On the interpolation between certain theorems on fourier transforms

It is well known that if f(x) belongs to LP(R), 1 and lt; P ≤ 2, then the Hausdorff-Young inequality ([1],Theorem 74) asserts that its Fourier transform f(u) belongs to LP1 (R), where1/P1 +1/P = 1

Autores:
Younis, M. S.
Tipo de recurso:
Article of journal
Fecha de publicación:
1988
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43220
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43220
http://bdigital.unal.edu.co/33318/
Palabra clave:
Hausdorff-Young inequality
Fourier transform
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:It is well known that if f(x) belongs to LP(R), 1 and lt; P ≤ 2, then the Hausdorff-Young inequality ([1],Theorem 74) asserts that its Fourier transform f(u) belongs to LP1 (R), where1/P1 +1/P = 1