Cardinal invariants associated with ideals between measure zero and strong measure zero

In 2002, Yorioka [Y02] introduced the sigma-ideal I_f for increasing functions f from omega to omega to analyze the cofinality of the strong measure zero ideal. We use and generalize some techiques of itearations with finite support to construct a model of ZFC, by a matrix iteration, satisfying add(...

Full description

Autores:
Cardona Montoya, Miguel Antonio
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/58776
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/58776
http://bdigital.unal.edu.co/55706/
Palabra clave:
51 Matemáticas / Mathematics
Itearations with finite support
Model of ZFC
Yorioka ideal
Preservation theory
Matrix iterations
Cardinal invariants
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_42b14bbf8b44229abb15c23d80024f92
oai_identifier_str oai:repositorio.unal.edu.co:unal/58776
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mejía Guzman, Diego AlejandroBlázquez Sanz, DavidCardona Montoya, Miguel Antonioc1dc26b3-eb93-4f8b-8e9d-3e8cd900e39c3002019-07-02T14:47:15Z2019-07-02T14:47:15Z2016https://repositorio.unal.edu.co/handle/unal/58776http://bdigital.unal.edu.co/55706/In 2002, Yorioka [Y02] introduced the sigma-ideal I_f for increasing functions f from omega to omega to analyze the cofinality of the strong measure zero ideal. We use and generalize some techiques of itearations with finite support to construct a model of ZFC, by a matrix iteration, satisfying add(I_f ) cov(I_f ) non(I_f ) cof(I_f ) for every fast increasing f. One technical tool we use is the preservation theory of Judah-Shelah [JS90] and Brendle [Br91]. We generalize this theory so that we can cover the example of preservation presented in [KO14] which is fundamental in this thesis. We also provide original proofs of two Claims from [O08], about the additivity and cofinality of Yorioka ideals, whose proofs have not been published anywhere.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de MatemáticasEscuela de MatemáticasCardona Montoya, Miguel Antonio (2016) Cardinal invariants associated with ideals between measure zero and strong measure zero. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsItearations with finite supportModel of ZFCYorioka idealPreservation theoryMatrix iterationsCardinal invariantsCardinal invariants associated with ideals between measure zero and strong measure zeroTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1128468553.2016.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf600161https://repositorio.unal.edu.co/bitstream/unal/58776/1/1128468553.2016.pdfaf218e22dc9b6d1395e24a1025dcf430MD51THUMBNAIL1128468553.2016.pdf.jpg1128468553.2016.pdf.jpgGenerated Thumbnailimage/jpeg3859https://repositorio.unal.edu.co/bitstream/unal/58776/2/1128468553.2016.pdf.jpg0bfc308c0c562ac617bdc2917904304dMD52unal/58776oai:repositorio.unal.edu.co:unal/587762024-04-03 23:10:11.461Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Cardinal invariants associated with ideals between measure zero and strong measure zero
title Cardinal invariants associated with ideals between measure zero and strong measure zero
spellingShingle Cardinal invariants associated with ideals between measure zero and strong measure zero
51 Matemáticas / Mathematics
Itearations with finite support
Model of ZFC
Yorioka ideal
Preservation theory
Matrix iterations
Cardinal invariants
title_short Cardinal invariants associated with ideals between measure zero and strong measure zero
title_full Cardinal invariants associated with ideals between measure zero and strong measure zero
title_fullStr Cardinal invariants associated with ideals between measure zero and strong measure zero
title_full_unstemmed Cardinal invariants associated with ideals between measure zero and strong measure zero
title_sort Cardinal invariants associated with ideals between measure zero and strong measure zero
dc.creator.fl_str_mv Cardona Montoya, Miguel Antonio
dc.contributor.author.spa.fl_str_mv Cardona Montoya, Miguel Antonio
dc.contributor.spa.fl_str_mv Mejía Guzman, Diego Alejandro
Blázquez Sanz, David
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Itearations with finite support
Model of ZFC
Yorioka ideal
Preservation theory
Matrix iterations
Cardinal invariants
dc.subject.proposal.spa.fl_str_mv Itearations with finite support
Model of ZFC
Yorioka ideal
Preservation theory
Matrix iterations
Cardinal invariants
description In 2002, Yorioka [Y02] introduced the sigma-ideal I_f for increasing functions f from omega to omega to analyze the cofinality of the strong measure zero ideal. We use and generalize some techiques of itearations with finite support to construct a model of ZFC, by a matrix iteration, satisfying add(I_f ) cov(I_f ) non(I_f ) cof(I_f ) for every fast increasing f. One technical tool we use is the preservation theory of Judah-Shelah [JS90] and Brendle [Br91]. We generalize this theory so that we can cover the example of preservation presented in [KO14] which is fundamental in this thesis. We also provide original proofs of two Claims from [O08], about the additivity and cofinality of Yorioka ideals, whose proofs have not been published anywhere.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016
dc.date.accessioned.spa.fl_str_mv 2019-07-02T14:47:15Z
dc.date.available.spa.fl_str_mv 2019-07-02T14:47:15Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/58776
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/55706/
url https://repositorio.unal.edu.co/handle/unal/58776
http://bdigital.unal.edu.co/55706/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas
Escuela de Matemáticas
dc.relation.references.spa.fl_str_mv Cardona Montoya, Miguel Antonio (2016) Cardinal invariants associated with ideals between measure zero and strong measure zero. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/58776/1/1128468553.2016.pdf
https://repositorio.unal.edu.co/bitstream/unal/58776/2/1128468553.2016.pdf.jpg
bitstream.checksum.fl_str_mv af218e22dc9b6d1395e24a1025dcf430
0bfc308c0c562ac617bdc2917904304d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089821507813376