The lewowicz number of linear diffeomorphisms on the torus

We prove that 2 is a Lewowicz number of every linear Anosov diffeomorphism on the torus. This result is independent of any linear metric and provides an explicit Lyapounov function for the diffeomorfisms.

Autores:
Guiñez, Jorge
Rueda, Ángel D.
Tipo de recurso:
Article of journal
Fecha de publicación:
1996
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43649
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43649
http://bdigital.unal.edu.co/33747/
Palabra clave:
Manifold
Riemannian manifold
Anosov diffeomorphism
quadratic form
positive definite quadratic form
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_41da0aa5d8a665a4005799fbeec3614b
oai_identifier_str oai:repositorio.unal.edu.co:unal/43649
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guiñez, Jorgeac4af22e-db4d-499e-ac8c-8a28d3f59bbe300Rueda, Ángel D.c42bbf47-cf4b-4c54-b00b-c4b4602ca04c3002019-06-28T12:15:26Z2019-06-28T12:15:26Z1996https://repositorio.unal.edu.co/handle/unal/43649http://bdigital.unal.edu.co/33747/We prove that 2 is a Lewowicz number of every linear Anosov diffeomorphism on the torus. This result is independent of any linear metric and provides an explicit Lyapounov function for the diffeomorfisms.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/33646Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 30, núm. 1 (1996); 65-69 0034-7426Guiñez, Jorge and Rueda, Ángel D. (1996) The lewowicz number of linear diffeomorphisms on the torus. Revista Colombiana de Matemáticas; Vol. 30, núm. 1 (1996); 65-69 0034-7426 .The lewowicz number of linear diffeomorphisms on the torusArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTManifoldRiemannian manifoldAnosov diffeomorphismquadratic formpositive definite quadratic formORIGINAL33646-125146-1-PB.pdfapplication/pdf1772637https://repositorio.unal.edu.co/bitstream/unal/43649/1/33646-125146-1-PB.pdfddfef97cd36073490f39a0cd7f608e73MD51THUMBNAIL33646-125146-1-PB.pdf.jpg33646-125146-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6958https://repositorio.unal.edu.co/bitstream/unal/43649/2/33646-125146-1-PB.pdf.jpgc584ccdfa9a0cb61c7156febe537b91aMD52unal/43649oai:repositorio.unal.edu.co:unal/436492023-02-13 23:04:49.062Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv The lewowicz number of linear diffeomorphisms on the torus
title The lewowicz number of linear diffeomorphisms on the torus
spellingShingle The lewowicz number of linear diffeomorphisms on the torus
Manifold
Riemannian manifold
Anosov diffeomorphism
quadratic form
positive definite quadratic form
title_short The lewowicz number of linear diffeomorphisms on the torus
title_full The lewowicz number of linear diffeomorphisms on the torus
title_fullStr The lewowicz number of linear diffeomorphisms on the torus
title_full_unstemmed The lewowicz number of linear diffeomorphisms on the torus
title_sort The lewowicz number of linear diffeomorphisms on the torus
dc.creator.fl_str_mv Guiñez, Jorge
Rueda, Ángel D.
dc.contributor.author.spa.fl_str_mv Guiñez, Jorge
Rueda, Ángel D.
dc.subject.proposal.spa.fl_str_mv Manifold
Riemannian manifold
Anosov diffeomorphism
quadratic form
positive definite quadratic form
topic Manifold
Riemannian manifold
Anosov diffeomorphism
quadratic form
positive definite quadratic form
description We prove that 2 is a Lewowicz number of every linear Anosov diffeomorphism on the torus. This result is independent of any linear metric and provides an explicit Lyapounov function for the diffeomorfisms.
publishDate 1996
dc.date.issued.spa.fl_str_mv 1996
dc.date.accessioned.spa.fl_str_mv 2019-06-28T12:15:26Z
dc.date.available.spa.fl_str_mv 2019-06-28T12:15:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/43649
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/33747/
url https://repositorio.unal.edu.co/handle/unal/43649
http://bdigital.unal.edu.co/33747/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/33646
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 30, núm. 1 (1996); 65-69 0034-7426
dc.relation.references.spa.fl_str_mv Guiñez, Jorge and Rueda, Ángel D. (1996) The lewowicz number of linear diffeomorphisms on the torus. Revista Colombiana de Matemáticas; Vol. 30, núm. 1 (1996); 65-69 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/43649/1/33646-125146-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/43649/2/33646-125146-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv ddfef97cd36073490f39a0cd7f608e73
c584ccdfa9a0cb61c7156febe537b91a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089751229104128