. URL https://www.aanda.org/10.1051/ 0004-6361/202244484
H. Eklund, S. Wedemeyer, M. Szydlarski, S. Jafarzadeh, and J. C. Guevara Gómez. The Sun at millimeter wavelengths: II. Small-scale dynamic events in ALMA Band 3. Astronomy & Astrophysics, 644:A152, Dec. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202038250. URL https://www.aanda.org/10.1051/0004-6361/202038250
H. Eklund, S. Wedemeyer, M. Szydlarski, and S. Jafarzadeh. The Sun at millimeter wave- lengths: III. Impact of the spatial resolution on solar ALMA observations. Astronomy & Astrophysics, 656:A68, Dec. 2021. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202140972. URL https://www.aanda.org/10.1051/0004-6361/202140972
B. Fleck and F. Schmitz. The 3-min oscillations of the solar chromosphere - A basic physical effect? aap, 250(1):235–244, Oct. 1991. URL https://ui.adsabs.harvard.edu/abs/ 1991A&A...250..235F. Provided by the SAO/NASA Astrophysics Data System
J. M. Fontenla, E. H. Avrett, and R. Loeser. Energy Balance in the Solar Transition Region. III. Helium Emission in Hydrostatic, Constant-Abundance Models with Diffusion. ApJ, 406:319, Mar. 1993. doi: 10.1086/172443
A. Fossum and M. Carlsson. Response Functions of the Ultraviolet Filters of TRACE and the Detectability of High-Frequency Acoustic Waves. The Astrophysical Journal, 625(1): 556–562, May 2005. ISSN 0004-637X, 1538-4357. doi: 10.1086/429614. URL https: //iopscience.iop.org/article/10.1086/429614
B. Freytag, M. Steffen, and B. Dorch. Spots on the surface of Betelgeuse – Results from new 3D stellar convection models. Astronomische Nachrichten, 323(3-4):213–219, Aug. 2002. ISSN 00046337, 15213994. doi: 10.1002/1521-3994(200208)323:3/4<213:: AID-ASNA213>3.0.CO;2-H. URL https://onlinelibrary.wiley.com/doi/10.1002/ 1521-3994(200208)323:3/4<213::AID-ASNA213>3.0.CO;2-H
F. Galton. Typical laws of heredity. Nature, pages 1–4, Apr. 1877. doi: https://doi.org/10. 1038/015492a0. URL https://www.nature.com/articles/015492a0
M. Grubecka, B. Schmieder, A. Berlicki, P. Heinzel, K. Dalmasse, and P. Mein. Height formation of bright points observed by IRIS in Mg II line wings during flux emergence. Astronomy & Astrophysics, 593:A32, Sept. 2016. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/201527358. URL http://www.aanda.org/10.1051/0004-6361/201527358
B. V. Gudiksen, M. Carlsson, V. H. Hansteen, W. Hayek, J. Leenaarts, and J. Martínez- Sykora. The stellar atmosphere simulation code Bifrost. Code description and validation. A&A, 531:A154, July 2011. doi: 10.1051/0004-6361/201116520
J. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, and M. Szydlarski. Propagation of trans- verse waves in the solar chromosphere probed at different heights with ALMA sub-bands. Astronomy & Astrophysics, 665:L2, Sept. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202244387. URL https://www.aanda.org/10.1051/0004-6361/202244387
J. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, S. D. T. Grant, H. Eklund, and M. Szyd- larski. The Sun at millimeter wavelengths: IV. Magnetohydrodynamic waves in small- scale bright features. Astronomy & Astrophysics, 671:A69, Mar. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244228. URL https://www.aanda.org/10.1051/ 0004-6361/202244228
J. B. Gurman. Sunspot umbral oscillations in Mg ii k. solphys, 108(1):61–75, Mar. 1987. doi: 10.1007/BF00152077. URL https://ui.adsabs.harvard.edu/abs/1987SoPh..108... 61G. Provided by the SAO/NASA Astrophysics Data System
Y. He, T. Hu, and D. Zeng. Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm for Complicated Regions, June 2019. URL http://arxiv.org/abs/ 1906.03366. arXiv:1906.03366 [cs]
V. M. J. Henriques, S. Jafarzadeh, J. C. Guevara Gómez, H. Eklund, S. Wedemeyer, M. Szydlarski, S. V. H. Haugan, and A. Mohan. The Solar ALMA Science Archive (SALSA): First release, SALAT, and FITS header standard. Astronomy & Astrophysics, 659:A31, Mar. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202142291. URL https://www.aanda.org/10.1051/0004-6361/202142291
Y. D. Hezaveh, N. Dalal, D. P. Marrone, Y.-Y. Mao, W. Morningstar, D. Wen, R. D. Blandford, J. E. Carlstrom, C. D. Fassnacht, G. P. Holder, A. Kemball, P. J. Marshall, N. Murray, L. Perreault Levasseur, J. D. Vieira, and R. H. Wechsler. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. ApJ, 823(1):37, May 2016. doi: 10.3847/0004-637X/823/1/37
S. Jafarzadeh, J. C. G. Gomez, S. Wedemeyer, and S. Aannerud. Solaralma/salat: v1.0, Sept. 2021a. URL https://doi.org/10.5281/zenodo.5466873
S. Jafarzadeh, S. Wedemeyer, B. Fleck, M. Stangalini, D. B. Jess, R. J. Morton, M. Szyd- larski, V. M. J. Henriques, X. Zhu, T. Wiegelmann, J. C. Guevara Gómez, S. D. T. Grant, B. Chen, K. Reardon, and S. M. White. An overall view of temperature oscil- lations in the solar chromosphere with ALMA. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2190):rsta.2020.0174, 20200174, Feb. 2021b. ISSN 1364-503X, 1471-2962. doi: 10.1098/rsta.2020.0174. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0174
H. Karttunen, P. Kröger, H. Oja, M. Poutanen, and K. Donner. Fundamental Astronomy. Springer, 2017. ISBN 978-3-662-53045-0
E. P. Kontar, I. G. Hannah, and A. L. MacKinnon. Chromospheric magnetic field and density structure measurementsusing hard X-rays in a flaring coronal loop. Astronomy & Astrophysics, 489(3):L57–L60, Oct. 2008. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361:200810719. URL http://www.aanda.org/10.1051/0004-6361:200810719.
J. Leenaarts and S. Wedemeyer-Böhm. Time-dependent hydrogen ionisation in 3D simula- tions of the solar chromosphere. Methods and first results. A&A, 460(1):301–307, Dec. 2006. doi: 10.1051/0004-6361:20066123
J. Leenaarts, T. M. D. Pereira, M. Carlsson, H. Uitenbroek, and B. De Pontieu. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h&k LINES IN THE SOLAR ATMOSPHERE. The Astrophysical Journal, 772(2):90, July 2013. ISSN 0004-637X, 1538-4357. doi: 10.1088/0004-637X/772/2/90. URL https: //iopscience.iop.org/article/10.1088/0004-637X/772/2/90
R. B. Leighton, R. W. Noyes, and G. W. Simon. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. apj, 135:474, Mar. 1962. doi: 10.1086/147285. URL https: //ui.adsabs.harvard.edu/abs/1962ApJ...135..474L. Provided by the SAO/NASA Astrophysics Data System
E. Lellouch, R. Moreno, T. Müller, S. Fornasier, P. Santos-Sanz, A. Moullet, M. Gurwell, J. Stansberry, R. Leiva, B. Sicardy, B. Butler, and J. Boissier. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observa- tions. A&A, 608:A45, Dec. 2017. doi: 10.1051/0004-6361/201731676
J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):17–40, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9776-8. URL https://link.springer.com/10.1007/ s11207-011-9776-8
M. Loukitcheva, S. K. Solanki, M. Carlsson, and S. M. White. Millimeter radiation from a 3D model of the solar atmosphere: I. Diagnosing chromospheric thermal structure. Astronomy & Astrophysics, 575:A15, Mar. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201425238. URL http://www.aanda.org/10.1051/0004-6361/201425238
J. M. Marr, R. L. Snell, and S. Kurtz. Fundamentals of radio astronomy: observational methods. Series in astronomy and astrophysics. CRC Press, Taylor & Francis Group, Boca Raton, 2016. ISBN 978-1-4200-7676-9. OCLC: ocn932380297
Noyes, Robert W, Hall, and Donald N. B. Thermal Oscillations in the High Solar Photo- sphere. The Astrophysical Journal, 176:L89, Sept. 1972. ISSN 0004-637X, 1538-4357. doi: 10.1086/181027. URL http://adsabs.harvard.edu/doi/10.1086/181027
F. J. Ordoñez Araujo, J. C. Guevara Gómez, and B. Calvo Mozo. Alignment-of-iris-alma-and-sdo-images. https://github.com/JavierOrdonezA/ Alignment-of-IRIS-ALMA-and-SDO-images.git, Apr. 2023. Accessed on April 13th, 2023
S. Patsourakos, C. E. Alissandrakis, A. Nindos, and T. S. Bastian. Observations of solar chromospheric oscillations at 3 mm with ALMA. Astronomy & Astrophysics, 634:A86, Feb. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201936618. URL https: //www.aanda.org/10.1051/0004-6361/201936618
T. M. D. Pereira and H. Uitenbroek. RH 1.5D: a massively parallel code for multi-level ra- diative transfer with partial frequency redistribution and Zeeman polarisation. Astronomy & Astrophysics, 574:A3, Feb. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201424785. URL http://www.aanda.org/10.1051/0004-6361/201424785.
T. M. D. Pereira, J. Leenaarts, B. De Pontieu, M. Carlsson, and H. Uitenbroek. The formation ofirisdiagnostics. iii. near-ultraviolet spectra and images. The Astrophysical Journal, 778(2):143, Nov. 2013. ISSN 1538-4357. doi: 10.1088/0004-637x/778/2/143. URL http://dx.doi.org/10.1088/0004-637X/778/2/143.
W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):3–15, Jan. 2012. ISSN 0038-0938, 1573-093X. doi: 10.1007/ s11207-011-9841-3. URL http://link.springer.com/10.1007/s11207-011-9841-3.
L. M. Pérez, J. M. Carpenter, S. M. Andrews, L. Ricci, A. Isella, H. Linz, A. I. Sargent, D. J. Wilner, T. Henning, A. T. Deller, C. J. Chandler, C. P. Dullemond, J. Lazio, K. M. Menten, S. A. Corder, S. Storm, L. Testi, M. Tazzari, W. Kwon, N. Calvet, J. S. Greaves, R. J. Harris, and L. G. Mundy. Spiral density waves in a young protoplanetary disk. Science, 353(6307):1519–1521, Sept. 2016. ISSN 1095-9203. doi: 10.1126/science.aaf8296. URL http://dx.doi.org/10.1126/science.aaf8296.
K. P. Reardon, H. Uitenbroek, and G. Cauzzi. The solar chromosphere at high resolution with IBIS. III. Comparison of Ca II K and Ca II 854.2 nm imaging. aap, 500(3):1239–1247, June 2009. doi: 10.1051/0004-6361/200811223. URL https://ui.adsabs.harvard.edu/ abs/2009A&A...500.1239R. Provided by the SAO/NASA Astrophysics Data System.
C. S. Rosenthal, T. J. Bogdan, M. Carlsson, S. B. F. Dorch, V. Hansteen, S. W. McIntosh, A. McMurry, Nordlund, and R. F. Stein. Waves in the magnetized solar atmosphere. i. basic processes and internetwork oscillations. The Astrophysical Journal, 564(1):508, jan 2002. doi: 10.1086/324214. URL https://dx.doi.org/10.1086/324214.
R. J. Rutten. RADIATIVE TRANSFER IN STELLAR ATMOSPHERES. May .
R. J. Rutten and H. Uitenbroek. Ca uc(ii) H2v and K2v cell grains. Sol. Phys., 134(1):15–71, July 1991. doi: 10.1007/BF00148739.
P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tom- czyk. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):207–227, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9834-2. URL http://link.springer.com/10.1007/ s11207-011-9834-2
N. Scoville, K. Sheth, H. Aussel, P. V. Bout, P. Capak, A. Bongiorno, C. M. Casey, L. Murchikova, J. Koda, J. Álvarez Márquez, N. Lee, C. Laigle, H. J. McCracken, O. Il- bert, A. Pope, D. Sanders, J. Chu, S. Toft, R. J. Ivison, and S. Manohar. Ism masses and the star formation law at z = 1 to 6: Alma observations of dust continuum in 145 galaxies in the cosmos survey field. The Astrophysical Journal, 820(2):83, mar 2016. doi: 10.3847/ 0004-637X/820/2/83. URL https://dx.doi.org/10.3847/0004-637X/820/2/83
B. Singh, K. Sharma, and A. K. Srivastava. On modelling the kinematics and evolution- ary properties of pressure-pulse-driven impulsive solar jets. Annales Geophysicae, 37(5): 891–902, 2019. doi: 10.5194/angeo-37-891-2019. URL https://angeo.copernicus.org/ articles/37/891/2019/
Sitnik G. F. and Pande M. Ch. Two Decay Processes for CO Molecules in the Solar Photo- sphere. azh, 44:732, Jan. 1967. URL https://ui.adsabs.harvard.edu/abs/1967AZh. ...44..732S. Provided by the SAO/NASA Astrophysics Data System
R. Skartlien, R. F. Stein, and Nordlund. Excitation of chromospheric wave transients by collapsing granules. The Astrophysical Journal, 541(1):468, sep 2000. doi: 10.1086/309414. URL https://dx.doi.org/10.1086/309414
Solanki S. K, Livingston W, and Ayres T.R. New Light on the Heart of Darkness of the Solar Chromosphere. Science, 263(5143):64–66, Jan. 1994. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.263.5143.64. URL https://www.science.org/doi/10.1126/science. 263.5143.64.
P. Song. A model of the solar chromosphere: Structure and internal circulation. The Astrophysical Journal, 846(2):92, sep 2017. doi: 10.3847/1538-4357/aa85e1. URL https: //doi.org/10.3847/1538-4357/aa85e1
V. Starovoitov, E. E.E., and I. K.T. Comparative analysis of the ssim index and the pear- son coefficient as a criterion for image similarity. Eurasian Journal of Mathematical and Computer Applications, 8:76–90, 01 2020. doi: 10.32523/2306-6172-2020-8-1-76-90
Thompson and Michael J. Helioseismology and the Sun’s interior. Astronomy & Geophysics, 45(4):4.21–4.25, 08 2004. ISSN 1366-8781. doi: 10.1046/j.1468-4004.2003.45421.x. URL https://doi.org/10.1046/j.1468-4004.2003.45421.x
A. R. Thompson, G. B. Taylor, C. L. Carilli, and R. A. Perley. Synthesis Imaging in Radio Astronomy II, volume 180 of ASP Conference Series, pages 1–165. Astronomical Society of the Pacific, 1999. Lecture 2: Fundamentals of Radio Interferometry
H. Uitenbroek. The co fundamental vibration-rotation lines in the solar spectrum. ii. non-lte transfer modeling in static and dynamic atmospheres. The Astrophysical Journal, 536(1): 481, jun 2000. doi: 10.1086/308933. URL https://dx.doi.org/10.1086/308933
H. Uitenbroek. Multilevel Radiative Transfer with Partial Frequency Redistribution. ApJ, 557(1):389–398, Aug. 2001. doi: 10.1086/321659
R. K. Ulrich. The Five-Minute Oscillations on the Solar Surface. apj, 162:993, Dec. 1970. doi: 10.1086/150731. URL https://ui.adsabs.harvard.edu/abs/1970ApJ...162..993U. Provided by the SAO/NASA Astrophysics Data System.
J. E. Vernazza. STRUCTURE OF THE SOLAR CHROMOSPHERE. I. BASIC COMPU- TATIONS AND SUMMARY OF THE RESULTS. ApJ. . ., 184(2), 1973.
J. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region. The Astrophysical Journal Supplement Series, 30:1, Jan. 1976. ISSN 0067-0049, 1538-4365. doi: 10.1086/190356. URL http://adsabs.harvard.edu/doi/10.1086/190356.
J. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. III - Models of the EUV brightness components of the quiet-sun. The Astrophysical Journal Supplement Series, 45:635, Apr. 1981. ISSN 0067-0049, 1538-4365. doi: 10.1086/190731. URL http://adsabs.harvard.edu/doi/10.1086/190731.
Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600–612, Apr. 2004. ISSN 1057-7149. doi: 10.1109/TIP.2003.819861. URL http://ieeexplore. ieee.org/document/1284395/.
S. Wedemeyer, B. Freytag, M. Steffen, H.-G. Ludwig, and H. Holweger. Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. Astronomy & Astrophysics, 414(3):1121–1137, Feb. 2004. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20031682. URL http://www.aanda.org/10.1051/0004-6361: 20031682.
S. Wedemeyer, B. Fleck, M. Battaglia, N. Labrosse, G. Fleishman, H. Hudson, P. An- tolin, C. Alissandrakis, T. Ayres, J. Ballester, T. Bastian, J. Black, A. Benz, R. Bra- jsa, M. Carlsson, J. Costa, B. DePontieu, G. Doyle, G. Gimenez de Castro, S. Gunár, G. Harper, S. Jafarzadeh, M. Loukitcheva, V. Nakariakov, R. Oliver, B. Schmieder, C. Selhorst, M. Shimojo, P. Simões, R. Soler, M. Temmer, S. Tiwari, T. Van Doors- selaere, A. Veronig, S. White, P. Yagoubov, and T. Zaqarashvili. ALMA Observations of the Sun in Cycle 4 and Beyond. arXiv e-prints, art. arXiv:1601.00587, Jan. 2016a. URL https://ui.adsabs.harvard.edu/abs/2016arXiv160100587W. Provided by the SAO/NASA Astrophysics Data System.
S. Wedemeyer, T. Bastian, R. Brajša, H. Hudson, G. Fleishman, M. Loukitcheva, B. Fleck, E. P. Kontar, B. De Pontieu, P. Yagoubov, S. K. Tiwari, R. Soler, J. H. Black, P. Antolin, E. Scullion, S. Gunár, N. Labrosse, H.-G. Ludwig, A. O. Benz, S. M. White, P. Hauschildt, J. G. Doyle, V. M. Nakariakov, T. Ayres, P. Heinzel, M. Karlicky, T. Van Doorsselaere, D. Gary, C. E. Alissandrakis, A. Nindos, S. K. Solanki, L. Rouppe van der Voort, M. Shi- mojo, Y. Kato, T. Zaqarashvili, E. Perez, C. L. Selhorst, and M. Barta. Solar Science with the Atacama Large Millimeter/Submillimeter Array—A New View of Our Sun. Space Science Reviews, 200(1-4):1–73, Apr. 2016b. ISSN 0038-6308, 1572-9672. doi: 10.1007/ s11214-015-0229-9. URL http://link.springer.com/10.1007/s11214-015-0229-9.
S. Wedemeyer, M. Szydlarski, S. Jafarzadeh, H. Eklund, J. C. Guevara Gomez, T. Bastian, B. Fleck, J. de la Cruz Rodriguez, A. Rodger, and M. Carlsson. The Sun at millimeter wavelengths: I. Introduction to ALMA Band 3 observations. Astronomy & Astrophysics, 635:A71, Mar. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201937122. URL https://www.aanda.org/10.1051/0004-6361/201937122.
S. Wedemeyer, G. Fleishman, J. de la Cruz Rodríguez, S. Gunár, J. M. da Silva Santos, P. Antolin, J. C. Guevara Gómez, M. Szydlarski, and H. Eklund. Prospects and challenges of numerical modeling of the sun at millimeter wavelengths. Frontiers in Astronomy and Space Sciences, 9, 2022. ISSN 2296-987X. doi: 10.3389/fspas.2022.967878. URL https://www.frontiersin.org/articles/10.3389/fspas.2022.967878.
S. Wedemeyer-Böhm, H. G. Ludwig, M. Steffen, J. Leenaarts, and B. Freytag. Inter-network regions of the Sun at millimetre wavelengths. Astronomy & Astrophysics, 471(3):977– 991, Sept. 2007. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20077588. URL http://www.aanda.org/10.1051/0004-6361:20077588.
A. Wootten and A. R. Thompson. The Atacama Large Millimeter/submillimeter Array. Proceedings of the IEEE, 97(8):1463–1471, Aug. 2009. ISSN 0018-9219, 1558-2256. doi: 10. 1109/JPROC.2009.2020572. URL http://arxiv.org/abs/0904.3739. arXiv:0904.3739 [astro-ph].
X. Zhou and H. Liang. The relationship between the 5-min oscillation and 3-min oscil- lations at the umbral/penumbral sunspot boundary. apss, 362(3):46, Mar. 2017. doi: 10.1007/s10509-016-3000-0. URL https://ui.adsabs.harvard.edu/abs/2017Ap&SS. 362...46Z. Provided by the SAO/NASA Astrophysics Data System
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiv, 79 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85838/4/franciscoordonezaraujo.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85838/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85838/6/franciscoordonezaraujo.2024.pdf.jpg
bitstream.checksum.fl_str_mv 911e9211abda2589a1b9bf8b393fc0d9
eb34b1cf90b7e1103fc9dfd26be24b4a
1d6858ae4fbc4684c9b37c4f406b5379
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885943885430784
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calvo Mozo, Benjamínbddc9d59240df52d624f2ac364ea0804Ordoñez Araujo, Francisco Javier0cde03c608edd6467d8bec99ab895137600Jafarzadeh, ShahinPinzon Estrada, GiovanniLarrañaga, EduardGrupo de Astronomía, Astrofísica y Cosmología, línea de Astrofísica Solar, GoSAGuevara Gómez, Juan CamiloOrdoñez Araujo, Francisco Javier [https://orcid.org/0000-0002-7329-4877]Francisco Javier Ordonez Araujo [https://scholar.google.com/citations?user=mxqYk8gAAAAJ&hl=en&authuser=1]2024-04-02T01:16:53Z2024-04-02T01:16:53Z2024-04-01https://repositorio.unal.edu.co/handle/unal/85838Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasIn this thesis, a dynamic study of cold regions of the solar chromosphere observed by the Atacama Large Millimeter/submillimeter Array (ALMA) in band 3 is presented. The analysis integrates data from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), focusing specifically on the quiet sun region D06 from the Solar ALMA Science Archive (SALSA) database. In the data processing before the study carried out in the thesis, an alignment method was developed based on the helioprojective coordinates of the SDO, using the Pearson Correlation Coefficient and the Structural Similarity Index to estimate images correlation. The analysis revealed that the cold structures detected in ALMA band 3 are mainly located in internetwork areas, which are characterized by having a weak vertical magnetic field. A total of 44 cold events in ALMA were identified. Through the use of time-distance diagrams in a 6×6 arcsec window, periodic increases and decreases in the temperature were observed. This fluctuation pattern was also observed in IRIS 2796 Å and AIA 1600 Å time-distance diagrams. In these observations, the IRIS 2796 Å and ALMA band 3 data exhibited temporal delays of 20.4 and 100.2 seconds compared to AIA 1600 Å. This suggests the propagation of shock waves from the upper convective zone to chromospheric heights. Using a shock wave speed of 8.0 ± 1.0 km/s and a formation height of 430 ± 185 km for AIA 1600 Å, formation heights of 597 ± 194 km, 1231 ± 230 km for IRIS 2796 Å and ALMA band 3 were estimated. These results are in accordance with formation heights estimated in 3D simulations. Additionally, the distribution of pixels within the cold events corroborated that they are mainly confined to internetwork regions, with typical sizes close to photospheric granulations, suggesting a relationship between the generation of shock waves in intergranular regions and their propagation to upper layers. The distribution of the lifetimes of the events indicated that shock waves pass through the chromosphere approximately every 3 minutes. On the other hand, by measuring the displacement of the center of mass between consecutive frames, we estimated the speed of dark features. Our analysis revealed that the speed distribution peaked at 8.5 km/s, with an average speed of 21 km/s. These speed values were observed in simulations of the propagation of shock waves at chromospheric heights, reinforcing the hypothesis that indeed the dark regions are post-shock regions. This study not only contributes to the understanding of the thermal dynamics of the solar chromosphere but also provides valuable information for future research and the refinement of numerical models in solar astrophysics. However, more detailed statistical analyses are required for a deeper understanding.En esta tesis, se presenta un estudio dinámico de las regiones frías de la cromosfera solar observadas por el Atacama Large Millimeter/submillimeter Array (ALMA) en la banda 3. El análisis integra datos del Solar Dynamics Observatory (SDO) y del Interface Region Imaging Spectrograph (IRIS), enfocándose específicamente en la región del sol tranquilo D06 del Solar ALMA Science Archive (SALSA). En el procesamiento de datos antes del estudio realizado en la tesis, se desarrolló un método de alineación basado en las coordenadas helioproyectivas del SDO, utilizando el Coeficiente de Correlación de Pearson y el Índice de Similitud Estructural para estimar la correlación de las imágenes. El análisis reveló que las estructuras frías detectadas en la banda 3 de ALMA están principalmente ubicadas en áreas de internetwork, las cuales se caracterizan por tener un campo magnético vertical débil. Se identificaron un total de 44 eventos fríos en ALMA. Mediante el uso de diagramas de tiempo-distancia en una ventana de 6×6 arcsec, se observaron aumentos y disminuciones periódicas en la temperatura. Este patrón de fluctuación también se observó en los diagramas de tiempo-distancia de IRIS 2796 Å y AIA 1600 Å. En estas observaciones, los datos de IRIS 2796 Å y ALMA banda 3 exhibieron retrasos temporales de 20.4 y 100.2 segundos comparados con AIA 1600 Å. Esto sugiere la propagación de ondas de choque desde la zona convectiva superior hacia alturas cromosféricas. Utilizando una velocidad de onda de choque de 8.0 ± 1.0 km/s y una altura de formación de 430 ± 185 km para AIA 1600 Å, se estimaron alturas de formación de 597 ± 194 km, 1231 ± 230 km para IRIS 2796 Å y ALMA banda 3. Estos resultados están en acuerdo con las alturas de formación estimadas en simulaciones 3D. Adicionalmente, la distribución de píxeles dentro de los eventos fríos corroboró que están principalmente confinados a regiones de internetwork, con tamaños típicos cercanos a las granulaciones fotosféricas, sugiriendo una relación entre la generación de ondas de choque en regiones intergranulares y su propagación a capas superiores. La distribución de las duraciones de los eventos indicó que las ondas de choque pasan por la cromosfera aproximadamente cada 3 minutos. Por otro lado, al medir el desplazamiento del centro de masa entre cuadros consecutivos, estimamos la velocidad de las características oscuras. Nuestro análisis reveló que la distribución de la velocidad alcanzó un pico de 8.5 km/s, con una velocidad promedio de 21 km/s. Estos valores de velocidad se observaron en simulaciones de la propagación de ondas de choque en alturas cromosféricas, reforzando la hipótesis de que, de hecho, las regiones oscuras son regiones post-choque. Este estudio no solo contribuye a la comprensión de la dinámica térmica de la cromosfera solar, sino que también proporciona información valiosa para investigaciones futuras y el refinamiento de modelos numéricos en astrofísica solar. Sin embargo, se requieren análisis estadísticos más detallados para una comprensión más profunda. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - AstronomíaFísica solarxxiv, 79 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáDynamics of the cold solar chromosphere observed with ALMADinámica de la cromosfera solar fría observada con ALMATrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMD. G. Altman and J. M. Bland. Standard deviations and standard errors. BMJ: British Medical Journal, 331(7521):903, October 15 2005. ISSN 0959-8138. doi: 10.1136/bmj.331. 7521.903.T. R. Ayres. Thermal bifurcation in the solar outer atmosphere. The Astrophysical Journal, 244:1064, Mar. 1981. ISSN 0004-637X, 1538-4357. doi: 10.1086/158776. URL http: //adsabs.harvard.edu/doi/10.1086/158776.T. R. Ayres. CO and the Temperature Structure of the Solar Atmosphere. Journal Article, New Eyes to See Inside the Sun and Stars, Jan. 1997. URL https://ui.adsabs.harvard. edu/abs/1997STIN...9914335A. Provided by the SAO/NASA Astrophysics Data SystemT. R. Ayres. Carbon Monoxide and the Temperature Structure of the Solar Atmosphere. In F.-L. Deubner, J. Christensen-Dalsgaard, and D. Kurtz, editors, New Eyes to See Inside the Sun and Stars, pages 403–414. Springer Netherlands, Dordrecht, 1998. ISBN 978-0-7923-5076-7 978-94-011-4982-2. doi: 10.1007/978-94-011-4982-2_92. URL https: //ui.adsabs.harvard.edu/abs/1997STIN...9914335A/abstract.T. R. Ayres. Does the sun have a full-time COmosphere? The Astrophysical Journal, 575 (2):1104–1115, aug 2002. doi: 10.1086/341428. URL https://ui.adsabs.harvard.edu/ abs/1981ApJ...244.1064A/abstractT. R. Ayres. Resolution of the COmosphere Controversy. In A. A. Pevtsov and H. Uiten- broek, editors, Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST, volume 286 of Astronomical Society of the Pacific Conference Series, page 431, Jan. 2003T. R. Ayres and D. Rabin. Observations of Solar Carbon Monoxide with an Imaging Infrared Spectrograph. I. Thermal Bifurcation Revisited. ApJ, 460:1042, Apr. 1996. doi: 10.1086/ 177031Ayres, T. R. and Linsky, J. L. The MG II H and K lines. II. Comparison with synthesized pro- files and CA II K. Final Report National Bureau of Standards, Boulder, CO. Astrophysics Div., Aug. 1975. URL https://ui.adsabs.harvard.edu/abs/1975STIN...7722038A. Provided by the SAO/NASA Astrophysics Data SystemJ. M. Beckers and P. E. Tallant. Chromospheric Inhomogeneities in Sunspot Umbrae. solphys, 7(3):351–365, June 1969. doi: 10.1007/BF00146140. URL https://ui.adsabs.harvard. edu/abs/1969SoPh....7..351B. Provided by the SAO/NASA Astrophysics Data SystemD. Brown, S. Regnier, M. Marsh, and D. Bewsher. Working with data from the Solar Dynamics Observatory. 2010D. J. Callaghan. Development of a two element correlating radio telescope interferometer. Master of Engineering in Electronic Engineering, Durban University of Technology, Dur- ban, South Africa, 2015. URL http://hdl.handle.net/10321/1386M. Carlsson and R. Stein. Chromospheric dynamics. In M. Carlsson, editor, Chromospheric Dynamics, page 47. University of Oslo, Oslo, Norway, 1994. ISBN 82-7121-013-0 (converted 978-82-7121-013-7)M. Carlsson and R. Stein. Astrophys. j. lett. 440:L29, 1995M. Carlsson and R. F. Stein. Non-LTE Radiating Acoustic Shocks and CA II K2V Bright Points. ApJ, 397:L59, Sept. 1992, 1994, 1997, 2002. doi: 10.1086/186544P. Cortes, C. Vlahakis, A. Hales, J. Carpenter, B. Dent, S. Kameno, R. Loomis, B. Vila Vi- laro, A. Biggs, A. Miotello, R. Rosen, F. Stoehr, and K. Saini. ALMA Cycle 10 Technical Handbook. Apr. 2023. doi: 10.5281/ZENODO.4511521. URL https://zenodo.org/ record/4511521. Publisher: Zenodo Version Number: Cycle 10; Doc. 10.3; version 1.1J. M. Da Silva Santos, J. De La Cruz Rodríguez, S. M. White, J. Leenaarts, G. J. M. Vissers, and V. H. Hansteen. ALMA observations of transient heating in a solar active region. Astronomy & Astrophysics, 643:A41, Nov. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202038755. URL https://www.aanda.org/10.1051/0004-6361/202038755B. De Pontieu, A. M. Title, J. R. Lemen, G. D. Kushner, D. J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J. F. Drake, D. W. Duncan, S. Freeland, G. F. Hey- man, C. Hoffman, N. E. Hurlburt, R. W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C. J. Schrijver, T. D. Tarbell, J.-P. Wülser, C. J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P. N. Cheimets, E. E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W. A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Ec- cles, S. A. Jaeggli, C. C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T. M. D. Pereira, S. Sawyer, J. Strong, S. P. Wor- den, M. Carlsson, V. H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.-C. Chu, R. I. Bush, P. H. Scherrer, P. Brekke, J. Martinez-Sykora, B. W. Lites, S. W. McIn- tosh, H. Uitenbroek, T. J. Okamoto, M. A. Gummin, G. Auker, P. Jerram, P. Pool, and N. Waltham. The Interface Region Imaging Spectrograph (IRIS). Solar Physics, 289(7): 2733–2779, July 2014. ISSN 0038-0938, 1573-093X. doi: 10.1007/s11207-014-0485-y. URL http://link.springer.com/10.1007/s11207-014-0485-yG. A. Doschek, U. Feldman, and H. E. Mason. EUV limb spectra of a surge observed from Skylab. A&A, 78(3):342–348, Oct. 1979H. Eklund. Deep solar ALMA neural network estimator for image refinement and estimates of small-scale dynamics. Astronomy & Astrophysics, 669:A106, Jan. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244484. URL https://www.aanda.org/10.1051/ 0004-6361/202244484H. Eklund, S. Wedemeyer, M. Szydlarski, S. Jafarzadeh, and J. C. Guevara Gómez. The Sun at millimeter wavelengths: II. Small-scale dynamic events in ALMA Band 3. Astronomy & Astrophysics, 644:A152, Dec. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202038250. URL https://www.aanda.org/10.1051/0004-6361/202038250H. Eklund, S. Wedemeyer, M. Szydlarski, and S. Jafarzadeh. The Sun at millimeter wave- lengths: III. Impact of the spatial resolution on solar ALMA observations. Astronomy & Astrophysics, 656:A68, Dec. 2021. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202140972. URL https://www.aanda.org/10.1051/0004-6361/202140972B. Fleck and F. Schmitz. The 3-min oscillations of the solar chromosphere - A basic physical effect? aap, 250(1):235–244, Oct. 1991. URL https://ui.adsabs.harvard.edu/abs/ 1991A&A...250..235F. Provided by the SAO/NASA Astrophysics Data SystemJ. M. Fontenla, E. H. Avrett, and R. Loeser. Energy Balance in the Solar Transition Region. III. Helium Emission in Hydrostatic, Constant-Abundance Models with Diffusion. ApJ, 406:319, Mar. 1993. doi: 10.1086/172443A. Fossum and M. Carlsson. Response Functions of the Ultraviolet Filters of TRACE and the Detectability of High-Frequency Acoustic Waves. The Astrophysical Journal, 625(1): 556–562, May 2005. ISSN 0004-637X, 1538-4357. doi: 10.1086/429614. URL https: //iopscience.iop.org/article/10.1086/429614B. Freytag, M. Steffen, and B. Dorch. Spots on the surface of Betelgeuse – Results from new 3D stellar convection models. Astronomische Nachrichten, 323(3-4):213–219, Aug. 2002. ISSN 00046337, 15213994. doi: 10.1002/1521-3994(200208)323:3/4<213:: AID-ASNA213>3.0.CO;2-H. URL https://onlinelibrary.wiley.com/doi/10.1002/ 1521-3994(200208)323:3/4<213::AID-ASNA213>3.0.CO;2-HF. Galton. Typical laws of heredity. Nature, pages 1–4, Apr. 1877. doi: https://doi.org/10. 1038/015492a0. URL https://www.nature.com/articles/015492a0M. Grubecka, B. Schmieder, A. Berlicki, P. Heinzel, K. Dalmasse, and P. Mein. Height formation of bright points observed by IRIS in Mg II line wings during flux emergence. Astronomy & Astrophysics, 593:A32, Sept. 2016. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/201527358. URL http://www.aanda.org/10.1051/0004-6361/201527358B. V. Gudiksen, M. Carlsson, V. H. Hansteen, W. Hayek, J. Leenaarts, and J. Martínez- Sykora. The stellar atmosphere simulation code Bifrost. Code description and validation. A&A, 531:A154, July 2011. doi: 10.1051/0004-6361/201116520J. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, and M. Szydlarski. Propagation of trans- verse waves in the solar chromosphere probed at different heights with ALMA sub-bands. Astronomy & Astrophysics, 665:L2, Sept. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202244387. URL https://www.aanda.org/10.1051/0004-6361/202244387J. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, S. D. T. Grant, H. Eklund, and M. Szyd- larski. The Sun at millimeter wavelengths: IV. Magnetohydrodynamic waves in small- scale bright features. Astronomy & Astrophysics, 671:A69, Mar. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244228. URL https://www.aanda.org/10.1051/ 0004-6361/202244228J. B. Gurman. Sunspot umbral oscillations in Mg ii k. solphys, 108(1):61–75, Mar. 1987. doi: 10.1007/BF00152077. URL https://ui.adsabs.harvard.edu/abs/1987SoPh..108... 61G. Provided by the SAO/NASA Astrophysics Data SystemY. He, T. Hu, and D. Zeng. Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm for Complicated Regions, June 2019. URL http://arxiv.org/abs/ 1906.03366. arXiv:1906.03366 [cs]V. M. J. Henriques, S. Jafarzadeh, J. C. Guevara Gómez, H. Eklund, S. Wedemeyer, M. Szydlarski, S. V. H. Haugan, and A. Mohan. The Solar ALMA Science Archive (SALSA): First release, SALAT, and FITS header standard. Astronomy & Astrophysics, 659:A31, Mar. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202142291. URL https://www.aanda.org/10.1051/0004-6361/202142291Y. D. Hezaveh, N. Dalal, D. P. Marrone, Y.-Y. Mao, W. Morningstar, D. Wen, R. D. Blandford, J. E. Carlstrom, C. D. Fassnacht, G. P. Holder, A. Kemball, P. J. Marshall, N. Murray, L. Perreault Levasseur, J. D. Vieira, and R. H. Wechsler. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. ApJ, 823(1):37, May 2016. doi: 10.3847/0004-637X/823/1/37S. Jafarzadeh, J. C. G. Gomez, S. Wedemeyer, and S. Aannerud. Solaralma/salat: v1.0, Sept. 2021a. URL https://doi.org/10.5281/zenodo.5466873S. Jafarzadeh, S. Wedemeyer, B. Fleck, M. Stangalini, D. B. Jess, R. J. Morton, M. Szyd- larski, V. M. J. Henriques, X. Zhu, T. Wiegelmann, J. C. Guevara Gómez, S. D. T. Grant, B. Chen, K. Reardon, and S. M. White. An overall view of temperature oscil- lations in the solar chromosphere with ALMA. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2190):rsta.2020.0174, 20200174, Feb. 2021b. ISSN 1364-503X, 1471-2962. doi: 10.1098/rsta.2020.0174. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0174H. Karttunen, P. Kröger, H. Oja, M. Poutanen, and K. Donner. Fundamental Astronomy. Springer, 2017. ISBN 978-3-662-53045-0E. P. Kontar, I. G. Hannah, and A. L. MacKinnon. Chromospheric magnetic field and density structure measurementsusing hard X-rays in a flaring coronal loop. Astronomy & Astrophysics, 489(3):L57–L60, Oct. 2008. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361:200810719. URL http://www.aanda.org/10.1051/0004-6361:200810719.J. Leenaarts and S. Wedemeyer-Böhm. Time-dependent hydrogen ionisation in 3D simula- tions of the solar chromosphere. Methods and first results. A&A, 460(1):301–307, Dec. 2006. doi: 10.1051/0004-6361:20066123J. Leenaarts, T. M. D. Pereira, M. Carlsson, H. Uitenbroek, and B. De Pontieu. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h&k LINES IN THE SOLAR ATMOSPHERE. The Astrophysical Journal, 772(2):90, July 2013. ISSN 0004-637X, 1538-4357. doi: 10.1088/0004-637X/772/2/90. URL https: //iopscience.iop.org/article/10.1088/0004-637X/772/2/90R. B. Leighton, R. W. Noyes, and G. W. Simon. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. apj, 135:474, Mar. 1962. doi: 10.1086/147285. URL https: //ui.adsabs.harvard.edu/abs/1962ApJ...135..474L. Provided by the SAO/NASA Astrophysics Data SystemE. Lellouch, R. Moreno, T. Müller, S. Fornasier, P. Santos-Sanz, A. Moullet, M. Gurwell, J. Stansberry, R. Leiva, B. Sicardy, B. Butler, and J. Boissier. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observa- tions. A&A, 608:A45, Dec. 2017. doi: 10.1051/0004-6361/201731676J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):17–40, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9776-8. URL https://link.springer.com/10.1007/ s11207-011-9776-8M. Loukitcheva, S. K. Solanki, M. Carlsson, and S. M. White. Millimeter radiation from a 3D model of the solar atmosphere: I. Diagnosing chromospheric thermal structure. Astronomy & Astrophysics, 575:A15, Mar. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201425238. URL http://www.aanda.org/10.1051/0004-6361/201425238J. M. Marr, R. L. Snell, and S. Kurtz. Fundamentals of radio astronomy: observational methods. Series in astronomy and astrophysics. CRC Press, Taylor & Francis Group, Boca Raton, 2016. ISBN 978-1-4200-7676-9. OCLC: ocn932380297Noyes, Robert W, Hall, and Donald N. B. Thermal Oscillations in the High Solar Photo- sphere. The Astrophysical Journal, 176:L89, Sept. 1972. ISSN 0004-637X, 1538-4357. doi: 10.1086/181027. URL http://adsabs.harvard.edu/doi/10.1086/181027F. J. Ordoñez Araujo, J. C. Guevara Gómez, and B. Calvo Mozo. Alignment-of-iris-alma-and-sdo-images. https://github.com/JavierOrdonezA/ Alignment-of-IRIS-ALMA-and-SDO-images.git, Apr. 2023. Accessed on April 13th, 2023S. Patsourakos, C. E. Alissandrakis, A. Nindos, and T. S. Bastian. Observations of solar chromospheric oscillations at 3 mm with ALMA. Astronomy & Astrophysics, 634:A86, Feb. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201936618. URL https: //www.aanda.org/10.1051/0004-6361/201936618T. M. D. Pereira and H. Uitenbroek. RH 1.5D: a massively parallel code for multi-level ra- diative transfer with partial frequency redistribution and Zeeman polarisation. Astronomy & Astrophysics, 574:A3, Feb. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201424785. URL http://www.aanda.org/10.1051/0004-6361/201424785.T. M. D. Pereira, J. Leenaarts, B. De Pontieu, M. Carlsson, and H. Uitenbroek. The formation ofirisdiagnostics. iii. near-ultraviolet spectra and images. The Astrophysical Journal, 778(2):143, Nov. 2013. ISSN 1538-4357. doi: 10.1088/0004-637x/778/2/143. URL http://dx.doi.org/10.1088/0004-637X/778/2/143.W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):3–15, Jan. 2012. ISSN 0038-0938, 1573-093X. doi: 10.1007/ s11207-011-9841-3. URL http://link.springer.com/10.1007/s11207-011-9841-3.L. M. Pérez, J. M. Carpenter, S. M. Andrews, L. Ricci, A. Isella, H. Linz, A. I. Sargent, D. J. Wilner, T. Henning, A. T. Deller, C. J. Chandler, C. P. Dullemond, J. Lazio, K. M. Menten, S. A. Corder, S. Storm, L. Testi, M. Tazzari, W. Kwon, N. Calvet, J. S. Greaves, R. J. Harris, and L. G. Mundy. Spiral density waves in a young protoplanetary disk. Science, 353(6307):1519–1521, Sept. 2016. ISSN 1095-9203. doi: 10.1126/science.aaf8296. URL http://dx.doi.org/10.1126/science.aaf8296.K. P. Reardon, H. Uitenbroek, and G. Cauzzi. The solar chromosphere at high resolution with IBIS. III. Comparison of Ca II K and Ca II 854.2 nm imaging. aap, 500(3):1239–1247, June 2009. doi: 10.1051/0004-6361/200811223. URL https://ui.adsabs.harvard.edu/ abs/2009A&A...500.1239R. Provided by the SAO/NASA Astrophysics Data System.C. S. Rosenthal, T. J. Bogdan, M. Carlsson, S. B. F. Dorch, V. Hansteen, S. W. McIntosh, A. McMurry, Nordlund, and R. F. Stein. Waves in the magnetized solar atmosphere. i. basic processes and internetwork oscillations. The Astrophysical Journal, 564(1):508, jan 2002. doi: 10.1086/324214. URL https://dx.doi.org/10.1086/324214.R. J. Rutten. RADIATIVE TRANSFER IN STELLAR ATMOSPHERES. May .R. J. Rutten and H. Uitenbroek. Ca uc(ii) H2v and K2v cell grains. Sol. Phys., 134(1):15–71, July 1991. doi: 10.1007/BF00148739.P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tom- czyk. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):207–227, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9834-2. URL http://link.springer.com/10.1007/ s11207-011-9834-2N. Scoville, K. Sheth, H. Aussel, P. V. Bout, P. Capak, A. Bongiorno, C. M. Casey, L. Murchikova, J. Koda, J. Álvarez Márquez, N. Lee, C. Laigle, H. J. McCracken, O. Il- bert, A. Pope, D. Sanders, J. Chu, S. Toft, R. J. Ivison, and S. Manohar. Ism masses and the star formation law at z = 1 to 6: Alma observations of dust continuum in 145 galaxies in the cosmos survey field. The Astrophysical Journal, 820(2):83, mar 2016. doi: 10.3847/ 0004-637X/820/2/83. URL https://dx.doi.org/10.3847/0004-637X/820/2/83B. Singh, K. Sharma, and A. K. Srivastava. On modelling the kinematics and evolution- ary properties of pressure-pulse-driven impulsive solar jets. Annales Geophysicae, 37(5): 891–902, 2019. doi: 10.5194/angeo-37-891-2019. URL https://angeo.copernicus.org/ articles/37/891/2019/Sitnik G. F. and Pande M. Ch. Two Decay Processes for CO Molecules in the Solar Photo- sphere. azh, 44:732, Jan. 1967. URL https://ui.adsabs.harvard.edu/abs/1967AZh. ...44..732S. Provided by the SAO/NASA Astrophysics Data SystemR. Skartlien, R. F. Stein, and Nordlund. Excitation of chromospheric wave transients by collapsing granules. The Astrophysical Journal, 541(1):468, sep 2000. doi: 10.1086/309414. URL https://dx.doi.org/10.1086/309414Solanki S. K, Livingston W, and Ayres T.R. New Light on the Heart of Darkness of the Solar Chromosphere. Science, 263(5143):64–66, Jan. 1994. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.263.5143.64. URL https://www.science.org/doi/10.1126/science. 263.5143.64.P. Song. A model of the solar chromosphere: Structure and internal circulation. The Astrophysical Journal, 846(2):92, sep 2017. doi: 10.3847/1538-4357/aa85e1. URL https: //doi.org/10.3847/1538-4357/aa85e1V. Starovoitov, E. E.E., and I. K.T. Comparative analysis of the ssim index and the pear- son coefficient as a criterion for image similarity. Eurasian Journal of Mathematical and Computer Applications, 8:76–90, 01 2020. doi: 10.32523/2306-6172-2020-8-1-76-90Thompson and Michael J. Helioseismology and the Sun’s interior. Astronomy & Geophysics, 45(4):4.21–4.25, 08 2004. ISSN 1366-8781. doi: 10.1046/j.1468-4004.2003.45421.x. URL https://doi.org/10.1046/j.1468-4004.2003.45421.xA. R. Thompson, G. B. Taylor, C. L. Carilli, and R. A. Perley. Synthesis Imaging in Radio Astronomy II, volume 180 of ASP Conference Series, pages 1–165. Astronomical Society of the Pacific, 1999. Lecture 2: Fundamentals of Radio InterferometryH. Uitenbroek. The co fundamental vibration-rotation lines in the solar spectrum. ii. non-lte transfer modeling in static and dynamic atmospheres. The Astrophysical Journal, 536(1): 481, jun 2000. doi: 10.1086/308933. URL https://dx.doi.org/10.1086/308933H. Uitenbroek. Multilevel Radiative Transfer with Partial Frequency Redistribution. ApJ, 557(1):389–398, Aug. 2001. doi: 10.1086/321659R. K. Ulrich. The Five-Minute Oscillations on the Solar Surface. apj, 162:993, Dec. 1970. doi: 10.1086/150731. URL https://ui.adsabs.harvard.edu/abs/1970ApJ...162..993U. Provided by the SAO/NASA Astrophysics Data System.J. E. Vernazza. STRUCTURE OF THE SOLAR CHROMOSPHERE. I. BASIC COMPU- TATIONS AND SUMMARY OF THE RESULTS. ApJ. . ., 184(2), 1973.J. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region. The Astrophysical Journal Supplement Series, 30:1, Jan. 1976. ISSN 0067-0049, 1538-4365. doi: 10.1086/190356. URL http://adsabs.harvard.edu/doi/10.1086/190356.J. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. III - Models of the EUV brightness components of the quiet-sun. The Astrophysical Journal Supplement Series, 45:635, Apr. 1981. ISSN 0067-0049, 1538-4365. doi: 10.1086/190731. URL http://adsabs.harvard.edu/doi/10.1086/190731.Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600–612, Apr. 2004. ISSN 1057-7149. doi: 10.1109/TIP.2003.819861. URL http://ieeexplore. ieee.org/document/1284395/.S. Wedemeyer, B. Freytag, M. Steffen, H.-G. Ludwig, and H. Holweger. Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. Astronomy & Astrophysics, 414(3):1121–1137, Feb. 2004. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20031682. URL http://www.aanda.org/10.1051/0004-6361: 20031682.S. Wedemeyer, B. Fleck, M. Battaglia, N. Labrosse, G. Fleishman, H. Hudson, P. An- tolin, C. Alissandrakis, T. Ayres, J. Ballester, T. Bastian, J. Black, A. Benz, R. Bra- jsa, M. Carlsson, J. Costa, B. DePontieu, G. Doyle, G. Gimenez de Castro, S. Gunár, G. Harper, S. Jafarzadeh, M. Loukitcheva, V. Nakariakov, R. Oliver, B. Schmieder, C. Selhorst, M. Shimojo, P. Simões, R. Soler, M. Temmer, S. Tiwari, T. Van Doors- selaere, A. Veronig, S. White, P. Yagoubov, and T. Zaqarashvili. ALMA Observations of the Sun in Cycle 4 and Beyond. arXiv e-prints, art. arXiv:1601.00587, Jan. 2016a. URL https://ui.adsabs.harvard.edu/abs/2016arXiv160100587W. Provided by the SAO/NASA Astrophysics Data System.S. Wedemeyer, T. Bastian, R. Brajša, H. Hudson, G. Fleishman, M. Loukitcheva, B. Fleck, E. P. Kontar, B. De Pontieu, P. Yagoubov, S. K. Tiwari, R. Soler, J. H. Black, P. Antolin, E. Scullion, S. Gunár, N. Labrosse, H.-G. Ludwig, A. O. Benz, S. M. White, P. Hauschildt, J. G. Doyle, V. M. Nakariakov, T. Ayres, P. Heinzel, M. Karlicky, T. Van Doorsselaere, D. Gary, C. E. Alissandrakis, A. Nindos, S. K. Solanki, L. Rouppe van der Voort, M. Shi- mojo, Y. Kato, T. Zaqarashvili, E. Perez, C. L. Selhorst, and M. Barta. Solar Science with the Atacama Large Millimeter/Submillimeter Array—A New View of Our Sun. Space Science Reviews, 200(1-4):1–73, Apr. 2016b. ISSN 0038-6308, 1572-9672. doi: 10.1007/ s11214-015-0229-9. URL http://link.springer.com/10.1007/s11214-015-0229-9.S. Wedemeyer, M. Szydlarski, S. Jafarzadeh, H. Eklund, J. C. Guevara Gomez, T. Bastian, B. Fleck, J. de la Cruz Rodriguez, A. Rodger, and M. Carlsson. The Sun at millimeter wavelengths: I. Introduction to ALMA Band 3 observations. Astronomy & Astrophysics, 635:A71, Mar. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201937122. URL https://www.aanda.org/10.1051/0004-6361/201937122.S. Wedemeyer, G. Fleishman, J. de la Cruz Rodríguez, S. Gunár, J. M. da Silva Santos, P. Antolin, J. C. Guevara Gómez, M. Szydlarski, and H. Eklund. Prospects and challenges of numerical modeling of the sun at millimeter wavelengths. Frontiers in Astronomy and Space Sciences, 9, 2022. ISSN 2296-987X. doi: 10.3389/fspas.2022.967878. URL https://www.frontiersin.org/articles/10.3389/fspas.2022.967878.S. Wedemeyer-Böhm, H. G. Ludwig, M. Steffen, J. Leenaarts, and B. Freytag. Inter-network regions of the Sun at millimetre wavelengths. Astronomy & Astrophysics, 471(3):977– 991, Sept. 2007. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20077588. URL http://www.aanda.org/10.1051/0004-6361:20077588.A. Wootten and A. R. Thompson. The Atacama Large Millimeter/submillimeter Array. Proceedings of the IEEE, 97(8):1463–1471, Aug. 2009. ISSN 0018-9219, 1558-2256. doi: 10. 1109/JPROC.2009.2020572. URL http://arxiv.org/abs/0904.3739. arXiv:0904.3739 [astro-ph].X. Zhou and H. Liang. The relationship between the 5-min oscillation and 3-min oscil- lations at the umbral/penumbral sunspot boundary. apss, 362(3):46, Mar. 2017. doi: 10.1007/s10509-016-3000-0. URL https://ui.adsabs.harvard.edu/abs/2017Ap&SS. 362...46Z. Provided by the SAO/NASA Astrophysics Data SystemShock wavesWave propagationSolar chromosphereFormation heightSolar image alignmentOndas de choquePropagación de ondasCromosfera solarAltura de formaciónAlineación de imágenes solaresActividad solarAstrofísicaCiencias del espacioSolar activityAstrophysicsSpace sciencesEstudiantesInvestigadoresMaestrosPúblico generalORIGINALfranciscoordonezaraujo.2024.pdffranciscoordonezaraujo.2024.pdfTesis de Maestría en Ciencias - Astronomíaapplication/pdf55457666https://repositorio.unal.edu.co/bitstream/unal/85838/4/franciscoordonezaraujo.2024.pdf911e9211abda2589a1b9bf8b393fc0d9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85838/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAILfranciscoordonezaraujo.2024.pdf.jpgfranciscoordonezaraujo.2024.pdf.jpgGenerated Thumbnailimage/jpeg5984https://repositorio.unal.edu.co/bitstream/unal/85838/6/franciscoordonezaraujo.2024.pdf.jpg1d6858ae4fbc4684c9b37c4f406b5379MD56unal/85838oai:repositorio.unal.edu.co:unal/858382024-04-01 23:04:21.612Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=