Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance
ilustraciones, gráficas, tablas
- Autores:
-
Rosada González, Omar Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80477
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Petrology - technique
Rock mechanics
Rock slopes
Petrología - Técnica
Mecánica de rocas
Taludes rocosos
Discontinuidades
Redes de fracturas discretas
Fotogrametría de corto alcance
Estadística direccional en coordenadas esféricas
Taludes
Rocas
DFN
Fracman
Fisher
ShapeMetrix
Slopes
Rock mechanics
Rock
Joints
Directional statistics on spherical coordinates
Close-range photogrammetry
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_427d5aa67e62439d7fd1fa58d3b2206a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80477 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
dc.title.translated.eng.fl_str_mv |
Methodological proposal for the adjustment of a discrete fracture network (DFN) from short-range photogrammetry |
title |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
spellingShingle |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Petrology - technique Rock mechanics Rock slopes Petrología - Técnica Mecánica de rocas Taludes rocosos Discontinuidades Redes de fracturas discretas Fotogrametría de corto alcance Estadística direccional en coordenadas esféricas Taludes Rocas DFN Fracman Fisher ShapeMetrix Slopes Rock mechanics Rock Joints Directional statistics on spherical coordinates Close-range photogrammetry |
title_short |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
title_full |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
title_fullStr |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
title_full_unstemmed |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
title_sort |
Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance |
dc.creator.fl_str_mv |
Rosada González, Omar Andrés |
dc.contributor.advisor.none.fl_str_mv |
Beltrán Calvo, Gloria Inés Hernández Carrillo, Rodrígo |
dc.contributor.author.none.fl_str_mv |
Rosada González, Omar Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
GRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUN |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil Petrology - technique Rock mechanics Rock slopes Petrología - Técnica Mecánica de rocas Taludes rocosos Discontinuidades Redes de fracturas discretas Fotogrametría de corto alcance Estadística direccional en coordenadas esféricas Taludes Rocas DFN Fracman Fisher ShapeMetrix Slopes Rock mechanics Rock Joints Directional statistics on spherical coordinates Close-range photogrammetry |
dc.subject.lemb.eng.fl_str_mv |
Petrology - technique Rock mechanics Rock slopes |
dc.subject.lemb.spa.fl_str_mv |
Petrología - Técnica Mecánica de rocas Taludes rocosos |
dc.subject.proposal.spa.fl_str_mv |
Discontinuidades Redes de fracturas discretas Fotogrametría de corto alcance Estadística direccional en coordenadas esféricas Taludes Rocas |
dc.subject.proposal.eng.fl_str_mv |
DFN Fracman Fisher ShapeMetrix Slopes Rock mechanics Rock Joints Directional statistics on spherical coordinates Close-range photogrammetry |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-11T14:17:30Z |
dc.date.available.none.fl_str_mv |
2021-10-11T14:17:30Z |
dc.date.issued.none.fl_str_mv |
2021-10-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80477 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80477 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
3GSM (2010). ShapeMetrix3D: 3D imaging for measuring and assesing rock and terrain surfaces. 3GSM (2011). Measurement and assessment of rock and terrain surfaces by metric 3D images. (December):1–14. Acosta, J. and Ulloa, C. E. (2001). Memoria geológica de la plancha 227 La Mesa. Alghalandis, Y. F. (2014). Stochastic Modelling of Fractures in RockMasses. University of Adelaide, (March). Baecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). Statistical description of rock properties and sampling. 18th U.S. Symposium on RockMechanics, USRMS 1977, (January 1977). Barton, N. R. (1978). Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. International Journal of RockMechanics and Mining Sciences & Geomechanics Abstracts, 15(2):319–368. Becker, I., Koehrer, B., Waldvogel, M., Jelinek, W., and Hilgers, C. (2018). Comparing fracture statistics from outcrop and reservoir data using conventional manual and t-LiDAR derived scanlines in Ca2 carbonates from the Southern Permian Basin, Germany. Marine and Petroleum Geology, 95(April):228–245. Bonilla-Sierra, V., Elmouttie, M., Donzé, F. V., and Scholtès, L. (2017). Composite wedge failure using photogrammetric measurements and DFN-DEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 9(1):41–53. Borradaile, G. (2003). Statistics of Earth Science Data. Berlin, 1st ed edition. Brideau, M.-A. and Stead, D. (2009). The role of rear release surfaces, block size and lateral confinement on rock slope failure mechanisms. 62nd Canadian Geotechnical Conference, (1971):489–496. Brzovic, A., Rogers, S., Webb, G., Hurtado, J. P., Marin, N., Schachter, P., Alvarez, J., and Baraona, K. (2015). Discrete fracture network modelling to quantify rock mass preconditioning at the El Teniente Mine, Chile. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 124(3):163–177. Buyer, A. and Schubert, W. (2017). Calculation the Spacing of Discontinuities from 3D Point Clouds. Procedia Engineering, 191:270–278. Canavos, G. (1988). Probabilidad y Estadística: Aplicaciones y métodos. McGraw-Hill. Carter, B. J. and Lajtai, E. Z. (1992). Rock slope stability and distributed joint systems. Canadian Geotechnical Journal, 29(1):53–60. Chilès, J.-P. (2005). Stochastic Modeling of Natural Fractured Media: A Review. pages 285–294. Cleveland, L. J. andWartman, J. (2006). Principles and applications of digital photogrammetry for geotechnical engineering. Geotechnical Special Publication, (149):128–135. Cottrel, M., Kamera, R., and Hermanson, J. (2017). FracMan Kinematic Stability Assessment of Tunnels in Forsmark Layout D2. (February). Davy, P., Le Goc, R., and Darcel, C. (2013). A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. Journal of Geophysical Research: Solid Earth, 118(4):1393–1407. Dershowitz, W. and Einstein, H. H. (1988). Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(2):21–51. Dershowitz, W., Hermanson, J., Follin, S., and Mauldon, M. (2000). Fracture intensity measures in 1-D, 2-D, and 3-D at Äspö, Sweden. 4th North American RockMechanics Symposium, NARMS 2000, pages 849–853. Dershowitz, W., Pointe, P., and Doe, T. (2004). Advances in Discrete Fracture Network modeling. pages 882–894. Dershowitz,W. S. (1985). Rock joint systems. PhD thesis,Masachusetts Institute of Technology. Dershowitz,W. S. and Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In The 33rd U.S. Symposium on RockMechanics (USRMS), pages 757–766. Diederichs, M. S. (1990). DIPS: An interactive and graphical approach to the analysis of orientation based data. PhD thesis, University of Toronto. Drews, T., Miernik, G., Anders, K., Höfle, B., Profe, J., Emmerich, A., and Bechstädt, T. (2018). Validation of fracture data recognition in rock masses by automated plane detection in 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 109(June):19–31. Elmo, D. (2006). Evaluation of a hybrid FEM/DEM approach for determination of rock mass strength using a combination of discontinuity mapping and fracture mechanics. (March). Elmo, D., Rogers, S., Stead, D., and Eberhardt, E. (2014). Discrete fracture network approach to characterise rock mass fragmentation and implications for geomechanical upscaling. Transactions of the Institutions ofMining and Metallurgy, Section A: Mining Technology, 123(3):149–161. Esmaeilzadeh, A. and Shahriar, K. (2019). Optimized fuzzy cmeans – fuzzy covariance – fuzzy maximum likelihood estimation clustering method based on deferential evolutionary optimization algorithm for identification of rock mass discontinuities sets. Periodica Polytechnica Civil Engineering, 63(2):674–686. Fadakar Alghalandis, Y., Elmo, D., and Eberhardt, E. (2017). Similarity Analysis of Discrete Fracture Networks. (January 2018):0–20. Fairhurst, C. (2014). Thinking Deeper. ARMA e-newsletter, (1):1–17. Feng, X. T. andHudson, J. A. (2004). The ways ahead for rock engineering design methodologies. International Journal ofRockMechanics andMining Sciences, 41(2):255–273. Feng, X. T. and Hudson, J. A. (2011). Rock Engineering Design. CRC Press, Boca Raton, 1st ed edition. Fereshtenejad, S., Yoon, D. H., and Song, J. J. (2020). Application of the covariance matrix clustering algorithm for partitioning joint sets having various joint pole sizes and densities. Geosystem Engineering, 23(1):1–12. Fisher, N. I., Lewis, T., and Embleton, B. J. (1993). Statistical analysis of spherical data. Cambridge University Press (CUP). Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130):295–305. Fossen, H. (2010). Structural Geology. Cambrideg University Press, page 481. Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., and Calamita, F. (2020). Application of unmanned aerial vehicle data and discrete fracture network models for improved rockfall simulations. Remote Sensing, 12(12). Gao, F., Chen, D., Zhou, K., Niu, W., and Liu, H. (2019). A Fast Clustering Method for Identifying RockDiscontinuity Sets. KSCE Journal of Civil Engineering, 23(2):556–566. García, J. M. (2015). Nuevas Metodologías para el Análisis de Estabilidad de Taludes en Infraestructuras Lineales. Technical report. Golder Associates (2020). FracMan7 User’sManual. page 583. González de Vallejo, L., Ferrer, M., Ortuño, L., and Oteo, C. (2004). Ingeniería Geológica. Pearson, Madrid. Goodman, R. E. (1989). Introduction to RockMechanics. 2nd ed edition. Goodman, R. E. and Shi, G. (1985). Block Theory and its Application to Rock Engineering.Prentice-Hall, New Jersey, 1st ed edition. Grenon, M., Landry, A., Hadjigeorgiou, J., and Lajoie, P. L. (2017). Discrete fracture network based drift stability at the Éléonore mine. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 126(1):22–33. Hammah, R. E. and Curran, J. H. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35(7):889–905. Hammah, R. E. and Curran, J. H. (1999). On distance measures for the fuzzy K-means algorithm for joint data. RockMechanics and Rock Engineering, 32(1):1–27. Han, S.,Wang, G., and Li, M. (2018). A trace map comparison algorithm for the discrete fracture network models of rock masses. Computers and Geosciences, 115(September 2017):31–41. Haneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4):457–469. Havaej, M., Coggan, J., Stead, D., and Elmo, D. (2016). A combined remote sensing–numerical modelling approach to the stability analysis of delabole slate quarry, Cornwall, UK. RockMechanics and Rock Engineering, 49(4):1227–1245. Hekmatnejad, A., Crespin, B., Opazo, A., Emery, X., Hitschfeld-Kahler, N., and Elmo, D. (2020). Investigating the impact of the estimation error of fracture intensity (P32) on the evaluation of in-situ rock fragmentation and potential of blocks forming around tunnels. Tunnelling and Underground Space Technology, 106 (September):103596. Hekmatnejad, A., Emery, X., Brzovic, A., Schachter, P., and Vallejos, J. A. (2017). Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine, Chile. Engineering Geology, 228:97–106. Hernández-Carrillo, R. (2020). Reliability Assessment of Rock Slopes by Evidence Theory. PhD thesis, Universidad Nacional de Colombia - Sede Bogotá. Hoek, E. (1996). RockMass Classification. In Practical Rock Engineering, number 1972, pages 221 – 252. Hoek, E. (2006). Practical Rock Engineering. page 339. Hoek, E., Kaiser, P. K., and Bawden,W. F. (1998). Support of Underground Excavations in Hard Rock. A.A Balkema, Rotterdam, 3rd ed edition. Hudson, J. A. (2001). Rock engineering case histories: key factors, mechanisms and problems. In Elorante, P. and Sarkka, P., editors, Proceedings of the ISRM Regional Symposium Eurock, pages 13–20, Espoo, Finland. Balkema, Rotterdam. Hudson, J. A. and Feng, X. T. (2015). Rock Engineering Risk. CRCPress/Balkema, London, 1st ed edition. Hudson, J. A. and Harrison, J. P. (1992). A new approach to studying complete rock engineering problems. Quarterly Journal of Engineering Geology,, 25:93–105. Hudson, J. A. and Harrison, J. P. (1997). Engineering RockMechanics: An Introduction to the Principles. Itasca (2010).Numerical modeling software for advanced engineering analysis of jointed and blocky material, groundwater, and structural support in three dimensions. Itasca (2019). Jointing Tools (GUI/GIIC) in UDEC | US Minneapolis - Itasca Consulting Group, Inc. Jaboyedoff, M.,Oppikofer, T., Abella, A.,Derron, M.-h., Loye, A.,Metzger, R., and Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61:5–28. Jambayev, A. S. (2013). Discrete Fracture Network Modeling for a Carbonate Reservoir. PhD thesis. Jebahi, M., Andre, D., Terreros, I., and Iordanoff, I. (2015). Volume 1: Discrete Element Method to Model 3D Continuous Materials. In Numerical Methods in Engineering Series: Discrete Element Model and Simulation of Continuous Materials Behavior Set, page 198. ISTE / JohnWiley & Sons, London, 1st ed edition. Jimenez, R. (2008). Fuzzy spectral clustering for identification of rock discontinuity sets. RockMechanics and Rock Engineering, 41:929–939. Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics andMining Sciences, 40(3):283–353. Jing, L. and Stephansson, O. (2007a). Discrete Fracture Network (DFN) Method. Developments in Geotechnical Engineering, 85:365–398. Jing, L. and Stephansson,O. (2007b). Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications. Elsevier, 1st ed edition. Jouanna, P., Armangau, C., Batchelor, A., Bonazzi, D., Bruel, D., Ledoux, E., Cheung, P., Etchecopar, A., Fouillac, C., Louis, P., Mechler, P., Tabbagh, A., and Valla, P. (1993). A Summary of Field Test Methods in Fractured Rocks. ACADEMIC PRESS, INC. Khalokakaie, R. and ZareNaghadehi, M. (2012). Ranking the rock slope instability potential using the Interaction Matrix (IM) technique; a case study in Iran. Arabian Journal of Geosciences, 5(2):263–273. Kim, D. H., Balasubramaniam, A. S., and Gratchev, I. (2018). Application of photogrammetry and image analysis for rock slope investigation. Geotechnical Engineering, 49(2):49–56. Kulatilake, P. H.,Wathugala,D. N., and Stephansson,O. (1993). Stochastic Three Dimensional Joint Size, Intensity and SystemModelling and a Validation to an Area in Stripa Mine, Sweden. Soils and Foundations, 33(1):55–70. Lei, Q., Latham, J. P., and Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151–176. Lei, Q., Latham, J. P., and Xiang, J. (2016). Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks. RockMechanics and Rock Engineering, 49(12):4799–4816. Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman and Hall/CRC. Madabhushi, G. (2014). Centrifuge Modelling for Civil Engineers. CRC Press, Boca Raton. Mandl, G. (2005). Rock Joints: The Mechanical Genesis. Springer, 1st ed edition. Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London, 1st ed edition. Mardia, K. V. and Jupp, P. (2000). Directional Statistics. John Wiley & Sons, Baffins Lane. McClure, M.W. andHorne, R. N. (2013). Discrete Fracture Network Modeling of Hydraulic Stimulation-Coupling Flow and Geomechanics. Menegoni, N., Giordan, D., Perotti, C., and Tannant, D. D. (2019). Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery – Ormea rock slope, Italy. Engineering Geology, 252(March 2018):145–163. Merrien-Soukatchoff, V., Korini, T., and Thoraval, A. (2012). Use of an integrated discrete fracture network code for stochastic stability analyses of fractured rock masses. Rock Mechanics and Rock Engineering, 45(2):159–181. Miyoshi, T., Elmo, D., and Rogers, S. (2018). Influence of data analysis when exploiting DFN model representation in the application of rock mass classification systems. Journal of RockMechanics and Geotechnical Engineering, 10(6):1046–1062. Munkhchuluun, M. (2017). Linking the Fracture Intensity of an in Situ Rock Mass To Block Cave Mine Fragmentation. (August):108. Naghadehi, M. Z., Jimenez, R., KhaloKakaie, R., and Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes. Engineering Geology, 118(3-4):82–92. Nex, F. and Remondino, F. (2013). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1):1–15. Nguyen, A. T. and Gasc-barbier, V. M.-s. M. V. M. (2016). Grouping discontinuities in representative sets : influence on the stability analysis of slope cuts. Bulletin of Engineering Geology and the Environment, 75(4):1429–1444. Nikoli´c, M., Roje-Bonacci, T., and Ibrahimbegovi´c, A. (2016). Overview of the numerical methods for the modelling of rock mechanics problems. Tehnicki vjesnik - Technical Gazette, 23(2):627–637. Norrish, N. I. and Wyllie, D. C. (1996). Rock Slope Stability Analysis. In Landslides: Investigation and Mitigation, chapter 15, pages 391–425. The National Academies. Oyanguren, P. and Monge, L. A. (2005). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes. 12(5):528–537. Palmström, A. (2001). Measurement and characterizations of rock mass jointing. In-Situ Characterization of Rocks - Chapter 2, pages 1–40. Patiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011a). Memoria geológica de la plancha 247 Cáqueza. Patiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011b). Plancha 247 Bogotá Sur Este (Caqueza). Peñuela, J. L., Beltrán-Calvo, G. I., andHernández-Carrillo, R. (2019). Adquisición y evaluación de datos geométricos de macizos rocosos a partir de imágenes tridimensionales para su uso en análisis geotécnicos. Ingeniería y Ciencia, 15(29):43–73. Plesha, M. E. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation. International Journal for Numerical and Analytical Methods in Geomechanics, 11(4):345–362. Priest, S. (1993). Discontinuity Analysis for Rock Engineering. Springer, Hong Kong, 1st ed edition. Proctor, R., White, T., and Terzaghi, K. (1946). Rock tunneling with steel supports. Youngstown. Riquelme, A., Tomás, R., Cano, M., Pastor, J. L., and Abellán, A. (2018). Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51(10):3005–3028. Riquelme, A. J., Abellán, A., Tomás, R., and Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers and Geosciences, 68:38–52. Riquelme, A. J., Tomás, R., and Abellán, A. (2016). Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84:165–176. Robertson, a. M. (1970). The interpretation of geological factors for use in slope theory. Planning Open Pit Mines, Proceedings, Johannesburg, pages 55–71. Rocsience (2020). Stereonet Equal Angle / Equal Area Projection Comparison in Dips. Rogers, S., Bewick, R., Brzovic, A., andGaudreau,D. (2017). Integrating photogrammetry and discrete fracture network modelling for improved conditional simulation of underground wedge stability. Proceedings of the Eighth International Conference on Deep and High StressMining, (March):599–610. Rogers, S., Elmo,D.,Webb, G., andCatalan, A. (2014). Volumetric Fracture Intensity Measurement for Improved Rock Mass Characterisation and Fragmentation Assessment in Block Caving Operations. Rock Mechanics and Rock Engineering, 48(2):633–649. Sanabria, J. A. (2019). Evaluación del riesgo ante caída de bloques en taludes de roca a partir de procesamiento de imágenes digitales y simulación de redes de fracturamiento y de trayectorias de bloques. Msc thesis, Universidad Nacional de Colombia - Sede Bogotá, Bogotá. Saxena, A., Prasad, M.,Gupta, A., Bharill, N., Patel,O. P., Tiwari, A., Er, M. J.,Ding,W., and Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267:664–681. Staub, I., Fredriksson, A., Outters, N., and Golder Associates (2002). Strategy for a Rock Mechanics Site Descriptive Model. Sturzenegger, M. and Stead, D. (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4):163–182. Tannant, D. (2015). Review of Photogrammetry-Based Techniques for Characterization and Hazard Assessment of Rock Faces. International journal of geohazards and environment, 1:76–87. Terzaghi, R. D. (1965). Sources of error in joint surveys. Geotechnique, 15(3):287–304. Turner, A. and Schuster, R. (1996). Landslides: Investigation and Mitigation. National Academy of Sciences. Ulloa, C., Rodriguez, E., and Acosta, J. (1998). Plancha 227 La Mesa. Villalobos, S., Cacciari, P., and Futai, M. (2020). Stability assessment around a railway tunnel using terrestrial laser scanner data and finite element analysis. Revista Ingenieria de Construccion, 35(1):21–33. Vu, P. T., Ni, C.-F., Li,W.-C., Lee, I.-H., and Lin, C.-P. (2019). Particle-BasedWorkflow for Modeling Uncertainty of Reactive Transport in 3D Discrete Fracture Networks. Water, 11(12):2502. Wang, X. (2005). Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces. Faculty of the Virginia Polytechnic Institute and State University, page 113. Warburton, P. M. (1980). A stereological interpretation of joint trace data. International Journal of RockMechanics andMining Sciences and Geomechanics, 17(4):181–190. Warburton, P. M. (1985). A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers and Geosciences, 11(6):707–712. Wood, D. M. (2017). Geotechnical modelling. GeotechnicalModelling, pages 1–488. Wyllie, D. (2018). Rock Slope Engineering: Civil Applications, volume 13. CRC press, 5th edition. Wyllie, D. and Mah, C. (2004). Rock Slope Engineering Civil and Mining. Spon Press, London, 4th ed edition. Zhang, L. and Einstein, H. H. (2000). Estimating the intensity of rock discontinuities. International Journal of Rock Mechanics and Mining Sciences, 37(5):819–837. Zheng, H., Liu, D. F., and Li, C. G. (2005). Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering, 64(14):1871–1888. Zúñiga, J., Pairoa, S., and Becerra, J. (2012). Generación de Modelos Tridimensionales a partir de Fotogrametría , Aplicaciones en Geología Estructural. pages 1–3 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 174 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Civil y Agrícola |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80477/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80477/2/1107058051.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80477/3/1107058051.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 7ec35b830c0eb9c792ee430ae41e8c8b 7cf2d0d638f353e046a5ce1971c88174 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089245147529216 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Beltrán Calvo, Gloria Inés8aae1120f1872f13c7ceaa2f1cf25210600Hernández Carrillo, Rodrígo3869a49e385e9db941abfd6c603e33a7Rosada González, Omar Andrésf2013cc4b4bbf6e1dd567cf9ebb12218GRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUN2021-10-11T14:17:30Z2021-10-11T14:17:30Z2021-10-08https://repositorio.unal.edu.co/handle/unal/80477Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl comportamiento cinemático de un talud rocoso esta supeditado de manera primaria a las propiedades geométricas de las discontinuidades en macizos rocosos de poca altura (alrededor a 100 metros de alto). Un método numérico que es capaz de simular estas propiedades es el de las redes de fracturas discretas (DFN). Los parámetros primarios que son necesarios para la modelación de una DFN son: dirección, tamaño, porcentaje de terminación e intensidad de las discontinuidades. En esta investigación, se explora qué tan susceptible es un modelo de DFN ante la presencia de datos que direccionalmente clasifican como discordantes, para esto fue necesario la elaboración de un código escrito en Matlab que permite estudiar estos datos utilizando criterios estadísticos, tomados de la estadística direccional en coordenadas esféricas. Adicionalmente se propone una metodología que plantea una manera de analizar e interpretar este tipo de información y de esta forma, poder evaluar el nivel de representación de las discontinuidades simuladas respecto a las condiciones que tienen las mismas in-situ para tres casos de estudio, utilizando un equipo de fotogrametría de corto alcance para la caracterización de las fracturas. Finalmente se proponen una serie de temas que pueden ser considerados en futuras investigaciones relacionadas con este tema de investigación. (Texto tomado de la fuente).The kinematic rock slope behavior is subject mainly to joint geometric properties in rock masses of low height (around 100mhigh). TheDiscrete FractureNetwork (DFN) is a numerical method that can simulate this kind of property. The primary properties that are necessary for modeling a DFN are the following: orientation, fracture length, termination percentage, and fracture intensity. This research, try to prove how sensitive is a DFN model when it has directional outlier data, because of this, it was necessary to write a code in Matlab that is able to study this data using statistical analysis of spherical data. Also, this research proposes a methodology based on how to handle this kind of information and in this way, evaluate how representative is the joint simulation respect to in-situ rock joint in three study cases, using close-range photogrammetric equipment. Finally, it is proposed a set of topics that could be considered in future research.Universidad Nacional de ColombiaIncluye anexosMaestríaMagíster en Ingeniería - GeotecniaModelación y análisis en geotecniaxix, 174 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilPetrology - techniqueRock mechanicsRock slopesPetrología - TécnicaMecánica de rocasTaludes rocososDiscontinuidadesRedes de fracturas discretasFotogrametría de corto alcanceEstadística direccional en coordenadas esféricasTaludesRocasDFNFracmanFisherShapeMetrixSlopesRock mechanicsRockJointsDirectional statistics on spherical coordinatesClose-range photogrammetryPropuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcanceMethodological proposal for the adjustment of a discrete fracture network (DFN) from short-range photogrammetryTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM3GSM (2010). ShapeMetrix3D: 3D imaging for measuring and assesing rock and terrain surfaces.3GSM (2011). Measurement and assessment of rock and terrain surfaces by metric 3D images. (December):1–14.Acosta, J. and Ulloa, C. E. (2001). Memoria geológica de la plancha 227 La Mesa.Alghalandis, Y. F. (2014). Stochastic Modelling of Fractures in RockMasses. University of Adelaide, (March).Baecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). Statistical description of rock properties and sampling. 18th U.S. Symposium on RockMechanics, USRMS 1977, (January 1977).Barton, N. R. (1978). Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. International Journal of RockMechanics and Mining Sciences & Geomechanics Abstracts, 15(2):319–368.Becker, I., Koehrer, B., Waldvogel, M., Jelinek, W., and Hilgers, C. (2018). Comparing fracture statistics from outcrop and reservoir data using conventional manual and t-LiDAR derived scanlines in Ca2 carbonates from the Southern Permian Basin, Germany. Marine and Petroleum Geology, 95(April):228–245.Bonilla-Sierra, V., Elmouttie, M., Donzé, F. V., and Scholtès, L. (2017). Composite wedge failure using photogrammetric measurements and DFN-DEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 9(1):41–53.Borradaile, G. (2003). Statistics of Earth Science Data. Berlin, 1st ed edition.Brideau, M.-A. and Stead, D. (2009). The role of rear release surfaces, block size and lateral confinement on rock slope failure mechanisms. 62nd Canadian Geotechnical Conference, (1971):489–496.Brzovic, A., Rogers, S., Webb, G., Hurtado, J. P., Marin, N., Schachter, P., Alvarez, J., and Baraona, K. (2015). Discrete fracture network modelling to quantify rock mass preconditioning at the El Teniente Mine, Chile. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 124(3):163–177.Buyer, A. and Schubert, W. (2017). Calculation the Spacing of Discontinuities from 3D Point Clouds. Procedia Engineering, 191:270–278.Canavos, G. (1988). Probabilidad y Estadística: Aplicaciones y métodos. McGraw-Hill.Carter, B. J. and Lajtai, E. Z. (1992). Rock slope stability and distributed joint systems. Canadian Geotechnical Journal, 29(1):53–60.Chilès, J.-P. (2005). Stochastic Modeling of Natural Fractured Media: A Review. pages 285–294.Cleveland, L. J. andWartman, J. (2006). Principles and applications of digital photogrammetry for geotechnical engineering. Geotechnical Special Publication, (149):128–135.Cottrel, M., Kamera, R., and Hermanson, J. (2017). FracMan Kinematic Stability Assessment of Tunnels in Forsmark Layout D2. (February).Davy, P., Le Goc, R., and Darcel, C. (2013). A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. Journal of Geophysical Research: Solid Earth, 118(4):1393–1407.Dershowitz, W. and Einstein, H. H. (1988). Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(2):21–51.Dershowitz, W., Hermanson, J., Follin, S., and Mauldon, M. (2000). Fracture intensity measures in 1-D, 2-D, and 3-D at Äspö, Sweden. 4th North American RockMechanics Symposium, NARMS 2000, pages 849–853.Dershowitz, W., Pointe, P., and Doe, T. (2004). Advances in Discrete Fracture Network modeling. pages 882–894.Dershowitz,W. S. (1985). Rock joint systems. PhD thesis,Masachusetts Institute of Technology.Dershowitz,W. S. and Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In The 33rd U.S. Symposium on RockMechanics (USRMS), pages 757–766.Diederichs, M. S. (1990). DIPS: An interactive and graphical approach to the analysis of orientation based data. PhD thesis, University of Toronto.Drews, T., Miernik, G., Anders, K., Höfle, B., Profe, J., Emmerich, A., and Bechstädt, T. (2018). Validation of fracture data recognition in rock masses by automated plane detection in 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 109(June):19–31.Elmo, D. (2006). Evaluation of a hybrid FEM/DEM approach for determination of rock mass strength using a combination of discontinuity mapping and fracture mechanics. (March).Elmo, D., Rogers, S., Stead, D., and Eberhardt, E. (2014). Discrete fracture network approach to characterise rock mass fragmentation and implications for geomechanical upscaling. Transactions of the Institutions ofMining and Metallurgy, Section A: Mining Technology, 123(3):149–161.Esmaeilzadeh, A. and Shahriar, K. (2019). Optimized fuzzy cmeans – fuzzy covariance – fuzzy maximum likelihood estimation clustering method based on deferential evolutionary optimization algorithm for identification of rock mass discontinuities sets. Periodica Polytechnica Civil Engineering, 63(2):674–686.Fadakar Alghalandis, Y., Elmo, D., and Eberhardt, E. (2017). Similarity Analysis of Discrete Fracture Networks. (January 2018):0–20.Fairhurst, C. (2014). Thinking Deeper. ARMA e-newsletter, (1):1–17.Feng, X. T. andHudson, J. A. (2004). The ways ahead for rock engineering design methodologies. International Journal ofRockMechanics andMining Sciences, 41(2):255–273.Feng, X. T. and Hudson, J. A. (2011). Rock Engineering Design. CRC Press, Boca Raton, 1st ed edition.Fereshtenejad, S., Yoon, D. H., and Song, J. J. (2020). Application of the covariance matrix clustering algorithm for partitioning joint sets having various joint pole sizes and densities. Geosystem Engineering, 23(1):1–12.Fisher, N. I., Lewis, T., and Embleton, B. J. (1993). Statistical analysis of spherical data. Cambridge University Press (CUP).Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130):295–305.Fossen, H. (2010). Structural Geology. Cambrideg University Press, page 481.Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., and Calamita, F. (2020). Application of unmanned aerial vehicle data and discrete fracture network models for improved rockfall simulations. Remote Sensing, 12(12).Gao, F., Chen, D., Zhou, K., Niu, W., and Liu, H. (2019). A Fast Clustering Method for Identifying RockDiscontinuity Sets. KSCE Journal of Civil Engineering, 23(2):556–566.García, J. M. (2015). Nuevas Metodologías para el Análisis de Estabilidad de Taludes en Infraestructuras Lineales. Technical report.Golder Associates (2020). FracMan7 User’sManual. page 583.González de Vallejo, L., Ferrer, M., Ortuño, L., and Oteo, C. (2004). Ingeniería Geológica. Pearson, Madrid.Goodman, R. E. (1989). Introduction to RockMechanics. 2nd ed edition.Goodman, R. E. and Shi, G. (1985). Block Theory and its Application to Rock Engineering.Prentice-Hall, New Jersey, 1st ed edition.Grenon, M., Landry, A., Hadjigeorgiou, J., and Lajoie, P. L. (2017). Discrete fracture network based drift stability at the Éléonore mine. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 126(1):22–33.Hammah, R. E. and Curran, J. H. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35(7):889–905.Hammah, R. E. and Curran, J. H. (1999). On distance measures for the fuzzy K-means algorithm for joint data. RockMechanics and Rock Engineering, 32(1):1–27.Han, S.,Wang, G., and Li, M. (2018). A trace map comparison algorithm for the discrete fracture network models of rock masses. Computers and Geosciences, 115(September 2017):31–41.Haneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4):457–469.Havaej, M., Coggan, J., Stead, D., and Elmo, D. (2016). A combined remote sensing–numerical modelling approach to the stability analysis of delabole slate quarry, Cornwall, UK. RockMechanics and Rock Engineering, 49(4):1227–1245.Hekmatnejad, A., Crespin, B., Opazo, A., Emery, X., Hitschfeld-Kahler, N., and Elmo, D. (2020). Investigating the impact of the estimation error of fracture intensity (P32) on the evaluation of in-situ rock fragmentation and potential of blocks forming around tunnels. Tunnelling and Underground Space Technology, 106 (September):103596.Hekmatnejad, A., Emery, X., Brzovic, A., Schachter, P., and Vallejos, J. A. (2017). Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine, Chile. Engineering Geology, 228:97–106.Hernández-Carrillo, R. (2020). Reliability Assessment of Rock Slopes by Evidence Theory. PhD thesis, Universidad Nacional de Colombia - Sede Bogotá.Hoek, E. (1996). RockMass Classification. In Practical Rock Engineering, number 1972, pages 221 – 252.Hoek, E. (2006). Practical Rock Engineering. page 339.Hoek, E., Kaiser, P. K., and Bawden,W. F. (1998). Support of Underground Excavations in Hard Rock. A.A Balkema, Rotterdam, 3rd ed edition.Hudson, J. A. (2001). Rock engineering case histories: key factors, mechanisms and problems. In Elorante, P. and Sarkka, P., editors, Proceedings of the ISRM Regional Symposium Eurock, pages 13–20, Espoo, Finland. Balkema, Rotterdam.Hudson, J. A. and Feng, X. T. (2015). Rock Engineering Risk. CRCPress/Balkema, London, 1st ed edition.Hudson, J. A. and Harrison, J. P. (1992). A new approach to studying complete rock engineering problems. Quarterly Journal of Engineering Geology,, 25:93–105.Hudson, J. A. and Harrison, J. P. (1997). Engineering RockMechanics: An Introduction to the Principles.Itasca (2010).Numerical modeling software for advanced engineering analysis of jointed and blocky material, groundwater, and structural support in three dimensions.Itasca (2019). Jointing Tools (GUI/GIIC) in UDEC | US Minneapolis - Itasca Consulting Group, Inc.Jaboyedoff, M.,Oppikofer, T., Abella, A.,Derron, M.-h., Loye, A.,Metzger, R., and Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61:5–28.Jambayev, A. S. (2013). Discrete Fracture Network Modeling for a Carbonate Reservoir. PhD thesis.Jebahi, M., Andre, D., Terreros, I., and Iordanoff, I. (2015). Volume 1: Discrete Element Method to Model 3D Continuous Materials. In Numerical Methods in Engineering Series: Discrete Element Model and Simulation of Continuous Materials Behavior Set, page 198. ISTE / JohnWiley & Sons, London, 1st ed edition.Jimenez, R. (2008). Fuzzy spectral clustering for identification of rock discontinuity sets. RockMechanics and Rock Engineering, 41:929–939.Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics andMining Sciences, 40(3):283–353.Jing, L. and Stephansson, O. (2007a). Discrete Fracture Network (DFN) Method. Developments in Geotechnical Engineering, 85:365–398.Jing, L. and Stephansson,O. (2007b). Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications. Elsevier, 1st ed edition.Jouanna, P., Armangau, C., Batchelor, A., Bonazzi, D., Bruel, D., Ledoux, E., Cheung, P., Etchecopar, A., Fouillac, C., Louis, P., Mechler, P., Tabbagh, A., and Valla, P. (1993). A Summary of Field Test Methods in Fractured Rocks. ACADEMIC PRESS, INC.Khalokakaie, R. and ZareNaghadehi, M. (2012). Ranking the rock slope instability potential using the Interaction Matrix (IM) technique; a case study in Iran. Arabian Journal of Geosciences, 5(2):263–273.Kim, D. H., Balasubramaniam, A. S., and Gratchev, I. (2018). Application of photogrammetry and image analysis for rock slope investigation. Geotechnical Engineering, 49(2):49–56.Kulatilake, P. H.,Wathugala,D. N., and Stephansson,O. (1993). Stochastic Three Dimensional Joint Size, Intensity and SystemModelling and a Validation to an Area in Stripa Mine, Sweden. Soils and Foundations, 33(1):55–70.Lei, Q., Latham, J. P., and Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151–176.Lei, Q., Latham, J. P., and Xiang, J. (2016). Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks. RockMechanics and Rock Engineering, 49(12):4799–4816.Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman and Hall/CRC.Madabhushi, G. (2014). Centrifuge Modelling for Civil Engineers. CRC Press, Boca Raton.Mandl, G. (2005). Rock Joints: The Mechanical Genesis. Springer, 1st ed edition.Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London, 1st ed edition.Mardia, K. V. and Jupp, P. (2000). Directional Statistics. John Wiley & Sons, Baffins Lane.McClure, M.W. andHorne, R. N. (2013). Discrete Fracture Network Modeling of Hydraulic Stimulation-Coupling Flow and Geomechanics.Menegoni, N., Giordan, D., Perotti, C., and Tannant, D. D. (2019). Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery – Ormea rock slope, Italy. Engineering Geology, 252(March 2018):145–163.Merrien-Soukatchoff, V., Korini, T., and Thoraval, A. (2012). Use of an integrated discrete fracture network code for stochastic stability analyses of fractured rock masses. Rock Mechanics and Rock Engineering, 45(2):159–181.Miyoshi, T., Elmo, D., and Rogers, S. (2018). Influence of data analysis when exploiting DFN model representation in the application of rock mass classification systems. Journal of RockMechanics and Geotechnical Engineering, 10(6):1046–1062.Munkhchuluun, M. (2017). Linking the Fracture Intensity of an in Situ Rock Mass To Block Cave Mine Fragmentation. (August):108.Naghadehi, M. Z., Jimenez, R., KhaloKakaie, R., and Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes. Engineering Geology, 118(3-4):82–92.Nex, F. and Remondino, F. (2013). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1):1–15.Nguyen, A. T. and Gasc-barbier, V. M.-s. M. V. M. (2016). Grouping discontinuities in representative sets : influence on the stability analysis of slope cuts. Bulletin of Engineering Geology and the Environment, 75(4):1429–1444.Nikoli´c, M., Roje-Bonacci, T., and Ibrahimbegovi´c, A. (2016). Overview of the numerical methods for the modelling of rock mechanics problems. Tehnicki vjesnik - Technical Gazette, 23(2):627–637.Norrish, N. I. and Wyllie, D. C. (1996). Rock Slope Stability Analysis. In Landslides: Investigation and Mitigation, chapter 15, pages 391–425. The National Academies.Oyanguren, P. and Monge, L. A. (2005). Mecánica de Rocas: Fundamentos e Ingeniería de Taludes. 12(5):528–537.Palmström, A. (2001). Measurement and characterizations of rock mass jointing. In-Situ Characterization of Rocks - Chapter 2, pages 1–40.Patiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011a). Memoria geológica de la plancha 247 Cáqueza.Patiño, A., Fuquen, J., Ramos, J., Pedraza, A., Ceballos, L., Pinzón, L., Jerónimo, Y., Álvarez, L., and Torres, A. (2011b). Plancha 247 Bogotá Sur Este (Caqueza).Peñuela, J. L., Beltrán-Calvo, G. I., andHernández-Carrillo, R. (2019). Adquisición y evaluación de datos geométricos de macizos rocosos a partir de imágenes tridimensionales para su uso en análisis geotécnicos. Ingeniería y Ciencia, 15(29):43–73.Plesha, M. E. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation. International Journal for Numerical and Analytical Methods in Geomechanics, 11(4):345–362.Priest, S. (1993). Discontinuity Analysis for Rock Engineering. Springer, Hong Kong, 1st ed edition.Proctor, R., White, T., and Terzaghi, K. (1946). Rock tunneling with steel supports. Youngstown.Riquelme, A., Tomás, R., Cano, M., Pastor, J. L., and Abellán, A. (2018). Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51(10):3005–3028.Riquelme, A. J., Abellán, A., Tomás, R., and Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers and Geosciences, 68:38–52.Riquelme, A. J., Tomás, R., and Abellán, A. (2016). Characterization of rock slopes through slope mass rating using 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 84:165–176.Robertson, a. M. (1970). The interpretation of geological factors for use in slope theory. Planning Open Pit Mines, Proceedings, Johannesburg, pages 55–71.Rocsience (2020). Stereonet Equal Angle / Equal Area Projection Comparison in Dips.Rogers, S., Bewick, R., Brzovic, A., andGaudreau,D. (2017). Integrating photogrammetry and discrete fracture network modelling for improved conditional simulation of underground wedge stability. Proceedings of the Eighth International Conference on Deep and High StressMining, (March):599–610.Rogers, S., Elmo,D.,Webb, G., andCatalan, A. (2014). Volumetric Fracture Intensity Measurement for Improved Rock Mass Characterisation and Fragmentation Assessment in Block Caving Operations. Rock Mechanics and Rock Engineering, 48(2):633–649.Sanabria, J. A. (2019). Evaluación del riesgo ante caída de bloques en taludes de roca a partir de procesamiento de imágenes digitales y simulación de redes de fracturamiento y de trayectorias de bloques. Msc thesis, Universidad Nacional de Colombia - Sede Bogotá, Bogotá.Saxena, A., Prasad, M.,Gupta, A., Bharill, N., Patel,O. P., Tiwari, A., Er, M. J.,Ding,W., and Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267:664–681.Staub, I., Fredriksson, A., Outters, N., and Golder Associates (2002). Strategy for a Rock Mechanics Site Descriptive Model.Sturzenegger, M. and Stead, D. (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4):163–182.Tannant, D. (2015). Review of Photogrammetry-Based Techniques for Characterization and Hazard Assessment of Rock Faces. International journal of geohazards and environment, 1:76–87.Terzaghi, R. D. (1965). Sources of error in joint surveys. Geotechnique, 15(3):287–304.Turner, A. and Schuster, R. (1996). Landslides: Investigation and Mitigation. National Academy of Sciences.Ulloa, C., Rodriguez, E., and Acosta, J. (1998). Plancha 227 La Mesa.Villalobos, S., Cacciari, P., and Futai, M. (2020). Stability assessment around a railway tunnel using terrestrial laser scanner data and finite element analysis. Revista Ingenieria de Construccion, 35(1):21–33.Vu, P. T., Ni, C.-F., Li,W.-C., Lee, I.-H., and Lin, C.-P. (2019). Particle-BasedWorkflow for Modeling Uncertainty of Reactive Transport in 3D Discrete Fracture Networks. Water, 11(12):2502.Wang, X. (2005). Stereological interpretation of rock fracture traces on borehole walls and other cylindrical surfaces. Faculty of the Virginia Polytechnic Institute and State University, page 113.Warburton, P. M. (1980). A stereological interpretation of joint trace data. International Journal of RockMechanics andMining Sciences and Geomechanics, 17(4):181–190.Warburton, P. M. (1985). A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers and Geosciences, 11(6):707–712.Wood, D. M. (2017). Geotechnical modelling. GeotechnicalModelling, pages 1–488.Wyllie, D. (2018). Rock Slope Engineering: Civil Applications, volume 13. CRC press, 5th edition.Wyllie, D. and Mah, C. (2004). Rock Slope Engineering Civil and Mining. Spon Press, London, 4th ed edition.Zhang, L. and Einstein, H. H. (2000). Estimating the intensity of rock discontinuities. International Journal of Rock Mechanics and Mining Sciences, 37(5):819–837.Zheng, H., Liu, D. F., and Li, C. G. (2005). Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering, 64(14):1871–1888.Zúñiga, J., Pairoa, S., and Becerra, J. (2012). Generación de Modelos Tridimensionales a partir de Fotogrametría , Aplicaciones en Geología Estructural. pages 1–3Caracterización de macizos rocosos mediante técnicas de análisis de imágenes tridimensionales para análisis de estabilidad en taludes vialesUniversidad Nacional de ColombiaPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80477/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1107058051.2021.pdf1107058051.2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf69541062https://repositorio.unal.edu.co/bitstream/unal/80477/2/1107058051.2021.pdf7ec35b830c0eb9c792ee430ae41e8c8bMD52THUMBNAIL1107058051.2021.pdf.jpg1107058051.2021.pdf.jpgGenerated Thumbnailimage/jpeg4263https://repositorio.unal.edu.co/bitstream/unal/80477/3/1107058051.2021.pdf.jpg7cf2d0d638f353e046a5ce1971c88174MD53unal/80477oai:repositorio.unal.edu.co:unal/804772023-07-29 23:04:11.999Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |