Sobre el orden inferior esférico
Resumen: En 1964 Christian Pommerenke comenzó con el estudio de las familias de funciones analíticas localmente inyectivas definidas en el disco unitario (véase [Po64]), definiendo el orden (superior) de una función analítica localmente inyectiva definida en D. Más adelante, William Ma y David Minda...
- Autores:
-
Rivera Serna, Jheison Alfonso
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21059
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21059
http://bdigital.unal.edu.co/11790/
- Palabra clave:
- 51 Matemáticas / Mathematics
Orden inferior esférico
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4323858f9f6b8e04a1fce403358bd6a0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21059 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mejía Duque, DiegoRivera Serna, Jheison Alfonso2f2a7897-b3fa-4aa3-ab8f-8511bf7350fe3002019-06-25T18:54:20Z2019-06-25T18:54:20Z2014https://repositorio.unal.edu.co/handle/unal/21059http://bdigital.unal.edu.co/11790/Resumen: En 1964 Christian Pommerenke comenzó con el estudio de las familias de funciones analíticas localmente inyectivas definidas en el disco unitario (véase [Po64]), definiendo el orden (superior) de una función analítica localmente inyectiva definida en D. Más adelante, William Ma y David Minda hicieron algo similar a lo que hizo Pommerenke, pero esta vez para familias de funciones meromorfas localmente inyectivas definidas en D, entrando a definir esta vez en [MaMi92] el orden (superior) esférico de una función en dichas familias. Luego, Pommerenke junto con Lorena Cruz en su estudio de las funciones cóncavas univalentes [CrPo07], definió el orden inferior de una función analítica localmente inyectiva definida en D. Basado en lo anterior, Hugo Arbeláez en su tesis de doctorado [Ar11] definió el orden inferior esférico de una función meromorfa localmente inyectiva definida en D. En este trabajo se busca profundizar más sobre este concepto, es decir, queremos hacer un estudio sistemático de la noción de orden inferior para funciones meromorfas localmente inyectivas definidas en el disco unitario D, puesto que el estudio que se ha hecho hasta ahora sobre el orden inferior esférico no es muy amplio. En el primer capítulo se introducen algunas de las definiciones y resultados fundamentales para el desarrollo de este trabajo, empezando con un poco de teoría básica de la geometría hiperbólica, luego un poco de geometría esférica y por ultimo algunos resultados generales. En el segundo capítulo se hace una definición general de la conexión para métricas conformes, viendo cómo esta sirve para darle a todos los casos estudiados hasta ahora, en particular al esférico, una apariencia similar al caso euclidiano; para luego centrarnos en la conexión esférica sobre el disco unitario, viendo cómo ésta es continua y no meromorfa. Además, vemos algunos teoremas de crecimiento y distorsión para este operador, y definimos sobre él una norma que posee una importante propiedad de invariancia. Finalizamos el capítulo con algunas generalizaciones de trabajos hechos en los casos hiperbólico y esférico. Finalmente, en el tercer capítulo se desarrollan algoritmos en MatLab para calcular los órdenes esféricos inferior y superior, para ver luego ejemplos de estos con ayuda de una regla de composición para A#f que involucra el operador conexión esférica, y concluyendo con algunas propiedades en torno a acotar los órdenes esféricos, en especial el inferior, usando hipótesis lo más débiles posibles.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de CienciasFacultad de CienciasRivera Serna, Jheison Alfonso (2014) Sobre el orden inferior esférico. Maestría thesis, Universidad Nacional de Colombia, Medellín.51 Matemáticas / MathematicsOrden inferior esféricoSobre el orden inferior esféricoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL71293976.2014.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf422582https://repositorio.unal.edu.co/bitstream/unal/21059/1/71293976.2014.pdf659d0413c18905ddad82e0f0cdf085d8MD51THUMBNAIL71293976.2014.pdf.jpg71293976.2014.pdf.jpgGenerated Thumbnailimage/jpeg3170https://repositorio.unal.edu.co/bitstream/unal/21059/2/71293976.2014.pdf.jpg64037548d40e7fd43e745c92037e1ad9MD52unal/21059oai:repositorio.unal.edu.co:unal/210592023-04-18 10:37:39.982Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Sobre el orden inferior esférico |
title |
Sobre el orden inferior esférico |
spellingShingle |
Sobre el orden inferior esférico 51 Matemáticas / Mathematics Orden inferior esférico |
title_short |
Sobre el orden inferior esférico |
title_full |
Sobre el orden inferior esférico |
title_fullStr |
Sobre el orden inferior esférico |
title_full_unstemmed |
Sobre el orden inferior esférico |
title_sort |
Sobre el orden inferior esférico |
dc.creator.fl_str_mv |
Rivera Serna, Jheison Alfonso |
dc.contributor.author.spa.fl_str_mv |
Rivera Serna, Jheison Alfonso |
dc.contributor.spa.fl_str_mv |
Mejía Duque, Diego |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Orden inferior esférico |
dc.subject.proposal.spa.fl_str_mv |
Orden inferior esférico |
description |
Resumen: En 1964 Christian Pommerenke comenzó con el estudio de las familias de funciones analíticas localmente inyectivas definidas en el disco unitario (véase [Po64]), definiendo el orden (superior) de una función analítica localmente inyectiva definida en D. Más adelante, William Ma y David Minda hicieron algo similar a lo que hizo Pommerenke, pero esta vez para familias de funciones meromorfas localmente inyectivas definidas en D, entrando a definir esta vez en [MaMi92] el orden (superior) esférico de una función en dichas familias. Luego, Pommerenke junto con Lorena Cruz en su estudio de las funciones cóncavas univalentes [CrPo07], definió el orden inferior de una función analítica localmente inyectiva definida en D. Basado en lo anterior, Hugo Arbeláez en su tesis de doctorado [Ar11] definió el orden inferior esférico de una función meromorfa localmente inyectiva definida en D. En este trabajo se busca profundizar más sobre este concepto, es decir, queremos hacer un estudio sistemático de la noción de orden inferior para funciones meromorfas localmente inyectivas definidas en el disco unitario D, puesto que el estudio que se ha hecho hasta ahora sobre el orden inferior esférico no es muy amplio. En el primer capítulo se introducen algunas de las definiciones y resultados fundamentales para el desarrollo de este trabajo, empezando con un poco de teoría básica de la geometría hiperbólica, luego un poco de geometría esférica y por ultimo algunos resultados generales. En el segundo capítulo se hace una definición general de la conexión para métricas conformes, viendo cómo esta sirve para darle a todos los casos estudiados hasta ahora, en particular al esférico, una apariencia similar al caso euclidiano; para luego centrarnos en la conexión esférica sobre el disco unitario, viendo cómo ésta es continua y no meromorfa. Además, vemos algunos teoremas de crecimiento y distorsión para este operador, y definimos sobre él una norma que posee una importante propiedad de invariancia. Finalizamos el capítulo con algunas generalizaciones de trabajos hechos en los casos hiperbólico y esférico. Finalmente, en el tercer capítulo se desarrollan algoritmos en MatLab para calcular los órdenes esféricos inferior y superior, para ver luego ejemplos de estos con ayuda de una regla de composición para A#f que involucra el operador conexión esférica, y concluyendo con algunas propiedades en torno a acotar los órdenes esféricos, en especial el inferior, usando hipótesis lo más débiles posibles. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T18:54:20Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T18:54:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21059 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/11790/ |
url |
https://repositorio.unal.edu.co/handle/unal/21059 http://bdigital.unal.edu.co/11790/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Facultad de Ciencias |
dc.relation.references.spa.fl_str_mv |
Rivera Serna, Jheison Alfonso (2014) Sobre el orden inferior esférico. Maestría thesis, Universidad Nacional de Colombia, Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21059/1/71293976.2014.pdf https://repositorio.unal.edu.co/bitstream/unal/21059/2/71293976.2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
659d0413c18905ddad82e0f0cdf085d8 64037548d40e7fd43e745c92037e1ad9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089802369204224 |