Pares coherentes generalizados de polinomios ortogonales en dos variables
En este trabajo nos centraremos en la obtención de pares x_k-coherentes de polinomios ortogonales en varias variables a partir de un sistema de polinomios ortogonales escogido inicialmente, concepto introducido en [28] de 2019 por Francisco Marcellán, Misael Marriaga, Teresa Pérez y Miguel Piñar, me...
- Autores:
-
Cortés Garzón, Juan Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84168
- Palabra clave:
- 510 - Matemáticas
Funciones ortogonales
Functions, orthogonal
Series, orthogonal
Series ortogonales
Polinomios Ortogonales
Varias Variables
Pares Coherentes
Programación
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_414d6b3e1cded725d49fc6e05155f2bc |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84168 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
dc.title.translated.eng.fl_str_mv |
Generalized Coherent Pairs of Orthogonal Polynomials in Two Variables |
title |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
spellingShingle |
Pares coherentes generalizados de polinomios ortogonales en dos variables 510 - Matemáticas Funciones ortogonales Functions, orthogonal Series, orthogonal Series ortogonales Polinomios Ortogonales Varias Variables Pares Coherentes Programación |
title_short |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
title_full |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
title_fullStr |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
title_full_unstemmed |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
title_sort |
Pares coherentes generalizados de polinomios ortogonales en dos variables |
dc.creator.fl_str_mv |
Cortés Garzón, Juan Esteban |
dc.contributor.advisor.none.fl_str_mv |
Pinzón Cortés, Natalia Camila |
dc.contributor.author.none.fl_str_mv |
Cortés Garzón, Juan Esteban |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas |
topic |
510 - Matemáticas Funciones ortogonales Functions, orthogonal Series, orthogonal Series ortogonales Polinomios Ortogonales Varias Variables Pares Coherentes Programación |
dc.subject.lemb.spa.fl_str_mv |
Funciones ortogonales |
dc.subject.lemb.eng.fl_str_mv |
Functions, orthogonal Series, orthogonal |
dc.subject.lemb.spe.fl_str_mv |
Series ortogonales |
dc.subject.proposal.spa.fl_str_mv |
Polinomios Ortogonales Varias Variables Pares Coherentes Programación |
description |
En este trabajo nos centraremos en la obtención de pares x_k-coherentes de polinomios ortogonales en varias variables a partir de un sistema de polinomios ortogonales escogido inicialmente, concepto introducido en [28] de 2019 por Francisco Marcellán, Misael Marriaga, Teresa Pérez y Miguel Piñar, mediante el uso de programación en el software Wolfram Mathematica. (Texto tomado de la fuente) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-07T20:15:55Z |
dc.date.available.none.fl_str_mv |
2023-07-07T20:15:55Z |
dc.date.issued.none.fl_str_mv |
2023-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84168 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84168 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Álvarez-Nodarse, Renato: Monogr. Semin. Mat. García Galdeano. Vol. 26: Polinomios hipergeométricos clásicos y q-polinomios. Zaragoza: Prensas Universitarias de Zaragoza, 2003. – ISBN 84–7733–637–7. Appell, P. ; Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques. Polynômes d’Hermite. 1926. Area, Iván: Hypergeometric multivariate orthogonal polynomials. En: Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser, 2020. – ISBN 978–3–030–36743–5; 978–3–030–36746–6; 978–3–030– 36744–2, p. 165–193. Area, Iván. ; Godoy, E. ; Ronveaux, A. ; Zarzo, A.: Bivariate second-order linear partial differential equations and orthogonal polynomial solutions. En: J. Math. Anal.Appl. 387 (2012), Nr. 2, p. 1188–1208. – ISSN 0022–247X. Barrio, Roberto ; Peña, Juan M. ; Sauer, Tomas: Three term recurrence for the evaluation of multivariate orthogonal polynomials. En: Journal of Approximation Theory 162 (2010), Nr. 2, p. 407–420. – ISSN 0021–9045. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978. Delgado, Antonia M.: Ortogonalidad no estándar: Problemas Directos e Inversos, Doctoral Dissertation, Universidad Carlos III de Madrid. In Spanish, Tesis de Grado, 2006. Delgado, Antonia M. ; Geronimo, Jeffrey S. ; Iliev, Plamen ; Marcellán, Francisco: Two variable orthogonal polynomials and structured matrices. En: SIAM J. Matrix Anal. Appl. 28 (2006), Nr. 1, p. 118–147. – ISSN 0895–4798. Delgado, Antonia M. ; Marcellán, Francisco: Companion linear functionals and Sobolev inner products: a case study. En: Methods Appl. Anal. 11 (2004), Nr. 2, p. 237–266. Delgado, Antonia M. ; Marcellán, Francisco: On an extension of symmetric coherent pairs of orthogonal polynomials. En: J. Comput. Appl. Math. 178 (2005), Nr. 1-2, p. 155–168. Dunkl, Charles F. ; Xu, Yuan: Orthogonal polynomials of several variables. Cambridge: Cambridge University Press, 2001 (Encycl. Math. Appl.). ISSN 0953–4806. Engelis, G. K.: On some two-dimensional analogues of the classical orthogonal polynomials. En: Latv. Mat. Ezheg. 15 (1974), p. 169–202. – ISSN 0321–2270. Fernández, Lidia ; Pérez, Teresa E. ; Piñar, Miguel A.: Classical orthogonal polynomials in two variables: a matrix approach. En: Numer. Algorithms 39 (2005), Nr. 1-3, p. 131–142. – ISSN 1017–1398. Garza, Luis ; Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-coherent pairs on the unit circle. En: Abstr. Appl. Anal. 2013 (2013), p. 8. – Id/No 307974. – ISSN 1085–3375. Hahn, Wolfgang: Über die Jacobischen Polynome und zwei verwandte Polynomklassen. En: Mathematische Zeitschrift 39 (1935), p. 634–638. Hermite, M. ; des sciences (France), Académie: Sur Un Nouveau Développement en Série Des Fonctions. Imprimerie de Gauthier-Villars, 1864. Iserles, Arieh ; Koch, P. E. ; Nørsett, Syvert P. ; Sanz-Serna, J. M.: On polynomials orthogonal with respect to certain Sobolev inner products. En: J. Approx. Theory 65 (1991), Nr. 2, p. 151–175. – ISSN 0021–9045. Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. 1859 (1859), Nr. 56, p. 149–165. de Jesus, M. N. ; Marcellán, Francisco. ; Petronilho, J. ; Pinzón-Cortés, N. C.: (M,N)-coherent pairs of order (m, n) and Sobolev orthogonal polynomials. En: J. Comput. Appl. Math. 256 (2014), p. 16–35. – ISSN 0377–0427. Karlin, S. ; McGregor, J. On some stochastic models in genetics. Stochastic Models Med. Biol., Proc. Sympos. Univ. Wisconsin 1963, 245-279. 1964. Karlin, S. ; McGregor, J.: Linear Growth Models with Many Types and Multidimensional Hahn Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 261–288. Koornwinder, Tom: Two-Variable Analogues of the Classical Orthogonal Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 435–495. Kowalski, M. A.: Orthogonality and recursion formulas for polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 316–323. – ISSN 0036–1410. Kowalski, M. A.: The recursion formulas for orthogonal polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 309–315. – ISSN 0036–1410. Krall, H. L. ; Frink, Orrin: A new class of orthogonal polynomials: The Bessel polynomials. En: Trans. Am. Math. Soc. 65 (1949), p. 100–115. – ISSN 0002–9947. Krall, H. L. ; Sheffer, I. M.: Orthogonal polynomials in two variables. En: Ann. Mat. Pura Appl. (4) 76 (1967), p. 325–376. – ISSN 0373–3114. Legendre, Adrien M.: Recherches sur l’attraction des spheroides homogenes. En: Mémoires de mathématique et de physique : prés. á l’Acad´emie Royale des Sciences, par divers savans, et lûs dans ses assemblées 1785 (2007), p. 411 – 434. Marcellán, Francisco ; Marriaga, Misael E. ; Pérez, Teresa E. ; Piñar, Miguel A.: Coherent pairs of bivariate orthogonal polynomials. En: J. Approx. Theory 245 (2019), p. 40–63. – ISSN 0021–9045. Marcellán, Francisco ; Pérez, Teresa E. ; Piñar, Miguel A.: Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case. En: Ann. Numer. Math. 2 (1995), Nr. 1-4, p. 93–122. – ISSN 1021–2655. Marcellán, Francisco ; Petronilho, J.: Orthogonal polynomials and coherent pairs: The classical case. En: Indag. Math., New Ser. 6 (1995), Nr. 3, p. 287–307. – ISSN 0019–3577. Marcellán, Francisco ; Petronilho, José C. ; Pérez, Teresa E. ; Piñar, Miguel A.: What is beyond coherent pairs of orthogonal polynomials? En: J. Comput. Appl. Math. 65 (1995), Nr. 1-3, p. 267–277. – ISSN 0377–0427. Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-q-coherent pairs. En: Numer. Algorithms 60 (2012), Nr. 2, p. 223–239. – ISSN 1017–1398. Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-Dω-coherent pairs. En: J. Difference Equ. Appl. 19 (2013), Nr. 11, p. 1828–1848. – ISSN 1023–6198. Meijer, H. G.: Coherent pairs and zeros of Sobolev-type orthogonal polynomials. En: Indag. Math., New Ser. 4 (1993), Nr. 2, p. 163–176. – ISSN 0019–3577. Meijer, H. G.: Determination of all coherent pairs. En: J. Approx. Theory 89 (1997), Nr. 3, p. 321–343. – ISSN 0021–9045. Proriol, Joseph: Sur une famille de polynômes à deux variables orthogonaux dans un triangle. En: C. R. Acad. Sci., Paris 245 (1957), p. 2459–2461. – ISSN 0001–4036. Stieltjes, T.-J.: Recherches sur les fractions continues. En: Annales de la Faculté des sciences de Toulouse : Mathématiques 8 (1894), Nr. 4, p. J1–J122. Suetin, P. K.: Anal. Methods Spec. Funct.. Vol. 3: Orthogonal polynomials in two variables. Transl. from the 1988 Russian original by E. V. Pankratiev . Amsterdam: Gordon and Breach Science Publishers, 1999. – ISBN 90–5699–167–1. Szegö, Gábor: Colloq. Publ., Am. Math. Soc.. Vol. 23: Orthogonal polynomials. American Mathematical Society (AMS), Providence, RI, 1939 ISSN 0065–9258. Tchebychev, Pafnutii L.: Théorie des mécanismes connus sous le nom de parallélogrammes. Imprimerie de l’Académie impériale des sciences, 1853. Tchebyshev, Pafnutii L.: Sur le développement des fonctions à une seule variable. En: Bull. Acad. Sci. St. Petersb 1 (1859), Nr. 193-200, p. 124. Wolfram Research, Inc. Mathematica, Version 12.1. Champaign, Illinois, (2020). Zernike, F. ; Brinkman, H. C.: Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. En: Proc. Akad. Wet. Amsterdam 38 (1935), p. 161–170. – ISSN 0370–0348. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
vii, 46 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84168/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84168/2/1016053440.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84168/3/1016053440.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a b3e542a9dd75f53acac62e668c10cb65 814ba0be9368a808782094395b6d5ee0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089719042015232 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pinzón Cortés, Natalia Camila4a612934f85871565b47483201ed4e44Cortés Garzón, Juan Estebane239e2a6e623e40849eeeae7c0cc37f62023-07-07T20:15:55Z2023-07-07T20:15:55Z2023-06https://repositorio.unal.edu.co/handle/unal/84168Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En este trabajo nos centraremos en la obtención de pares x_k-coherentes de polinomios ortogonales en varias variables a partir de un sistema de polinomios ortogonales escogido inicialmente, concepto introducido en [28] de 2019 por Francisco Marcellán, Misael Marriaga, Teresa Pérez y Miguel Piñar, mediante el uso de programación en el software Wolfram Mathematica. (Texto tomado de la fuente)In this work we will focus on obtaining xk-coherent pairs of orthogonal polynomials in several variables from an initially chosen system of orthogonal polynomials, a concept introduced in [28] of 2019 by Francisco Marcellán, Misael Marriaga, Teresa Pérez and Miguel Piñar, by using programming in Wolfram Mathematica software.MaestríaMagíster en Ciencias - Matemáticasvii, 46 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasFunciones ortogonalesFunctions, orthogonalSeries, orthogonalSeries ortogonalesPolinomios OrtogonalesVarias VariablesPares CoherentesProgramaciónPares coherentes generalizados de polinomios ortogonales en dos variablesGeneralized Coherent Pairs of Orthogonal Polynomials in Two VariablesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMÁlvarez-Nodarse, Renato: Monogr. Semin. Mat. García Galdeano. Vol. 26: Polinomios hipergeométricos clásicos y q-polinomios. Zaragoza: Prensas Universitarias de Zaragoza, 2003. – ISBN 84–7733–637–7.Appell, P. ; Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques. Polynômes d’Hermite. 1926.Area, Iván: Hypergeometric multivariate orthogonal polynomials. En: Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser, 2020. – ISBN 978–3–030–36743–5; 978–3–030–36746–6; 978–3–030– 36744–2, p. 165–193.Area, Iván. ; Godoy, E. ; Ronveaux, A. ; Zarzo, A.: Bivariate second-order linear partial differential equations and orthogonal polynomial solutions. En: J. Math. Anal.Appl. 387 (2012), Nr. 2, p. 1188–1208. – ISSN 0022–247X.Barrio, Roberto ; Peña, Juan M. ; Sauer, Tomas: Three term recurrence for the evaluation of multivariate orthogonal polynomials. En: Journal of Approximation Theory 162 (2010), Nr. 2, p. 407–420. – ISSN 0021–9045.Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.Delgado, Antonia M.: Ortogonalidad no estándar: Problemas Directos e Inversos, Doctoral Dissertation, Universidad Carlos III de Madrid. In Spanish, Tesis de Grado, 2006.Delgado, Antonia M. ; Geronimo, Jeffrey S. ; Iliev, Plamen ; Marcellán, Francisco: Two variable orthogonal polynomials and structured matrices. En: SIAM J. Matrix Anal. Appl. 28 (2006), Nr. 1, p. 118–147. – ISSN 0895–4798.Delgado, Antonia M. ; Marcellán, Francisco: Companion linear functionals and Sobolev inner products: a case study. En: Methods Appl. Anal. 11 (2004), Nr. 2, p. 237–266.Delgado, Antonia M. ; Marcellán, Francisco: On an extension of symmetric coherent pairs of orthogonal polynomials. En: J. Comput. Appl. Math. 178 (2005), Nr. 1-2, p. 155–168.Dunkl, Charles F. ; Xu, Yuan: Orthogonal polynomials of several variables. Cambridge: Cambridge University Press, 2001 (Encycl. Math. Appl.). ISSN 0953–4806.Engelis, G. K.: On some two-dimensional analogues of the classical orthogonal polynomials. En: Latv. Mat. Ezheg. 15 (1974), p. 169–202. – ISSN 0321–2270.Fernández, Lidia ; Pérez, Teresa E. ; Piñar, Miguel A.: Classical orthogonal polynomials in two variables: a matrix approach. En: Numer. Algorithms 39 (2005), Nr. 1-3, p. 131–142. – ISSN 1017–1398.Garza, Luis ; Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-coherent pairs on the unit circle. En: Abstr. Appl. Anal. 2013 (2013), p. 8. – Id/No 307974. – ISSN 1085–3375.Hahn, Wolfgang: Über die Jacobischen Polynome und zwei verwandte Polynomklassen. En: Mathematische Zeitschrift 39 (1935), p. 634–638.Hermite, M. ; des sciences (France), Académie: Sur Un Nouveau Développement en Série Des Fonctions. Imprimerie de Gauthier-Villars, 1864.Iserles, Arieh ; Koch, P. E. ; Nørsett, Syvert P. ; Sanz-Serna, J. M.: On polynomials orthogonal with respect to certain Sobolev inner products. En: J. Approx. Theory 65 (1991), Nr. 2, p. 151–175. – ISSN 0021–9045.Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. 1859 (1859), Nr. 56, p. 149–165.de Jesus, M. N. ; Marcellán, Francisco. ; Petronilho, J. ; Pinzón-Cortés, N. C.: (M,N)-coherent pairs of order (m, n) and Sobolev orthogonal polynomials. En: J. Comput. Appl. Math. 256 (2014), p. 16–35. – ISSN 0377–0427.Karlin, S. ; McGregor, J. On some stochastic models in genetics. Stochastic Models Med. Biol., Proc. Sympos. Univ. Wisconsin 1963, 245-279. 1964.Karlin, S. ; McGregor, J.: Linear Growth Models with Many Types and Multidimensional Hahn Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 261–288.Koornwinder, Tom: Two-Variable Analogues of the Classical Orthogonal Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 435–495.Kowalski, M. A.: Orthogonality and recursion formulas for polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 316–323. – ISSN 0036–1410.Kowalski, M. A.: The recursion formulas for orthogonal polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 309–315. – ISSN 0036–1410.Krall, H. L. ; Frink, Orrin: A new class of orthogonal polynomials: The Bessel polynomials. En: Trans. Am. Math. Soc. 65 (1949), p. 100–115. – ISSN 0002–9947.Krall, H. L. ; Sheffer, I. M.: Orthogonal polynomials in two variables. En: Ann. Mat. Pura Appl. (4) 76 (1967), p. 325–376. – ISSN 0373–3114.Legendre, Adrien M.: Recherches sur l’attraction des spheroides homogenes. En: Mémoires de mathématique et de physique : prés. á l’Acad´emie Royale des Sciences, par divers savans, et lûs dans ses assemblées 1785 (2007), p. 411 – 434.Marcellán, Francisco ; Marriaga, Misael E. ; Pérez, Teresa E. ; Piñar, Miguel A.: Coherent pairs of bivariate orthogonal polynomials. En: J. Approx. Theory 245 (2019), p. 40–63. – ISSN 0021–9045.Marcellán, Francisco ; Pérez, Teresa E. ; Piñar, Miguel A.: Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case. En: Ann. Numer. Math. 2 (1995), Nr. 1-4, p. 93–122. – ISSN 1021–2655.Marcellán, Francisco ; Petronilho, J.: Orthogonal polynomials and coherent pairs: The classical case. En: Indag. Math., New Ser. 6 (1995), Nr. 3, p. 287–307. – ISSN 0019–3577.Marcellán, Francisco ; Petronilho, José C. ; Pérez, Teresa E. ; Piñar, Miguel A.: What is beyond coherent pairs of orthogonal polynomials? En: J. Comput. Appl. Math. 65 (1995), Nr. 1-3, p. 267–277. – ISSN 0377–0427.Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-q-coherent pairs. En: Numer. Algorithms 60 (2012), Nr. 2, p. 223–239. – ISSN 1017–1398.Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-Dω-coherent pairs. En: J. Difference Equ. Appl. 19 (2013), Nr. 11, p. 1828–1848. – ISSN 1023–6198.Meijer, H. G.: Coherent pairs and zeros of Sobolev-type orthogonal polynomials. En: Indag. Math., New Ser. 4 (1993), Nr. 2, p. 163–176. – ISSN 0019–3577.Meijer, H. G.: Determination of all coherent pairs. En: J. Approx. Theory 89 (1997), Nr. 3, p. 321–343. – ISSN 0021–9045.Proriol, Joseph: Sur une famille de polynômes à deux variables orthogonaux dans un triangle. En: C. R. Acad. Sci., Paris 245 (1957), p. 2459–2461. – ISSN 0001–4036.Stieltjes, T.-J.: Recherches sur les fractions continues. En: Annales de la Faculté des sciences de Toulouse : Mathématiques 8 (1894), Nr. 4, p. J1–J122.Suetin, P. K.: Anal. Methods Spec. Funct.. Vol. 3: Orthogonal polynomials in two variables. Transl. from the 1988 Russian original by E. V. Pankratiev . Amsterdam: Gordon and Breach Science Publishers, 1999. – ISBN 90–5699–167–1.Szegö, Gábor: Colloq. Publ., Am. Math. Soc.. Vol. 23: Orthogonal polynomials. American Mathematical Society (AMS), Providence, RI, 1939 ISSN 0065–9258.Tchebychev, Pafnutii L.: Théorie des mécanismes connus sous le nom de parallélogrammes. Imprimerie de l’Académie impériale des sciences, 1853.Tchebyshev, Pafnutii L.: Sur le développement des fonctions à une seule variable. En: Bull. Acad. Sci. St. Petersb 1 (1859), Nr. 193-200, p. 124.Wolfram Research, Inc. Mathematica, Version 12.1. Champaign, Illinois, (2020).Zernike, F. ; Brinkman, H. C.: Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. En: Proc. Akad. Wet. Amsterdam 38 (1935), p. 161–170. – ISSN 0370–0348.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84168/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1016053440.2023.pdf1016053440.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf445142https://repositorio.unal.edu.co/bitstream/unal/84168/2/1016053440.2023.pdfb3e542a9dd75f53acac62e668c10cb65MD52THUMBNAIL1016053440.2023.pdf.jpg1016053440.2023.pdf.jpgGenerated Thumbnailimage/jpeg4117https://repositorio.unal.edu.co/bitstream/unal/84168/3/1016053440.2023.pdf.jpg814ba0be9368a808782094395b6d5ee0MD53unal/84168oai:repositorio.unal.edu.co:unal/841682023-08-12 23:03:56.169Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |