Método para la clasificación de cultivos agrícolas a pequeña escala empleando técnicas de aprendizaje profundo

Aproximadamente el 75% de la superficie agrícola global pertenece a pequeños agricultores, siendo esenciales para el abastecimiento local de alimentos. Sin embargo, los desafíos comunes incluyen la falta de caracterización precisa de los cultivos y la escasa información detallada en las zonas produc...

Full description

Autores:
Arregocés Guerra, Paulina
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86302
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86302
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
630 - Agricultura y tecnologías relacionadas
Procesamiento de imágenes
Agricultura Inteligente
imágenes aéreas
VANTs
Aprendizaje profundo
Redes Neuronales Convolucionales
Smart Farming
aerial imagery
UAVs
Deep Learning
Convolutional neural networks
Redes neuronales convolucionales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Description
Summary:Aproximadamente el 75% de la superficie agrícola global pertenece a pequeños agricultores, siendo esenciales para el abastecimiento local de alimentos. Sin embargo, los desafíos comunes incluyen la falta de caracterización precisa de los cultivos y la escasa información detallada en las zonas productivas. La Agricultura Inteligente, que utiliza tecnologías avanzadas como Vehículos Aéreos No Tripulados (VANTs) y visión por computadora, ofrece soluciones; sin embargo, su falta de accesibilidad excluye al 94% de los pequeños agricultores en Colombia. Este trabajo aborda la necesidad de proponer un método de clasificación de cultivos agrícolas a pequeña escala empleando técnicas de aprendizaje profundo. Se utiliza una VANT DJI Mini 2 SE, accesible en el mercado, para capturar imágenes en San Cristóbal, un área rural de Medellín, Colombia, con el objetivo de identificar cultivos de cebolla verde o de rama, follaje y áreas sin cultivo. Con 259 imágenes y 4315 instancias etiquetadas, se emplean modelos de Redes Neuronales Convolucionales (CNNs, por sus siglas en inglés) para la clasificación de objetos, segmentación de instancias y segmentación semántica. Se evaluaron métodos de Aprendizaje Profundo utilizando Transfer Learning, siendo Mask R-CNN el elegido con un 93% de precisión, una tasa de falsos positivos del 9% y falsos negativos del 4%. Las métricas incluyen un porcentaje de precisión promedio medio (mAP%) del 55.49% para follaje, 49.09% para áreas sin cultivo y 58.21% para la cebolla. El conjunto de datos etiquetado está disponible para fomentar la colaboración e investigación comparativa. En términos generales se concluye que mediante la captura de imágenes digitales con VANTs y el uso de métodos de aprendizaje profundo, se puede obtener información precisa y oportuna sobre pequeñas explotaciones agrícolas. (Texto tomado de la fuente)