Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana

Ilustraciones

Autores:
Múnera Gómez, Luisa Fernanda
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85529
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85529
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::547 - Química orgánica
Aminoácidos
Compuestos de coordinación
Compuestos de coordinación
Actividad antibacteriana
Aminoácidos
Glicina
Alanina
Metáles divalentes
Ácidos dicarboxílicos
Concentración mínima inhibitoria
Coordination compounds
Antibacterial activity
Amino acids
Glycine
Alanine
Divalent metals
Dicarboxylic acids
Minimum inhibitory concentration
Glicina
Alanina
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_413e1636ef4200f1c8adb6b08dd83c5f
oai_identifier_str oai:repositorio.unal.edu.co:unal/85529
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
dc.title.translated.eng.fl_str_mv Coordination compounds of divalent metals with amino acids and dicarboxylic acids: potential antibacterial activity
title Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
spellingShingle Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::547 - Química orgánica
Aminoácidos
Compuestos de coordinación
Compuestos de coordinación
Actividad antibacteriana
Aminoácidos
Glicina
Alanina
Metáles divalentes
Ácidos dicarboxílicos
Concentración mínima inhibitoria
Coordination compounds
Antibacterial activity
Amino acids
Glycine
Alanine
Divalent metals
Dicarboxylic acids
Minimum inhibitory concentration
Glicina
Alanina
title_short Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
title_full Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
title_fullStr Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
title_full_unstemmed Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
title_sort Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana
dc.creator.fl_str_mv Múnera Gómez, Luisa Fernanda
dc.contributor.advisor.none.fl_str_mv Pabón Gelves, Elizabeth
Muñoz Acevedo, Juan Carlos
dc.contributor.author.none.fl_str_mv Múnera Gómez, Luisa Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Ciencia de Materiales Avanzados
dc.contributor.orcid.spa.fl_str_mv Múnera Gómez, Luisa [0009-0006-3097-2849]
dc.contributor.cvlac.spa.fl_str_mv Múnera Gómez, Luisa Fernanda [0001949499]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::547 - Química orgánica
Aminoácidos
Compuestos de coordinación
Compuestos de coordinación
Actividad antibacteriana
Aminoácidos
Glicina
Alanina
Metáles divalentes
Ácidos dicarboxílicos
Concentración mínima inhibitoria
Coordination compounds
Antibacterial activity
Amino acids
Glycine
Alanine
Divalent metals
Dicarboxylic acids
Minimum inhibitory concentration
Glicina
Alanina
dc.subject.lemb.none.fl_str_mv Aminoácidos
Compuestos de coordinación
dc.subject.proposal.spa.fl_str_mv Compuestos de coordinación
Actividad antibacteriana
Aminoácidos
Glicina
Alanina
Metáles divalentes
Ácidos dicarboxílicos
Concentración mínima inhibitoria
dc.subject.proposal.eng.fl_str_mv Coordination compounds
Antibacterial activity
Amino acids
Glycine
Alanine
Divalent metals
Dicarboxylic acids
Minimum inhibitory concentration
dc.subject.wikidata.none.fl_str_mv Glicina
Alanina
description Ilustraciones
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12
dc.date.accessioned.none.fl_str_mv 2024-01-30T16:50:48Z
dc.date.available.none.fl_str_mv 2024-01-30T16:50:48Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85529
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85529
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv T. Sattar and M. Athar, ‘Hydrothermal Synthesis and Characterization of Copper Glycinate (Bio-MOF-29) and Its in vitro Drugs Adsorption Studies’, Open J Inorg Chem, vol. 07, pp. 17–27, 2017, doi: 10.4236/ojic.2017.72002.
V. André, P. C. Alves, and M. T. Duarte, ‘Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review)’, Inorganica Chim Acta, vol. 525, p.120474, 2021, doi: 10.1016/j.ica.2021.120474.
S. He et al., ‘Metal-organic frameworks for advanced drug delivery’, Acta Pharm Sin B, vol. 11, pp. 2362–2395, 2021, doi: 10.1016/j.apsb.2021.03.019.
M. S. Mohamed, A. A. Shoukry, and A. G. Ali, ‘Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2′-bipyridine and 2,2′- dipyridylamine. the DNA-binding studies and biological activity’, Spectrochim Acta A. (SAA), vol. 86, pp. 562–570, 2012, doi: 10.1016/j.saa.2011.11.015.
M. Aljahdali, ‘Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine’, Spectrochim Acta A. (SAA), vol. 112, pp. 364–376, 2013, doi: 10.1016/j.saa.2013.03.057
D. A. Köse, E. Toprak, A. Kasąrci, E. Avci, G. A. Avci, O. Sąhin, and O. Buyükgüngör, ‘Synthesis, Spectral, and Thermal Studies of Co(II), Ni(II), Cu(II), and Zn(II)-Glycinato Complexes and Investigation of Their Biological Properties: Crystal Structure of [Cu(μ-gly) 2(H2O)] n’, Syn react inorg metaorg nanometal chem, vol. 46, pp. 1109–1118, 2016, doi: 10.1080/15533174.2013.801855.
P. A. Kobielska, A. J. Howarth, O. K. Farha, and S. Nayak, ‘Metal–organic frameworks for heavy metal removal from water’, Coord Chem Rev, vol. 358, pp. 92– 107, 2018, doi: 10.1016/j.ccr.2017.12.010.
Y. N. Wang, H. X. Li, L. Jia, S. S. Zhang, Y. R. Zhao, L. Du, and Q. H. Zhao, ‘Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(VI) and Fe(III) ions in water’, Inorg Chem Commun, vol. 110, p. 107575, 2019, doi: 10.1016/j.inoche.2019.107575
A. Pastrana-Dávila, A. Amaya-Flórez, C. Aranaga, J. Ellena, M. Macías, E. Flórez-López, and R. F. D’Vries, ‘Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds’, J Mol Struct, vol. 1245, 2021, doi: 10.1016/j.molstruc.2021.131109.
A. A. García-Valdivia et al., ‘Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid’, J Inorg Biochem, vol. 215, 2021, doi: 10.1016/j.jinorgbio.2020.111308.
E. B. Bauer, A. A. Haase, R. M. Reich, D. C. Crans, and F. E. Kühn, ‘Organometallic and coordination rhenium compounds and their potential in cancer therapy’, Coord Chem Rev, vol. 393, pp. 79–117, 2019, doi: 10.1016/j.ccr.2019.04.014.
V. Subramaniyam, P. v. Ravi, and M. Pichumani, ‘Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review’, J Mol Struct, vol. 1251, 2022, doi: 10.1016/j.molstruc.2021.131931.
J. An, S. J. Geib, and N. L. Rosi, ‘High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores’, J Am Chem Soc, vol. 132, pp. 38–39, 2010, doi: 10.1021/ja909169x.
S. L. Anderson et al., ‘Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor’, Nat Commun, vol. 10, 2019, doi: 10.1038/s41467-019-09486-2.
J. An, S. J. Geib, and N. L. Rosi, ‘Cation-triggered drug release from a porous zinc-adeninate metal-organic framework’, J Am Chem Soc, vol. 131, pp. 8376–8377, 2009, doi: 10.1021/ja902972w.
D. İnci, R. Aydın, and Y. Zorlu, ‘Biomacromolecular interactions and radical scavenging activities of one-dimensional (1D) copper(II) glycinate coordination polymer’, J Iran Chem soc, vol. 18, pp. 3017-3030, 2021, doi: 10.1007/s13738-021-02249-1.
C. Li, K. Deng, Z. Tang, and L. Jiang, ‘Twisted metal-amino acid nanobelts: Chirality transcription from molecules to frameworks’, J Am Chem Soc, vol. 132, pp. 8202–8209, 2010, doi: 10.1021/ja102827f
S. Shu, Y. F. Jian, T. Zhang, W. L. Guo, and X. Liu, ‘A novel threedimensional copper aspartate coordination compound with efficient photoluminescence’, Z. fur Naturforsch. - B J. Chem. Sci, vol. 75, pp. 281–286, 2020, doi: 10.1515/znb-2019-0156.
N. Bhardwaj, S. K. Pandey, J. Mehta, S. K. Bhardwaj, K. H. Kim, and A. Deep, ‘Bioactive nano-metal–organic frameworks as antimicrobials against Grampositive and Gram negative bacteria’, Toxicol Res (Camb), vol. 7, pp. 931–941, 2018, doi: 10.1039/C8TX00087E.
S. Shams, W. Ahmad, A. H. Memon, S. Shams, Y. Wei, Q. Yuan, and H. Liang, ‘Cu/H3BTC MOF as a potential antibacterial therapeutic agent against: Staphylococcus aureus and Escherichia coli’, New J Chem, vol. 44, pp. 17671–17678, 2020, doi: 10.1039/d0nj04120c.
X. Lu, J. Ye, D. Zhang, R. Xie, R. F. Bogale, Y. Sun, L. Zhao, Q. Zhao, and G. Ning, ‘Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility’, J Inorg Biochem, vol. 138, pp. 114–121, 2014, doi: 10.1016/J.JINORGBIO.2014.05.005.
Y. Liu, X. Xu, Q. Xia, G. Yuan, Q. He, and Y. Cui, ‘Multiple topological isomerism of three-connected networks in silver-based metal-organoboron frameworks’, Chem Comm, vol. 46, pp. 2608–2610, 2010, doi: 10.1039/b923365b.
W. Zhuang, D. Yuan, J. R. Li, Z. Luo, H. C. Zhou, S. Bashir, and J. Liu, ‘Highly potent bactericidal activity of porous metal-organic frameworks’, Adv Health Mater, vol. 1, pp. 225–238, 2012, doi: 10.1002/adhm.201100043.
N. A. Siddiki, S. Islam, S. Begum, and M. A. Salam, ‘Synthesis, spectral characterization, thermal behavior and biological activities study of ternary metal complexes of alanine and 1,8-diaminonapthalene with Co(III), Ni(II), Cu(II), Zn(II) and Cd(II)’, Mater Today: Proc, 2019, vol. 46, pp. 6374–6381, doi: 10.1016/j.matpr.2020.06.126.
T. Kundu, S. C. Sahoo, S. Saha, and R. Banerjee, ‘Salt metathesis in three dimensional metal-organic frameworks (MOFs) with unprecedented hydrolytic regenerability’, Chem Comm, vol. 49, pp. 5262–5264, 2013, doi: 10.1039/c3cc41842a.
Ingrid M. Weiss, Christina Muth, Robert Drumm, and, and Helmut O. K. Kirchn, ‘Thermal decomposition of the aminoacids glycine, cysteine, aspartic acid,asparagine, glutamic acid, glutamine, arginine and histidine’, BMC Biophys, vol. 11, 2018, doi: 10.1186/s13628-018-0042-4.
V. Y. Yablokov, I. L. Smel’tsova, I. A. Zelyaev, and S. v. Mitrofanova, ‘Studies of the rates of thermal decomposition of glycine, alanine, and serine’, Russ J Gen Chem, vol. 79, pp. 1704–1706, 2009, doi: 10.1134/S1070363209080209.
M. A. Ali, X. Liu, and J. Qiu, “A review on the vitrification of metal coordination compounds and their photonic applications,” J Non Cryst Solids, vol. 597, pp. 121936, 2022, doi: 10.1016/J.JNONCRYSOL.2022.121936.
E. Battaner A, Biomoléculas. Una introducción estructural a la bioquímica, 1st ed. Salmanca. España: Ediciones Universidad de Salamanca, 2012.
S. Horike, S. S. Nagarkar, T. Ogawa, and S. Kitagawa, “A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids,” Angew. Chem. Int Ed, vol. 59, pp. 6652–6664, 2020, doi: 10.1002/anie.201911384.
H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, 2013, doi: 10.1126/science.1230444
T. Kundu, S. C. Sahoo, and R. Banerjee, “Variable water adsorption in amino acid derivative based homochiral metal organic frameworks,” Cryst Growth Des, vol. 12, pp. 4633–4640, 2012, doi: 10.1021/cg3008443.
S. Rojas, A. Arenas-Vivo, and P. Horcajada, “Metal-organic frameworks: A novel platform for combined advanced therapies,” Coord Chem Rev, vol. 388, pp. 202–226, 2019, doi: 10.1016/j.ccr.2019.02.032.
M. Ding, W. Liu, and R. Gref, “Nanoscale MOFs : from synthesis to drug delivery and theranostics,” Adv Drug Deliv Rev, p. 114496, 2022, doi: 10.1016/j.addr.2022.114496.
B. Wang, L. H. Xie, X. Wang, X. M. Liu, J. Li, and J. R. Li, “Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal,” Green Energy Environ, vol. 3, pp. 191–228, 2018, doi: 10.1016/j.gee.2018.03.001.
T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, “MOF-74 building unit has a direct impact on toxic gas adsorption,” Chem Eng Sci, vol. 66, pp. 163–170, 2011, doi: 10.1016/j.ces.2010.10.002.
N. Saikumari, “Synthesis and characterization of amino acid Schiff base and its copper (II) complex and its antimicrobial studies,” in Mater Today: Proc 2021, vol. 47, pp. 1777–1781, doi: 10.1016/j.matpr.2021.02.607.
F. Sevgi, U. Bagkesici, A. N. Kursunlu, and E. Guler, “Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity,” J Mol Struct, vol. 1154, pp. 256–260, 2018, doi: 10.1016/j.molstruc.2017.10.052.
D. U. Miodragović et al., “Syntheses, characterization and antimicrobial activity of the first complexes of Zn(II), Cd(II) and Co(II) with N-benzyloxycarbonylglycine: X-ray crystal structure of the polymeric Cd(II) complex,” Inorg Chim Acta, vol. 361, pp. 86-94, 2008, doi: 10.1016/J.ICA.2007.06.041.
R. Abazari, A. R. Mahjoub, F. Ataei, A. Morsali, C. L. Carpenter-Warren, K. Mehdizadeh, and A. M. Z. Slawin, “Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer,” Inorg Chem, vol. 57, pp. 13364–13379, 2018, doi: 10.1021/acs.inorgchem.8b01955
J. Hou, X. Long, X. Wang, L. Li, D. Mao, Y. Luo, and H. Ren, “Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption,” J Hazard Mater, vol. 442, 2023, doi: 10.1016/j.jhazmat.2022.130042.
S. S. Shekhawat et al., “Antibiotic resistance genes and bacterial diversity: A comparative molecular study of treated sewage from different origins and their impact on irrigated soils,” Chemosphere, vol. 307, 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136175.
X. Lu, J. Ye, Y. Sun, R. F. Bogale, L. Zhao, P. Tian, and G. Ning, “Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers,” Dalton Trans, vol. 43, pp. 10104–10113, 2014, doi: 10.1039/c4dt00270a.
I. P. Burneo Saavedra, “Metal-Organic Frameworks made of amino acids and adenine: chirality and hydrochromism,” Tesis Doctoral, Universitat Autonoma de Barcelona, 2017.
E. Yang, L. Wang, F. Wang, Q. Lin, Y. Kang, and J. Zhang, “Zeolitic metal-organic frameworks based on amino acid,” Inorg Chem, vol. 53, pp. 10027–10029, 2014, doi: 10.1021/ic501556w.
J. J. Zhang et al., “Two 3D supramolecular polymers constructed from an amino acid and a high-nuclear Ln6Cu24 cluster node,” Chem Eur J, vol. 10, pp. 3963–3969, 2004, doi: 10.1002/chem.200400018.
P. Ferrer, I. Da Silva, J. Rubio-Zuazo, and G. R. Castro, “Synthesis and crystal structure of the novel metal organic framework Zn(C3H5NO2S)2,” Powder Diffr, vol. 760, pp. 366–370, 2014, doi: 10.1017/S0885715614000554.
H. yuan Zhang, H. jia Yu, H. xia Xu, J. song Ren, and X. gang Qu, “Structural diversity of lanthanide-amino acid complexes under near physiological pH conditions and their recognition of single-stranded DNA,” Polyhedron, vol. 26, pp. 5250–5256, 2007, doi: 10.1016/j.poly.2007.07.052.
T. T. Luo, L. Y. Hsu, C. C. Su, C. H. Ueng, T. C. Tsai, and K. L. Lu, “Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle,” Inorg Chem, vol. 46, pp. 1532–1534, 2007, doi: 10.1021/ic062132k.
C. B. Liu, Y. N. Gong, Y. Chen, and H. L. Wen, “Self-assembly and structures of newtransition metal complexes with phenyl substituted pyrazole carboxylic acid and N-donor co-ligands,” Inorg Chim Acta, vol. 383, pp. 277–286, 2012, doi: 10.1016/J.ICA.2011.11.015.
H. M. Tay, N. Kyratzis, S. Thoonen, S. A. Boer, D. R. Turner, and C. Hua, “Synthetic strategies towards chiral coordination polymers,” Coord Chem Rev, vol. 435, 2021, doi: 10.1016/j.ccr.2020.213763.
J. Dharmaraja, T. Esakkidurai, P. Subbaraj, and S. Shobana, “Mixed ligand complex formation of 2-aminobenzamide with Cu(ii) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies,” Spectrochimica Acta, Part A (SAA), vol. 114, pp. 607–621, 2013, doi: 10.1016/j.saa.2013.05.043.
S. M. F. Vilela, D. Ananias, P. Silva, M. Nolasco, L. D. Carlos, V. De Zea Bermudez, J. Rocha, J. P. C. Tomé, and F. A. Almeida Paz, “Coordination polymers based on a glycinederivative ligand,” Cryst Eng Comm, vol. 16, pp. 8119–8137, 2014, doi: 10.1039/c4ce00465e.
J. He, G. Zhang, D. Xiao, H. Chen, S. Yan, X. Wang, J. Yang, and E. Wang, “Helicity controlled by the chirality of amino acid: Two novel enantiopure chiral 3D architectures containing fivefold interwoven helices,” Cryst Eng Comm, vol. 14, pp. 3609–3614, 2012, doi: 10.1039/c2ce25038a.
A. C. Tella, S. O. Owalude, P. A. Ajibade, N. Simon, S. J. Olatunji, M. S. M. Abdelbaky, and S. Garcia-Granda, “Synthesis, characterization, crystal structure and antimicrobial studies of a novel Cu(II) complex based on itaconic acid and nicotinamide,” J Mol Struct, vol. 1125, pp. 570–575, 2016, doi: 10.1016/j.molstruc.2016.07.016.
N. Rabiee et al., “Green metal-organic frameworks (MOFs) for biomedical applications,” Microporus Mesoporus Mater, vol. 335, p. 111670, 2022, doi: 10.1016/J.MICROMESO.2021.111670.
M. Berchel et al., “A silver-based metal-organic framework material as a ‘reservoir’ of bactericidal metal ions,” New J of Chem, vol. 35, pp. 1000–1003, 2011, doi: 10.1039/c1nj20202b.
K. Martín-Betancor, S. Aguado, I. Rodea-Palomares, M. Tamayo-Belda, F. Leganés, R. Rosal, and F. Fernández-Piñas, “Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms,” Sci Total Environ, vol. 595, pp. 547–555, 2017, doi: 10.1016/j.scitotenv.2017.03.250.
G. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorozyński, “Metal-organic frameworks: Mechanisms of antibacterial action and potential applications,” Drug Discov Today, vol. 21, pp. 1009–1018, 2016, doi: 10.1016/j.drudis.2016.04.009.
R. Li, X. Kong, J. Dong, K. Li, T. Wan, and H. Wu, “Two new Ag-MOFs: Synthesis, structure, electrocatalytic hydrogen evolution and H2O2 electrochemical sensing,” Inorg Chim Acta, vol. 544, p. 121208, 2023, doi: 10.1016/J.ICA.2022.121208.
S. Wen-Wen, S. Chen, and H. Jin-Song, “A high selective Zn-based luminescent metal-organic framework for fluorescence sensing detecting iron(III) and trinitrophenol,” Inorg Chem Commun, vol. 149, p. 110368, 2023, doi: 10.1016/J.INOCHE.2022.110368.
S. H. Alisir, S. Demir, B. Sariboga, and O. Buyukgungor, “A disparate 3-D silver(I) coordination polymer of pyridine-3,5-dicarboxylate and pyrimidine with strong intermetallic interactions: X-ray crystallography, photoluminescence and antimicrobial activity,” J Coord Chem, vol. 68 pp. 155–168, 2015, doi: 10.1080/00958972.2014.978307.
M. A. Ghasemzadeh and B. Mirhosseini-Eshkevari, “Poly(acrylic acid)/Fe3O4 supported on MIL-100(Cr) MOF as a novel and magnetic nanocatalyst for the synthesis of Pyrido[2,3-d]Pyrimidines,” Heliyon, vol. 8, p. 10022, 2022, doi: 10.1016/j.heliyon.2022.e10022.
S. Fatemeh Seyedpour et al., “Tailoring the Biocidal Activity of Novel Silver-Based Metal Azolate Frameworks,” ACS Sustain Chem Eng, vol. 8, pp. 7588–7599, 2020, doi: 10.1021/acssuschemeng.0c00201.
J. H. Jo, H. C. Kim, S. Huh, Y. Kim, and D. N. Lee, “Antibacterial activities of CuMOFs containing glutarates and bipyridyl ligands,” Dalton Trans, vol. 48, pp. 8084–8093, 2019, doi: 10.1039/c9dt00791a.
H. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, and L. Wen, “Novel aminofunctionalized Ni(II)-based MOFs for efficiently photocatalytic reduction of CO2 to CO with superior selectivity under visible-light illumination,” Chem Eng J, vol. 455, 2022, doi: 10.1016/j.cej.2022.140425.
J. Yoo, J. H. Kim, Y. S. Sohn, and D. Youngkyu, “Platinum(II) complexes of 3,3′-disubstituted-2,2′-bypyridines. Synthesis, structures, cytotoxic effect and unusual solvolysis in DMSO,” Inorg Chim Acta, vol. 263, pp. 53–60,1997, doi: 10.1016/S0020-1693(97)05566-
N. Politeo, M. Pisačić, M. Daković, V. Sokol, and B. M. Kukovec, “The first coordination compound of 6-fluoronicotinate: The crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4′- bipyridine,” Acta Crystallogr. E: Crystallogr, vol. 76, pp. 500–505, 2020, doi: 10.1107/S2056989020003023/XI2024SUP3.DOCX.
P. Cao, X. Wu, W. Zhang, L. Zhao, W. Sun, and Z. Tang, “Killing Oral Bacteria Using Metal-Organic Frameworks,” Ind Eng Chem Res, vol. 59, pp. 1559–1567, 2020, doi: 10.1021/acs.iecr.9b05659.
K. Xu et al., “Ce (III)-terephthalic acid metal-organic frameworks as highly efficient·OH radical scavengers for fuel cells and investigation of its antioxidation mechanism,” Mater Today Energy, vol. 31, pp. 101195, 2023, doi: 10.1016/J.MTENER.2022.101195.
Y. Gao, X. H. Yi, C. C. Wang, F. Wang, and P. Wang, “Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst,” Mater Res Bull, vol. 158, pp. 112072, 2023, doi: 10.1016/J.MATERRESBULL.2022.112072.
B. J. Zhang, C. J. Wang, G. M. Qiu, S. Huang, X. L. Zhou, J. Weng, and Y. Y. Wang, “Polycarboxylate anions effect on the structures of a series of transition metal-based coordination polymers: Syntheses, crystal structures and bioactivities,” Inorg Chim Acta, vol. 397, pp. 48–59, 2013, doi: 10.1016/J.ICA.2012.11.018.
G. Yuan, H. Tu, M. Li, J. Liu, C. Zhao, J. Liao, Y. Yang, J. Yang, and N. Liu, “Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution,” Appl Surf Sci, vol. 466, pp. 903–910, 2019, doi: 10.1016/j.apsusc.2018.10.129.
X. Wang, J. D. Ranford, and J. J. Vittal, “One-dimensional coordination polymers: Cu(II) and Zn(II) complexes of N-(2-pyridylmethyl)-glycine and N-(2-pyridylmethyl)-lalanine,” J Mol Struct, vol. 796, pp. 28–35, 2006, doi: 10.1016/j.molstruc.2006.03.090.
Z. H. Chohan, M. Praveen, and A. Ghaffar, “Synthesis, characterisation and biological role of anions (nitrate, sulphate, oxalate and acetate) in Co(II), Cu(II) and Ni(II) metal chelates of some Schiff base derived amino acids,” Syn react inorg metaorg nanometal chem, vol. 28, pp. 1673–1687, 1998, doi: 10.1080/00945719809349422.
Z. Lü, D. Zhang, S. Gao, and D. Zhu, “Two helical one-dimensional copper(II) coordination polymers based on N-(2-hydroxylbenzyl)glycine and N-(2-hydroxylbenzyl)-Lalanine: Syntheses, crystal structures and magnetic studies,” Inorg Chem Commun, vol. 8, pp. 746–750, 2005, doi: 10.1016/j.inoche.2005.05.012.
M. Estrader, C. Diaz, J. Ribas, X. Solans, and M. Font-Bardía, “Synthesis, characterization and magnetic properties of six new copper(II) complexes with aminoacids as bridging ligand, exhibiting ferromagnetic coupling,” Inorg Chim Acta, vol. 361, pp. 3963–3969, 2008, doi: 10.1016/j.ica.2008.03.028.
Z. Vargová, M. Almáši, L. Arabuli, K. Györyová, V. Zeleňák, and J. Kuchár, “Utilization of IR spectral detailed analysis for coordination mode determination in novel Zncyclen-aminoacid complexes,” Spectrochimica Acta, Part A (SAA), vol. 78, pp. 788–793, 2011, doi: 10.1016/j.saa.2010.12.022.
J. K. MacLaren and C. Janiak, “Amino-acid based coordination polymers,” Inorg Chim Acta, vol. 389, pp. 183–190, 2012, doi: 10.1016/j.ica.2012.03.010.
M. Y. Li, F. Wang, Z. G. Gu, and J. Zhang, “Synthesis of homochiral zeolitic metalorganic frameworks with amino acid and tetrazolates for chiral recognition,” RSC Adv, vol. 7, pp. 4872–4875, 2017, doi: 10.1039/c6ra27069g.
I. Ahmed, U. Yunus, M. Nadeem, M. H. Bhatti, and M. Mehmood, “Post synthetically modified compounds of Cd-MOF by L-amino acids for luminescent applications,” J Solid State Chem, vol. 287, pp. 121320, 2020, doi: 10.1016/j.jssc.2020.121320.
N. Nishat, S. Dhyani, and H. S. Manisha, “Development of antimicrobial aminoacidmodified bisphenol-A formaldehyde resin and its transition-metal complexes,” Poly Bulletin, vol. 64, pp. 523–536, 2010, doi: 10.1007/s00289-009-0154-8.
H. I. Beltrán, A. Abreu, L. S. Zamudio-rivera, T. Mancilla, and R. Santillán, “Síntesis y caracterización espectroscópica de N-(2-hidroxibencil )-α-aminoácidos,” Rev. Soc. Quím. Méx. Vol., vol. 45, pp. 152–158, 2001, doi: 000186194.
S. Konar, K. Gagnon, A. Clearfield, C. Thompson, J. Hartle, C. Ericson, and C. Nelson, “Structural determination and characterization of copper and zinc bis-glycinates with X-ray crystallography and mass spectrometry,” J Coord Chem, vol. 63, pp. 3335–3347, 2010, doi: 10.1080/00958972.2010.514336.
R. Bikas, B. Soltani, H. Sheykhi, M. Korabik, and M. Hossaini-Sadr, “Synthesis, crystal structure and magneto-structural studies of 2D copper(II) coordination polymer containing L-alanine amino acid,” J Mol Struct, vol. 1168, pp. 195–201, 2018, doi: 10.1016/j.molstruc.2018.05.016.
C. Kamble, R. Chavan, and V. Kamble, ‘A Review on Amino Acids’, Research & Reviews: A J of Drug Design & Disco, vol. 8, pp. 19–27, 2021, doi: 10.37591/RRJoDDD.
C. Furman, M. Howsam, and E. Lipka, ‘Recent developments in separation methods for enantiomeric ratio determination of amino acids specifically involved in cataract and Alzheimer’s disease’, TrAC, vol. 141, p. 116287, 2021, doi: 10.1016/J.TRAC.2021.116287.
H. Cai, Y. L. Huang, and D. Li, ‘Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications’, Coord Chem Rev, vol. 378, pp. 207–221, 2019, doi: 10.1016/j.ccr.2017.12.003.
J. Yang and Y. W. Yang, ‘Metal–Organic Frameworks for Biomedical Applications’, Small, vol. 16, 2020, doi: 10.1002/smll.201906846
K. Nakamoto, ‘Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry’, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Sixth edition, 2009.
M. Can, S. Demirci, A. K. Sunol, and N. Sahiner, ‘An amino acid, l-Glutamic acidbased metal-organic frameworks and their antibacterial, blood compatibility, biocompatibility, and sensor properties’, Microporous Mesoporous Mater, vol. 309, pp. 110533, 2020, doi: 10.1016/J.MICROMESO.2020.110533.
X. Ye, D. Wang, K. Yuan, Y. Dong, Z. Chen, C. Huang, Z. Yu, and D. Wu, ‘Synthesis, characterization and antibacterial activity of [Zn(formato)2(4,4′-bipy)] complex’, J Mol Struct, vol. 1225, pp. 129094, 2021, doi: 10.1016/J.MOLSTRUC.2020.129094.
B. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, and S. Wu, “Two-dimensional antibacterial materials,” Prog Mater Sci, vol. 130, 2022, doi: 10.1016/j.pmatsci.2022.100976.
S. Ali Akbar Razavi and A. Morsali, “Linker functionalized metal-organic frameworks,” Coord Chem Rev, vol. 399, pp. 213023, 2019, doi: 10.1016/j.ccr.2019.213023.
G. N. Lucena, R. C. Alves, M. P. Abuçafy, L. A. Chiavacci, I. C. da Silva, F. R. Pavan, and R. C. G. Frem, “Zn-based porous coordination solid as diclofenac sodium carrier,” J Solid State Chem, vol. 260, pp. 67–72, 2018, doi: 10.1016/j.jssc.2018.01.011.
K. Yuan et al., “Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid,” J Mol Struct, vol. 1241, 2021, doi: 10.1016/j.molstruc.2021.130624.
F. Akbarzadeh, M. Motaghi, N. P. S. Chauhan, and G. Sargazi, “A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application,” Heliyon, vol. 6, 2020, doi: 10.1016/J.HELIYON.2020.E03231.
I. Wiegand, K. Hilpert, and R. E. W. Hancock, “Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances,” Nat Protoc, vol. 3, pp. 163–175, 2008, doi: 10.1038/nprot.2007.521.
A. Liu, C. C. Wang, C. zheng Wang, H. fen Fu, W. Peng, Y. L. Cao, H. Y. Chu, and A. F. Du, “Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers,” J Colloid Interface Sci, vol. 512, pp. 730–739, 2018, doi: 10.1016/j.jcis.2017.10.099.
M. Juan and Z. Peralta, “Síntesis, caracterización y evaluación de la actividad biológica de compuestos de coordinación de cobalto con pirazinamida,” Rev Soc Quím Perú, vol. 86, pp. 315–328, 2020, doi: 10.37761/rsqp.v86i3.303.
G. B. Deacon and R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coord. Chem. Rev., vol. 33, pp. 227–250, 1980, doi: 10.1016/S0010-8545(00)80455-5.
M. H. El-Newehy, S. M. Osman, M. S. Refat, S. S. Al-Deyab, and A. El-Faham, “Microwave synthesis of copolymers based on itaconic acid moiety and their utility for scavenging of copper (II) and lead (II),” J of Macromol Sci, Part A: P A C, vol. 52, pp. 561–576, 2015, doi: 10.1080/10601325.2015.1039335.
F. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim, and H. K. Jeong, “Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers,” J Mater Chem, vol. 5, pp. 6090–6099, 2017, doi: 10.1039/c6ta11170j.
M. Bradley, D., Gitlitz, “Metal-Nitrogen Infrared Stretching Frequencies in Dialkylamido-transition Metal Compounds,” Nat, vol. 218, pp. 353–354, 1968, doi: 10.1038/218353b0.
H. G. T. Nguyen, R. Tao, and R. D. Van Zee, “Porosity, Powder X-Ray Diffraction Patterns, Skeletal Density, and Thermal Stability of NIST Zeolitic Reference Materials RM 8850, RM 8851, and RM 8852,” J Res Natl Inst Stand Technol, vol. 126, pp. 1–10, 2021, doi: 10.6028/jres.126.047.
J. M. Newsam, C. Z. Yang, H. E. King, R. H. Jones, and D. Xie, “Experiences in studying zeolites and related microporous materials by synchrotron x-ray diffraction†,” J of Phy and Chem of Solids, vol. 52, pp. 1281–1288, 1991, doi: 10.1016/0022-3697(91)90204-D.
M. Eswaramoorthy, S. Neeraj, and C. N. R. Rao, “Synthesis of hexagonal microporous silica and aluminophosphate by supramolecular templating of a short-chain amine,” Microporus Mesoporus Mater, vol. 28, pp. 205–210, 1999, doi: 10.1016/S1387-1811(98)00309-6.
T. D. Agboola and M. A. Bisi-Johnson, “Occurrence of Listeria monocytogenes in irrigation water and irrigated vegetables in selected areas of Osun State, Nigeria,” Sci Afr, vol. 19, 2023, doi: 10.1016/j.sciaf.2022.e01503.
X. Fan, J. B. Gurtler, and J. P. Mattheis, “Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: A Review,” J Food Prot, vol. 86, 2023, doi: 10.1016/j.jfp.2023.100100.
M. E. Doyle, J. Archer, C. W. Kaspar, and R. Weiss, “Human Illness Caused by E . coli O157 : H7 from Food and Non-food Sources,” FRI Briefings, pp. 1–37, 2006, [Online]. Available: http://fri.wisc.edu/docs/pdf/FRIBrief_EcoliO157H7humanillness.pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 100 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85529/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85529/4/1152188158.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85529/5/1152188158.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
6d1d8e45f7052c92d8335e17b53a86a2
762657c0791e69a5e456a840df6c7a90
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089851475066880
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pabón Gelves, Elizabeth29dab4728be81c8d9276a582c19c9b32Muñoz Acevedo, Juan Carlos9febf6fa56a6f9b8cf7adb1c171a1540Múnera Gómez, Luisa Fernanda7aa0ca975a5f1e24170e43474b8ea2daCiencia de Materiales AvanzadosMúnera Gómez, Luisa [0009-0006-3097-2849]Múnera Gómez, Luisa Fernanda [0001949499]2024-01-30T16:50:48Z2024-01-30T16:50:48Z2023-12https://repositorio.unal.edu.co/handle/unal/85529Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLos compuestos de coordinación con ligandos orgánicos de interés biológico han demostrado tener actividad antibacteriana ante una gran variedad de géneros entre los que se incluyen algunas bacterias resistentes a los tratamientos convencionales. Los aminoácidos son un grupo de moléculas muy versátiles con dos grupos funcionales (amino y carboxilo), esto favorece la interacción con el metal permitiendo sintetizar compuestos con alto potencial antibacteriano. En esta tesis se sintetizaron por métodos convencionales compuestos de coordinación con los metales divalente cobre y níquel, y se usaron como ligandos los aminoácidos glicina, alanina y los ácidos dicarboxílicos itacónico y oxálico. La caracterización de los compuestos sintetizados se realizó por análisis termogravimétrico (TGA), espectroscopia infrarroja por transformada de Fourier (FTIR), espectroscopia ultravioleta - visible (UV-vis) y difracción de rayos X (DRX), mostrando que los compuestos son octaédricos, cristalinos y estables a temperaturas entre los 250 a 300°C. Además, estos compuestos mostraron buena actividad antibacteriana principalmente contra cepas gram-positivas, esto se comprobó por el método del halo de inhibición y mediante la determinación de la concentración mínima inhibitoria la cual fue de 20 ppm para los compuestos con cobre y para los compuestos con níquel estuvo entre 10 y 5 ppm. (texto tomado de la fuente)Coordination compounds with organic ligands of biological interest have shown to have antibacterial activity against a wide variety of genera, including some bacteria resistant to conventional treatments. Amino acids are a group of very versatile molecules with two functional groups (amino and carboxyl), this favors the interaction with the metal, allowing the synthesis of compounds with high antibacterial potential. In this thesis, coordination compounds with the divalent metals copper and nickel were synthesized by conventional methods, and the amino acids glycine, alanine, and the dicarboxylic acids itaconic and oxalic acids were used as ligands. The characterization of the synthesized compounds was carried out by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), ultraviolet - visible spectroscopy (UV-vis) and X-ray diffraction (XRD), showing that the compounds are octahedral, crystalline and stable at temperatures between 250 to 300°C. In addition, these compounds showed good antibacterial activity mainly against gram-positive strains, this was verified by the inhibition zone method and by determining the minimum inhibitory concentration which was 20 ppm for the compounds with copper and for the compounds with Nickel was between 10 and 5 ppm.MaestríaMagíster en Ciencias - QuímicaÁrea Curricular en Ciencias Naturales100 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::546 - Química inorgánica540 - Química y ciencias afines::547 - Química orgánicaAminoácidosCompuestos de coordinaciónCompuestos de coordinaciónActividad antibacterianaAminoácidosGlicinaAlaninaMetáles divalentesÁcidos dicarboxílicosConcentración mínima inhibitoriaCoordination compoundsAntibacterial activityAmino acidsGlycineAlanineDivalent metalsDicarboxylic acidsMinimum inhibitory concentrationGlicinaAlaninaCompuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacterianaCoordination compounds of divalent metals with amino acids and dicarboxylic acids: potential antibacterial activityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaT. Sattar and M. Athar, ‘Hydrothermal Synthesis and Characterization of Copper Glycinate (Bio-MOF-29) and Its in vitro Drugs Adsorption Studies’, Open J Inorg Chem, vol. 07, pp. 17–27, 2017, doi: 10.4236/ojic.2017.72002.V. André, P. C. Alves, and M. T. Duarte, ‘Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review)’, Inorganica Chim Acta, vol. 525, p.120474, 2021, doi: 10.1016/j.ica.2021.120474.S. He et al., ‘Metal-organic frameworks for advanced drug delivery’, Acta Pharm Sin B, vol. 11, pp. 2362–2395, 2021, doi: 10.1016/j.apsb.2021.03.019.M. S. Mohamed, A. A. Shoukry, and A. G. Ali, ‘Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2′-bipyridine and 2,2′- dipyridylamine. the DNA-binding studies and biological activity’, Spectrochim Acta A. (SAA), vol. 86, pp. 562–570, 2012, doi: 10.1016/j.saa.2011.11.015.M. Aljahdali, ‘Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine’, Spectrochim Acta A. (SAA), vol. 112, pp. 364–376, 2013, doi: 10.1016/j.saa.2013.03.057D. A. Köse, E. Toprak, A. Kasąrci, E. Avci, G. A. Avci, O. Sąhin, and O. Buyükgüngör, ‘Synthesis, Spectral, and Thermal Studies of Co(II), Ni(II), Cu(II), and Zn(II)-Glycinato Complexes and Investigation of Their Biological Properties: Crystal Structure of [Cu(μ-gly) 2(H2O)] n’, Syn react inorg metaorg nanometal chem, vol. 46, pp. 1109–1118, 2016, doi: 10.1080/15533174.2013.801855.P. A. Kobielska, A. J. Howarth, O. K. Farha, and S. Nayak, ‘Metal–organic frameworks for heavy metal removal from water’, Coord Chem Rev, vol. 358, pp. 92– 107, 2018, doi: 10.1016/j.ccr.2017.12.010.Y. N. Wang, H. X. Li, L. Jia, S. S. Zhang, Y. R. Zhao, L. Du, and Q. H. Zhao, ‘Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(VI) and Fe(III) ions in water’, Inorg Chem Commun, vol. 110, p. 107575, 2019, doi: 10.1016/j.inoche.2019.107575A. Pastrana-Dávila, A. Amaya-Flórez, C. Aranaga, J. Ellena, M. Macías, E. Flórez-López, and R. F. D’Vries, ‘Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds’, J Mol Struct, vol. 1245, 2021, doi: 10.1016/j.molstruc.2021.131109.A. A. García-Valdivia et al., ‘Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid’, J Inorg Biochem, vol. 215, 2021, doi: 10.1016/j.jinorgbio.2020.111308.E. B. Bauer, A. A. Haase, R. M. Reich, D. C. Crans, and F. E. Kühn, ‘Organometallic and coordination rhenium compounds and their potential in cancer therapy’, Coord Chem Rev, vol. 393, pp. 79–117, 2019, doi: 10.1016/j.ccr.2019.04.014.V. Subramaniyam, P. v. Ravi, and M. Pichumani, ‘Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review’, J Mol Struct, vol. 1251, 2022, doi: 10.1016/j.molstruc.2021.131931.J. An, S. J. Geib, and N. L. Rosi, ‘High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores’, J Am Chem Soc, vol. 132, pp. 38–39, 2010, doi: 10.1021/ja909169x.S. L. Anderson et al., ‘Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor’, Nat Commun, vol. 10, 2019, doi: 10.1038/s41467-019-09486-2.J. An, S. J. Geib, and N. L. Rosi, ‘Cation-triggered drug release from a porous zinc-adeninate metal-organic framework’, J Am Chem Soc, vol. 131, pp. 8376–8377, 2009, doi: 10.1021/ja902972w.D. İnci, R. Aydın, and Y. Zorlu, ‘Biomacromolecular interactions and radical scavenging activities of one-dimensional (1D) copper(II) glycinate coordination polymer’, J Iran Chem soc, vol. 18, pp. 3017-3030, 2021, doi: 10.1007/s13738-021-02249-1.C. Li, K. Deng, Z. Tang, and L. Jiang, ‘Twisted metal-amino acid nanobelts: Chirality transcription from molecules to frameworks’, J Am Chem Soc, vol. 132, pp. 8202–8209, 2010, doi: 10.1021/ja102827fS. Shu, Y. F. Jian, T. Zhang, W. L. Guo, and X. Liu, ‘A novel threedimensional copper aspartate coordination compound with efficient photoluminescence’, Z. fur Naturforsch. - B J. Chem. Sci, vol. 75, pp. 281–286, 2020, doi: 10.1515/znb-2019-0156.N. Bhardwaj, S. K. Pandey, J. Mehta, S. K. Bhardwaj, K. H. Kim, and A. Deep, ‘Bioactive nano-metal–organic frameworks as antimicrobials against Grampositive and Gram negative bacteria’, Toxicol Res (Camb), vol. 7, pp. 931–941, 2018, doi: 10.1039/C8TX00087E.S. Shams, W. Ahmad, A. H. Memon, S. Shams, Y. Wei, Q. Yuan, and H. Liang, ‘Cu/H3BTC MOF as a potential antibacterial therapeutic agent against: Staphylococcus aureus and Escherichia coli’, New J Chem, vol. 44, pp. 17671–17678, 2020, doi: 10.1039/d0nj04120c.X. Lu, J. Ye, D. Zhang, R. Xie, R. F. Bogale, Y. Sun, L. Zhao, Q. Zhao, and G. Ning, ‘Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility’, J Inorg Biochem, vol. 138, pp. 114–121, 2014, doi: 10.1016/J.JINORGBIO.2014.05.005.Y. Liu, X. Xu, Q. Xia, G. Yuan, Q. He, and Y. Cui, ‘Multiple topological isomerism of three-connected networks in silver-based metal-organoboron frameworks’, Chem Comm, vol. 46, pp. 2608–2610, 2010, doi: 10.1039/b923365b.W. Zhuang, D. Yuan, J. R. Li, Z. Luo, H. C. Zhou, S. Bashir, and J. Liu, ‘Highly potent bactericidal activity of porous metal-organic frameworks’, Adv Health Mater, vol. 1, pp. 225–238, 2012, doi: 10.1002/adhm.201100043.N. A. Siddiki, S. Islam, S. Begum, and M. A. Salam, ‘Synthesis, spectral characterization, thermal behavior and biological activities study of ternary metal complexes of alanine and 1,8-diaminonapthalene with Co(III), Ni(II), Cu(II), Zn(II) and Cd(II)’, Mater Today: Proc, 2019, vol. 46, pp. 6374–6381, doi: 10.1016/j.matpr.2020.06.126.T. Kundu, S. C. Sahoo, S. Saha, and R. Banerjee, ‘Salt metathesis in three dimensional metal-organic frameworks (MOFs) with unprecedented hydrolytic regenerability’, Chem Comm, vol. 49, pp. 5262–5264, 2013, doi: 10.1039/c3cc41842a.Ingrid M. Weiss, Christina Muth, Robert Drumm, and, and Helmut O. K. Kirchn, ‘Thermal decomposition of the aminoacids glycine, cysteine, aspartic acid,asparagine, glutamic acid, glutamine, arginine and histidine’, BMC Biophys, vol. 11, 2018, doi: 10.1186/s13628-018-0042-4.V. Y. Yablokov, I. L. Smel’tsova, I. A. Zelyaev, and S. v. Mitrofanova, ‘Studies of the rates of thermal decomposition of glycine, alanine, and serine’, Russ J Gen Chem, vol. 79, pp. 1704–1706, 2009, doi: 10.1134/S1070363209080209.M. A. Ali, X. Liu, and J. Qiu, “A review on the vitrification of metal coordination compounds and their photonic applications,” J Non Cryst Solids, vol. 597, pp. 121936, 2022, doi: 10.1016/J.JNONCRYSOL.2022.121936.E. Battaner A, Biomoléculas. Una introducción estructural a la bioquímica, 1st ed. Salmanca. España: Ediciones Universidad de Salamanca, 2012.S. Horike, S. S. Nagarkar, T. Ogawa, and S. Kitagawa, “A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids,” Angew. Chem. Int Ed, vol. 59, pp. 6652–6664, 2020, doi: 10.1002/anie.201911384.H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, 2013, doi: 10.1126/science.1230444T. Kundu, S. C. Sahoo, and R. Banerjee, “Variable water adsorption in amino acid derivative based homochiral metal organic frameworks,” Cryst Growth Des, vol. 12, pp. 4633–4640, 2012, doi: 10.1021/cg3008443.S. Rojas, A. Arenas-Vivo, and P. Horcajada, “Metal-organic frameworks: A novel platform for combined advanced therapies,” Coord Chem Rev, vol. 388, pp. 202–226, 2019, doi: 10.1016/j.ccr.2019.02.032.M. Ding, W. Liu, and R. Gref, “Nanoscale MOFs : from synthesis to drug delivery and theranostics,” Adv Drug Deliv Rev, p. 114496, 2022, doi: 10.1016/j.addr.2022.114496.B. Wang, L. H. Xie, X. Wang, X. M. Liu, J. Li, and J. R. Li, “Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal,” Green Energy Environ, vol. 3, pp. 191–228, 2018, doi: 10.1016/j.gee.2018.03.001.T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, “MOF-74 building unit has a direct impact on toxic gas adsorption,” Chem Eng Sci, vol. 66, pp. 163–170, 2011, doi: 10.1016/j.ces.2010.10.002.N. Saikumari, “Synthesis and characterization of amino acid Schiff base and its copper (II) complex and its antimicrobial studies,” in Mater Today: Proc 2021, vol. 47, pp. 1777–1781, doi: 10.1016/j.matpr.2021.02.607.F. Sevgi, U. Bagkesici, A. N. Kursunlu, and E. Guler, “Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity,” J Mol Struct, vol. 1154, pp. 256–260, 2018, doi: 10.1016/j.molstruc.2017.10.052.D. U. Miodragović et al., “Syntheses, characterization and antimicrobial activity of the first complexes of Zn(II), Cd(II) and Co(II) with N-benzyloxycarbonylglycine: X-ray crystal structure of the polymeric Cd(II) complex,” Inorg Chim Acta, vol. 361, pp. 86-94, 2008, doi: 10.1016/J.ICA.2007.06.041.R. Abazari, A. R. Mahjoub, F. Ataei, A. Morsali, C. L. Carpenter-Warren, K. Mehdizadeh, and A. M. Z. Slawin, “Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer,” Inorg Chem, vol. 57, pp. 13364–13379, 2018, doi: 10.1021/acs.inorgchem.8b01955J. Hou, X. Long, X. Wang, L. Li, D. Mao, Y. Luo, and H. Ren, “Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption,” J Hazard Mater, vol. 442, 2023, doi: 10.1016/j.jhazmat.2022.130042.S. S. Shekhawat et al., “Antibiotic resistance genes and bacterial diversity: A comparative molecular study of treated sewage from different origins and their impact on irrigated soils,” Chemosphere, vol. 307, 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136175.X. Lu, J. Ye, Y. Sun, R. F. Bogale, L. Zhao, P. Tian, and G. Ning, “Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers,” Dalton Trans, vol. 43, pp. 10104–10113, 2014, doi: 10.1039/c4dt00270a.I. P. Burneo Saavedra, “Metal-Organic Frameworks made of amino acids and adenine: chirality and hydrochromism,” Tesis Doctoral, Universitat Autonoma de Barcelona, 2017.E. Yang, L. Wang, F. Wang, Q. Lin, Y. Kang, and J. Zhang, “Zeolitic metal-organic frameworks based on amino acid,” Inorg Chem, vol. 53, pp. 10027–10029, 2014, doi: 10.1021/ic501556w.J. J. Zhang et al., “Two 3D supramolecular polymers constructed from an amino acid and a high-nuclear Ln6Cu24 cluster node,” Chem Eur J, vol. 10, pp. 3963–3969, 2004, doi: 10.1002/chem.200400018.P. Ferrer, I. Da Silva, J. Rubio-Zuazo, and G. R. Castro, “Synthesis and crystal structure of the novel metal organic framework Zn(C3H5NO2S)2,” Powder Diffr, vol. 760, pp. 366–370, 2014, doi: 10.1017/S0885715614000554.H. yuan Zhang, H. jia Yu, H. xia Xu, J. song Ren, and X. gang Qu, “Structural diversity of lanthanide-amino acid complexes under near physiological pH conditions and their recognition of single-stranded DNA,” Polyhedron, vol. 26, pp. 5250–5256, 2007, doi: 10.1016/j.poly.2007.07.052.T. T. Luo, L. Y. Hsu, C. C. Su, C. H. Ueng, T. C. Tsai, and K. L. Lu, “Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle,” Inorg Chem, vol. 46, pp. 1532–1534, 2007, doi: 10.1021/ic062132k.C. B. Liu, Y. N. Gong, Y. Chen, and H. L. Wen, “Self-assembly and structures of newtransition metal complexes with phenyl substituted pyrazole carboxylic acid and N-donor co-ligands,” Inorg Chim Acta, vol. 383, pp. 277–286, 2012, doi: 10.1016/J.ICA.2011.11.015.H. M. Tay, N. Kyratzis, S. Thoonen, S. A. Boer, D. R. Turner, and C. Hua, “Synthetic strategies towards chiral coordination polymers,” Coord Chem Rev, vol. 435, 2021, doi: 10.1016/j.ccr.2020.213763.J. Dharmaraja, T. Esakkidurai, P. Subbaraj, and S. Shobana, “Mixed ligand complex formation of 2-aminobenzamide with Cu(ii) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies,” Spectrochimica Acta, Part A (SAA), vol. 114, pp. 607–621, 2013, doi: 10.1016/j.saa.2013.05.043.S. M. F. Vilela, D. Ananias, P. Silva, M. Nolasco, L. D. Carlos, V. De Zea Bermudez, J. Rocha, J. P. C. Tomé, and F. A. Almeida Paz, “Coordination polymers based on a glycinederivative ligand,” Cryst Eng Comm, vol. 16, pp. 8119–8137, 2014, doi: 10.1039/c4ce00465e.J. He, G. Zhang, D. Xiao, H. Chen, S. Yan, X. Wang, J. Yang, and E. Wang, “Helicity controlled by the chirality of amino acid: Two novel enantiopure chiral 3D architectures containing fivefold interwoven helices,” Cryst Eng Comm, vol. 14, pp. 3609–3614, 2012, doi: 10.1039/c2ce25038a.A. C. Tella, S. O. Owalude, P. A. Ajibade, N. Simon, S. J. Olatunji, M. S. M. Abdelbaky, and S. Garcia-Granda, “Synthesis, characterization, crystal structure and antimicrobial studies of a novel Cu(II) complex based on itaconic acid and nicotinamide,” J Mol Struct, vol. 1125, pp. 570–575, 2016, doi: 10.1016/j.molstruc.2016.07.016.N. Rabiee et al., “Green metal-organic frameworks (MOFs) for biomedical applications,” Microporus Mesoporus Mater, vol. 335, p. 111670, 2022, doi: 10.1016/J.MICROMESO.2021.111670.M. Berchel et al., “A silver-based metal-organic framework material as a ‘reservoir’ of bactericidal metal ions,” New J of Chem, vol. 35, pp. 1000–1003, 2011, doi: 10.1039/c1nj20202b.K. Martín-Betancor, S. Aguado, I. Rodea-Palomares, M. Tamayo-Belda, F. Leganés, R. Rosal, and F. Fernández-Piñas, “Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms,” Sci Total Environ, vol. 595, pp. 547–555, 2017, doi: 10.1016/j.scitotenv.2017.03.250.G. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorozyński, “Metal-organic frameworks: Mechanisms of antibacterial action and potential applications,” Drug Discov Today, vol. 21, pp. 1009–1018, 2016, doi: 10.1016/j.drudis.2016.04.009.R. Li, X. Kong, J. Dong, K. Li, T. Wan, and H. Wu, “Two new Ag-MOFs: Synthesis, structure, electrocatalytic hydrogen evolution and H2O2 electrochemical sensing,” Inorg Chim Acta, vol. 544, p. 121208, 2023, doi: 10.1016/J.ICA.2022.121208.S. Wen-Wen, S. Chen, and H. Jin-Song, “A high selective Zn-based luminescent metal-organic framework for fluorescence sensing detecting iron(III) and trinitrophenol,” Inorg Chem Commun, vol. 149, p. 110368, 2023, doi: 10.1016/J.INOCHE.2022.110368.S. H. Alisir, S. Demir, B. Sariboga, and O. Buyukgungor, “A disparate 3-D silver(I) coordination polymer of pyridine-3,5-dicarboxylate and pyrimidine with strong intermetallic interactions: X-ray crystallography, photoluminescence and antimicrobial activity,” J Coord Chem, vol. 68 pp. 155–168, 2015, doi: 10.1080/00958972.2014.978307.M. A. Ghasemzadeh and B. Mirhosseini-Eshkevari, “Poly(acrylic acid)/Fe3O4 supported on MIL-100(Cr) MOF as a novel and magnetic nanocatalyst for the synthesis of Pyrido[2,3-d]Pyrimidines,” Heliyon, vol. 8, p. 10022, 2022, doi: 10.1016/j.heliyon.2022.e10022.S. Fatemeh Seyedpour et al., “Tailoring the Biocidal Activity of Novel Silver-Based Metal Azolate Frameworks,” ACS Sustain Chem Eng, vol. 8, pp. 7588–7599, 2020, doi: 10.1021/acssuschemeng.0c00201.J. H. Jo, H. C. Kim, S. Huh, Y. Kim, and D. N. Lee, “Antibacterial activities of CuMOFs containing glutarates and bipyridyl ligands,” Dalton Trans, vol. 48, pp. 8084–8093, 2019, doi: 10.1039/c9dt00791a.H. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, and L. Wen, “Novel aminofunctionalized Ni(II)-based MOFs for efficiently photocatalytic reduction of CO2 to CO with superior selectivity under visible-light illumination,” Chem Eng J, vol. 455, 2022, doi: 10.1016/j.cej.2022.140425.J. Yoo, J. H. Kim, Y. S. Sohn, and D. Youngkyu, “Platinum(II) complexes of 3,3′-disubstituted-2,2′-bypyridines. Synthesis, structures, cytotoxic effect and unusual solvolysis in DMSO,” Inorg Chim Acta, vol. 263, pp. 53–60,1997, doi: 10.1016/S0020-1693(97)05566-N. Politeo, M. Pisačić, M. Daković, V. Sokol, and B. M. Kukovec, “The first coordination compound of 6-fluoronicotinate: The crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4′- bipyridine,” Acta Crystallogr. E: Crystallogr, vol. 76, pp. 500–505, 2020, doi: 10.1107/S2056989020003023/XI2024SUP3.DOCX.P. Cao, X. Wu, W. Zhang, L. Zhao, W. Sun, and Z. Tang, “Killing Oral Bacteria Using Metal-Organic Frameworks,” Ind Eng Chem Res, vol. 59, pp. 1559–1567, 2020, doi: 10.1021/acs.iecr.9b05659.K. Xu et al., “Ce (III)-terephthalic acid metal-organic frameworks as highly efficient·OH radical scavengers for fuel cells and investigation of its antioxidation mechanism,” Mater Today Energy, vol. 31, pp. 101195, 2023, doi: 10.1016/J.MTENER.2022.101195.Y. Gao, X. H. Yi, C. C. Wang, F. Wang, and P. Wang, “Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst,” Mater Res Bull, vol. 158, pp. 112072, 2023, doi: 10.1016/J.MATERRESBULL.2022.112072.B. J. Zhang, C. J. Wang, G. M. Qiu, S. Huang, X. L. Zhou, J. Weng, and Y. Y. Wang, “Polycarboxylate anions effect on the structures of a series of transition metal-based coordination polymers: Syntheses, crystal structures and bioactivities,” Inorg Chim Acta, vol. 397, pp. 48–59, 2013, doi: 10.1016/J.ICA.2012.11.018.G. Yuan, H. Tu, M. Li, J. Liu, C. Zhao, J. Liao, Y. Yang, J. Yang, and N. Liu, “Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution,” Appl Surf Sci, vol. 466, pp. 903–910, 2019, doi: 10.1016/j.apsusc.2018.10.129.X. Wang, J. D. Ranford, and J. J. Vittal, “One-dimensional coordination polymers: Cu(II) and Zn(II) complexes of N-(2-pyridylmethyl)-glycine and N-(2-pyridylmethyl)-lalanine,” J Mol Struct, vol. 796, pp. 28–35, 2006, doi: 10.1016/j.molstruc.2006.03.090.Z. H. Chohan, M. Praveen, and A. Ghaffar, “Synthesis, characterisation and biological role of anions (nitrate, sulphate, oxalate and acetate) in Co(II), Cu(II) and Ni(II) metal chelates of some Schiff base derived amino acids,” Syn react inorg metaorg nanometal chem, vol. 28, pp. 1673–1687, 1998, doi: 10.1080/00945719809349422.Z. Lü, D. Zhang, S. Gao, and D. Zhu, “Two helical one-dimensional copper(II) coordination polymers based on N-(2-hydroxylbenzyl)glycine and N-(2-hydroxylbenzyl)-Lalanine: Syntheses, crystal structures and magnetic studies,” Inorg Chem Commun, vol. 8, pp. 746–750, 2005, doi: 10.1016/j.inoche.2005.05.012.M. Estrader, C. Diaz, J. Ribas, X. Solans, and M. Font-Bardía, “Synthesis, characterization and magnetic properties of six new copper(II) complexes with aminoacids as bridging ligand, exhibiting ferromagnetic coupling,” Inorg Chim Acta, vol. 361, pp. 3963–3969, 2008, doi: 10.1016/j.ica.2008.03.028.Z. Vargová, M. Almáši, L. Arabuli, K. Györyová, V. Zeleňák, and J. Kuchár, “Utilization of IR spectral detailed analysis for coordination mode determination in novel Zncyclen-aminoacid complexes,” Spectrochimica Acta, Part A (SAA), vol. 78, pp. 788–793, 2011, doi: 10.1016/j.saa.2010.12.022.J. K. MacLaren and C. Janiak, “Amino-acid based coordination polymers,” Inorg Chim Acta, vol. 389, pp. 183–190, 2012, doi: 10.1016/j.ica.2012.03.010.M. Y. Li, F. Wang, Z. G. Gu, and J. Zhang, “Synthesis of homochiral zeolitic metalorganic frameworks with amino acid and tetrazolates for chiral recognition,” RSC Adv, vol. 7, pp. 4872–4875, 2017, doi: 10.1039/c6ra27069g.I. Ahmed, U. Yunus, M. Nadeem, M. H. Bhatti, and M. Mehmood, “Post synthetically modified compounds of Cd-MOF by L-amino acids for luminescent applications,” J Solid State Chem, vol. 287, pp. 121320, 2020, doi: 10.1016/j.jssc.2020.121320.N. Nishat, S. Dhyani, and H. S. Manisha, “Development of antimicrobial aminoacidmodified bisphenol-A formaldehyde resin and its transition-metal complexes,” Poly Bulletin, vol. 64, pp. 523–536, 2010, doi: 10.1007/s00289-009-0154-8.H. I. Beltrán, A. Abreu, L. S. Zamudio-rivera, T. Mancilla, and R. Santillán, “Síntesis y caracterización espectroscópica de N-(2-hidroxibencil )-α-aminoácidos,” Rev. Soc. Quím. Méx. Vol., vol. 45, pp. 152–158, 2001, doi: 000186194.S. Konar, K. Gagnon, A. Clearfield, C. Thompson, J. Hartle, C. Ericson, and C. Nelson, “Structural determination and characterization of copper and zinc bis-glycinates with X-ray crystallography and mass spectrometry,” J Coord Chem, vol. 63, pp. 3335–3347, 2010, doi: 10.1080/00958972.2010.514336.R. Bikas, B. Soltani, H. Sheykhi, M. Korabik, and M. Hossaini-Sadr, “Synthesis, crystal structure and magneto-structural studies of 2D copper(II) coordination polymer containing L-alanine amino acid,” J Mol Struct, vol. 1168, pp. 195–201, 2018, doi: 10.1016/j.molstruc.2018.05.016.C. Kamble, R. Chavan, and V. Kamble, ‘A Review on Amino Acids’, Research & Reviews: A J of Drug Design & Disco, vol. 8, pp. 19–27, 2021, doi: 10.37591/RRJoDDD.C. Furman, M. Howsam, and E. Lipka, ‘Recent developments in separation methods for enantiomeric ratio determination of amino acids specifically involved in cataract and Alzheimer’s disease’, TrAC, vol. 141, p. 116287, 2021, doi: 10.1016/J.TRAC.2021.116287.H. Cai, Y. L. Huang, and D. Li, ‘Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications’, Coord Chem Rev, vol. 378, pp. 207–221, 2019, doi: 10.1016/j.ccr.2017.12.003.J. Yang and Y. W. Yang, ‘Metal–Organic Frameworks for Biomedical Applications’, Small, vol. 16, 2020, doi: 10.1002/smll.201906846K. Nakamoto, ‘Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry’, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Sixth edition, 2009.M. Can, S. Demirci, A. K. Sunol, and N. Sahiner, ‘An amino acid, l-Glutamic acidbased metal-organic frameworks and their antibacterial, blood compatibility, biocompatibility, and sensor properties’, Microporous Mesoporous Mater, vol. 309, pp. 110533, 2020, doi: 10.1016/J.MICROMESO.2020.110533.X. Ye, D. Wang, K. Yuan, Y. Dong, Z. Chen, C. Huang, Z. Yu, and D. Wu, ‘Synthesis, characterization and antibacterial activity of [Zn(formato)2(4,4′-bipy)] complex’, J Mol Struct, vol. 1225, pp. 129094, 2021, doi: 10.1016/J.MOLSTRUC.2020.129094.B. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, and S. Wu, “Two-dimensional antibacterial materials,” Prog Mater Sci, vol. 130, 2022, doi: 10.1016/j.pmatsci.2022.100976.S. Ali Akbar Razavi and A. Morsali, “Linker functionalized metal-organic frameworks,” Coord Chem Rev, vol. 399, pp. 213023, 2019, doi: 10.1016/j.ccr.2019.213023.G. N. Lucena, R. C. Alves, M. P. Abuçafy, L. A. Chiavacci, I. C. da Silva, F. R. Pavan, and R. C. G. Frem, “Zn-based porous coordination solid as diclofenac sodium carrier,” J Solid State Chem, vol. 260, pp. 67–72, 2018, doi: 10.1016/j.jssc.2018.01.011.K. Yuan et al., “Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid,” J Mol Struct, vol. 1241, 2021, doi: 10.1016/j.molstruc.2021.130624.F. Akbarzadeh, M. Motaghi, N. P. S. Chauhan, and G. Sargazi, “A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application,” Heliyon, vol. 6, 2020, doi: 10.1016/J.HELIYON.2020.E03231.I. Wiegand, K. Hilpert, and R. E. W. Hancock, “Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances,” Nat Protoc, vol. 3, pp. 163–175, 2008, doi: 10.1038/nprot.2007.521.A. Liu, C. C. Wang, C. zheng Wang, H. fen Fu, W. Peng, Y. L. Cao, H. Y. Chu, and A. F. Du, “Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers,” J Colloid Interface Sci, vol. 512, pp. 730–739, 2018, doi: 10.1016/j.jcis.2017.10.099.M. Juan and Z. Peralta, “Síntesis, caracterización y evaluación de la actividad biológica de compuestos de coordinación de cobalto con pirazinamida,” Rev Soc Quím Perú, vol. 86, pp. 315–328, 2020, doi: 10.37761/rsqp.v86i3.303.G. B. Deacon and R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coord. Chem. Rev., vol. 33, pp. 227–250, 1980, doi: 10.1016/S0010-8545(00)80455-5.M. H. El-Newehy, S. M. Osman, M. S. Refat, S. S. Al-Deyab, and A. El-Faham, “Microwave synthesis of copolymers based on itaconic acid moiety and their utility for scavenging of copper (II) and lead (II),” J of Macromol Sci, Part A: P A C, vol. 52, pp. 561–576, 2015, doi: 10.1080/10601325.2015.1039335.F. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim, and H. K. Jeong, “Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers,” J Mater Chem, vol. 5, pp. 6090–6099, 2017, doi: 10.1039/c6ta11170j.M. Bradley, D., Gitlitz, “Metal-Nitrogen Infrared Stretching Frequencies in Dialkylamido-transition Metal Compounds,” Nat, vol. 218, pp. 353–354, 1968, doi: 10.1038/218353b0.H. G. T. Nguyen, R. Tao, and R. D. Van Zee, “Porosity, Powder X-Ray Diffraction Patterns, Skeletal Density, and Thermal Stability of NIST Zeolitic Reference Materials RM 8850, RM 8851, and RM 8852,” J Res Natl Inst Stand Technol, vol. 126, pp. 1–10, 2021, doi: 10.6028/jres.126.047.J. M. Newsam, C. Z. Yang, H. E. King, R. H. Jones, and D. Xie, “Experiences in studying zeolites and related microporous materials by synchrotron x-ray diffraction†,” J of Phy and Chem of Solids, vol. 52, pp. 1281–1288, 1991, doi: 10.1016/0022-3697(91)90204-D.M. Eswaramoorthy, S. Neeraj, and C. N. R. Rao, “Synthesis of hexagonal microporous silica and aluminophosphate by supramolecular templating of a short-chain amine,” Microporus Mesoporus Mater, vol. 28, pp. 205–210, 1999, doi: 10.1016/S1387-1811(98)00309-6.T. D. Agboola and M. A. Bisi-Johnson, “Occurrence of Listeria monocytogenes in irrigation water and irrigated vegetables in selected areas of Osun State, Nigeria,” Sci Afr, vol. 19, 2023, doi: 10.1016/j.sciaf.2022.e01503.X. Fan, J. B. Gurtler, and J. P. Mattheis, “Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: A Review,” J Food Prot, vol. 86, 2023, doi: 10.1016/j.jfp.2023.100100.M. E. Doyle, J. Archer, C. W. Kaspar, and R. Weiss, “Human Illness Caused by E . coli O157 : H7 from Food and Non-food Sources,” FRI Briefings, pp. 1–37, 2006, [Online]. Available: http://fri.wisc.edu/docs/pdf/FRIBrief_EcoliO157H7humanillness.pdfEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85529/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1152188158.2023.pdf1152188158.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf2961244https://repositorio.unal.edu.co/bitstream/unal/85529/4/1152188158.2023.pdf6d1d8e45f7052c92d8335e17b53a86a2MD54THUMBNAIL1152188158.2023.pdf.jpg1152188158.2023.pdf.jpgGenerated Thumbnailimage/jpeg4548https://repositorio.unal.edu.co/bitstream/unal/85529/5/1152188158.2023.pdf.jpg762657c0791e69a5e456a840df6c7a90MD55unal/85529oai:repositorio.unal.edu.co:unal/855292024-08-22 23:10:12.144Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=