Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)

ilustraciones, diagramas

Autores:
Salas Guerrero, Luis Felipe
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85839
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85839
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::666 - Cerámica y tecnologías afines
Adsorción
Grafeno
Almacenamiento de hidrógeno
Monte Carlo Gran Canónico
Adsorption
Graphene
Hydrogen storage
Grand Canonical Monte Carlo
Química experimental
Química inorgánica
Tecnología de materiales
Experimental chemistry
Inorganic chemistry
Materials engineering
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_3f19f62d4fd3cf73cdc02c190ecb7d68
oai_identifier_str oai:repositorio.unal.edu.co:unal/85839
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
dc.title.translated.spa.fl_str_mv Impacto de la funcionalización con metales y el espacio interlaminar en la adsorción de hidrógeno sobre grafeno evaluado con simulación Monte Carlo Gran Canónico (GCMC)
title Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
spellingShingle Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
660 - Ingeniería química::666 - Cerámica y tecnologías afines
Adsorción
Grafeno
Almacenamiento de hidrógeno
Monte Carlo Gran Canónico
Adsorption
Graphene
Hydrogen storage
Grand Canonical Monte Carlo
Química experimental
Química inorgánica
Tecnología de materiales
Experimental chemistry
Inorganic chemistry
Materials engineering
title_short Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
title_full Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
title_fullStr Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
title_full_unstemmed Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
title_sort Effect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)
dc.creator.fl_str_mv Salas Guerrero, Luis Felipe
dc.contributor.advisor.spa.fl_str_mv Orozco Alvarado, Gustavo Adolfo
dc.contributor.author.spa.fl_str_mv Salas Guerrero, Luis Felipe
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.contributor.orcid.spa.fl_str_mv Salas Guerrero, Luis Felipe [0000-0002-1457-8706]
dc.contributor.cvlac.spa.fl_str_mv Salas Guerrero, Luis Felipe [1026299113]
dc.contributor.scopus.spa.fl_str_mv Salas-Guerrero, Luis F. [58035032700]
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::666 - Cerámica y tecnologías afines
topic 660 - Ingeniería química::666 - Cerámica y tecnologías afines
Adsorción
Grafeno
Almacenamiento de hidrógeno
Monte Carlo Gran Canónico
Adsorption
Graphene
Hydrogen storage
Grand Canonical Monte Carlo
Química experimental
Química inorgánica
Tecnología de materiales
Experimental chemistry
Inorganic chemistry
Materials engineering
dc.subject.proposal.spa.fl_str_mv Adsorción
Grafeno
Almacenamiento de hidrógeno
Monte Carlo Gran Canónico
dc.subject.proposal.eng.fl_str_mv Adsorption
Graphene
Hydrogen storage
Grand Canonical Monte Carlo
dc.subject.unesco.spa.fl_str_mv Química experimental
Química inorgánica
Tecnología de materiales
dc.subject.unesco.eng.fl_str_mv Experimental chemistry
Inorganic chemistry
Materials engineering
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-02T01:31:37Z
dc.date.available.none.fl_str_mv 2024-04-02T01:31:37Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85839
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85839
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Giulio Guandalini and Stefano Campanari. Well-to-wheel driving cycle si- mulations for freight transportation: Battery and hydrogen fuel cell elec- tric vehicles. 2018 International Conference of Electrical and Electro- nic Technologies for Automotive, AUTOMOTIVE 2018, 10 2018. doi: 10.23919/EETA.2018.8493216.
Carlo Cunanan, Manh Kien Tran, Youngwoo Lee, Shinghei Kwok, Vincent Leung, and Michael Fowler. A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies 2021, Vol. 3, Pages 474-489, 3:474–489, 6 2021. ISSN 2571-8797. doi: 10.3390/cleantechnol3020028.
International Energy Agency. Energy technology perspectives 2020 – analysis - iea, 2020. URL https://www.iea.org/reports/energy-technology-perspectives-2020. Accessed March 15th, 2024.
William J. Atteridge and Stephen Anthony Lloyd. Thoughts on use of hydrogen to power railway trains. Proceedings of the Institution of Me- chanical Engineers, Part A: Journal of Power and Energy, 235:306–316, 3 2020. ISSN 20412967. doi: 10.1177/0957650920912086.
Krzysztof Jastrzebski and Piotr Kula. Emerging technology for a green, sustainable energy-promising materials for hydrogen storage, from nano- tubes to Graphene — A review. Materials 2021, Vol. 14, Page 2499, 14: 2499, 5 2021. doi: 10.3390/ma14102499.
Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, and Hai Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering, 29:1–12, 1 2021. ISSN 1004-9541. doi: 10.1016/j.cjche.2020.08.024.
R. Pedicini, R. Pedicini, I. Gatto, M. F. Gatto, M. F. Gatto, and E. Pas- salacqua. Carbonaceous materials in hydrogen storage. Hydrogen Storage Technologies, pages 197–228, 8 2018. doi: 10.1002/9781119460572.CH7.
Michael Fischer, Frank Hoffmann, and Michael Fr¨oba. Preferred hydro- gen adsorption sites in various MOFs — A comparative computational study. ChemPhysChem, 10:2647–2657, 10 2009. ISSN 1439-7641. doi: 10.1002/CPHC.200900459.
Fan Zhang, Pengcheng Zhao, Meng Niu, and Jon Maddy. The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41:14535–14552, 9 2016. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2016.05.293.
G. Srinivas, Yanwu Zhu, Richard Piner, Neal Skipper, Mark Ellerby, and Rod Ruoff. Synthesis of Graphene-like nanosheets and their hydrogen adsorption capacity. Carbon, 48:630–635, 3 2010. ISSN 0008-6223. doi: 10.1016/j.carbon.2009.10.003.
Pierre Bénard and Richard Chahine. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scripta Materialia, 56:803–808, 5 2007. ISSN 1359-6462. doi: 10.1016/j.scriptamat.2007.01.008.
A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science, 20:367–382, 10 2015. ISSN 1359-0294. doi: 10.1016/j.cocis.2015.11.004.
Theodosis Skaltsas, Xiaoxing Ke, Carla Bittencourt, and Nicos Tagmatar- chis. Ultrasonication induces oxygenated species and defects onto exfo- liated Graphene. Journal of Physical Chemistry C, 117:23272–23278, 11 2013. ISSN 19327447. doi: 10.1021/JP4057048.
D. P. Broom and M. Hirscher. Irreproducibility in hydrogen storage ma- terial research. Energy and Environmental Science, 9:3368–3380, 11 2016. ISSN 17545706. doi: 10.1039/c6ee01435f.
Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Miche- le Byrne, Yurii K. Gun’Ko, John J. Boland, Peter Niraj, Georg Dues- berg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vitto- rio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman. High-yield production of Graphene by liquid-phase exfoliation of graphite. Natu- re Nanotechnology 2008 3:9, 3:563–568, 8 2008. ISSN 1748-3395. doi: 10.1038/nnano.2008.215.
Solution phase production of Graphene with controlled thickness via den- sity differentiation. Nano Letters, 9:4031–4036, 12 2009. ISSN 15306984. doi: 10.1021/NL902200B.
Chih Jen Shih, Shangchao Lin, Michael S. Strano, and Daniel Blanksch- tein. Understanding the stabilization of liquid-phase-exfoliated graphe- ne in polar solvents: Molecular dynamics simulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society, 132: 14638–14648, 10 2010. ISSN 00027863. doi: 10.1021/JA1064284.
Mingmin Shi, Qiang Wu, Xin Huang, Zhaoshun Meng, Yunhui Wang, Zhihong Yang, Jing Hu, Yi Xu, Huaihong Zhao, and Gang Yan. A density functional theory and grand canonical Monte Carlo simula- tions study the hydrogen storage on the Li-decorated net-. Interna- tional Journal of Hydrogen Energy, 5 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2021.04.027.
Jinbo Hao, Feng Wei, Xinhui Zhang, Long Li, Changcheng Chen, Ge Wu, Liyuan Wu, Dan Liang, Xiaoguang Ma, Pengfei Lu, and Haizhi Song. An investigation of Li-decorated N-doped penta-Graphene for hydrogen storage. International Journal of Hydrogen Energy, 46:25533–25542, 7 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.05.089.
I. Cabria, A. Lebon, M. B. Torres, L. J. Gallego, and A. Vega. Hy- drogen storage capacity of Li-decorated borophene and pristine Graphe- ne slit pores: A combined ab initio and quantum-thermodynamic study. Applied Surface Science, 562:150019, 10 2021. ISSN 0169-4332. doi: 10.1016/j.apsusc.2021.150019.
Leslie J. Murray, Mircea Dinc˘a, and Jeffrey R. Long. Hydrogen storage in Metal–Organic Frameworks. Chemical Society Reviews, 38:1294–1314, 4 2009. ISSN 1460-4744. doi: 10.1039/B802256A.
E. Tylianakis and G. E. Froudakis. Grand canonical Monte Carlo method for gas adsorption and separation. Journal of Computational and Theoretical Nanoscience, 6:335–348, 2 2009. ISSN 15461955. doi: 10.1166/JCTN.2009.1040.
Tengfei Luo and John R. Lloyd. Grand Canonical Monte Carlo simulation of hydrogen adsorption in different carbon nanostructures. International Journal of Energy for a Clean Environment, 10:37–56, 2009. ISSN 2150- 3621. doi: 10.1615/interjenercleanenv.V10.I1-4.30.
K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. W. Daud. Solid-state materials and methods for hydrogen storage: A critical review. Chemical Engineering & Technology, 33:213–226, 2 2010. ISSN 1521-4125. doi: 10.1002/CEAT.200900376.
US Department of Energy DOE. Technical targets for onboard hydro- gen storage for light-duty vehicles — department of energy, 2015. URL https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-li
Youning Gong and Chunxu Pan. Preparation of high-quality Graphe- ne via electrochemical exfoliation in acidic electrolytes: A review. MRS Advances 2017 2:30, 2:1611–1619, 1 2017. ISSN 2059-8521. doi: 10.1557/ADV.2017.62.
Qinyu Wang and J. Karl Johnson. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slitpores. The Journal of Chemical Physics, 110:577, 12 1998. ISSN 0021-9606. doi: 10.1063/1.478114.
Piotr Kowalczyk, Hideki Tanaka, Robert Ho-lyst, Katsumi Kaneko, Taku- mi Ohmori, and Junichi Miyamoto. Storage of hydrogen at 303 k in graphi- te slitlike pores from Grand Canonical Monte Carlo simulation. Journal of Physical Chemistry B, 109:17174–17183, 9 2005. ISSN 15206106. doi: 10.1021/JP0529063.
Sudarsan Karki and Somendra Nath Chakraborty. A Monte Carlo simu- lation study of hydrogen adsorption in slit-shaped pores. Microporous and Mesoporous Materials, 317:110970, 4 2021. ISSN 1387-1811. doi: 10.1016/j.micromeso.2021.110970.
Ling Ma, Jian Min Zhang, Ke Wei Xu, and Vincent Ji. Hydro- gen adsorption and storage of Ca-decorated Graphene with topologi- cal defects: A first-principles study. Physica E: Low-dimensional Sys- tems and Nanostructures, 63:45–51, 9 2014. ISSN 1386-9477. doi: 10.1016/j.physe.2014.05.004.
Saad Asadullah Sharief, Rahmat Agung Susantyoko, Mayada Alhashem, and Saif Almheiri. Synthesis of Few-Layer Graphene-like sheets from carbon-based powders via electrochemical exfoliation, using carbon black as an example. Journal of Materials Science 2017 52:18, 52:11004–11013, 6 2017. ISSN 1573-4803. doi: 10.1007/S10853-017-1275-3.
Y. G. Zhou, X. T. Zu, F. Gao, J. L. Nie, and H. Y. Xiao. Adsor- ption of hydrogen on boron-doped Graphene: A first-principles predic- tion. Journal of Applied Physics, 105:014309, 1 2009. ISSN 0021-8979. doi: 10.1063/1.3056380.
Elochukwu Stephen Agudosi, Ezzat Chan Abdullah, Arshid Numan, Nabi- sab Mujawar Mubarak, Mohammad Khalid, and Nurizan Omar. A review of the Graphene synthesis routes and its applications in electrochemical energy storage. Critical Reviews in Solid State and Materials Sciences, 45:339–377, 9 2020. ISSN 15476561. doi: 10.1080/10408436.2019.1632793.
Joerg Bakker, Christian Sachs, Dietmar Otte, Rainer Justen, Lars Han- nawald, and Flavio Friesen. Analysis of fuel cell vehicles equipped with compressed hydrogen storage systems from a road accident safety perspec- tive. SAE International Journal of Passenger Cars - Mechanical Systems, 4:332–342, 4 2011. ISSN 19463995. doi: 10.4271/2011-01-0545.
Vivek P. Utgikar and Todd Thiesen. Safety of compressed hydrogen fuel tanks: Leakage from stationary vehicles. Technology in Society, 27:315– 320, 8 2005. ISSN 0160791X. doi: 10.1016/j.techsoc.2005.04.005.
Stephen L. Mayo, Barry D. Olafson, and William A. Goddard. DREI- DING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94:8897–8909, 2002. doi: 10.1021/J100389A010.
Farida Darkrim and Dominique Levesque. Monte Carlo simulations of hy- drogen adsorption in single-walled carbon nanotubes. The Journal of Che- mical Physics, 109:4981, 9 1998. ISSN 0021-9606. doi: 10.1063/1.477109.
David Dubbeldam, Sofía Calero, Donald E. Ellis, and Randall Q. Snurr. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulations, 42:81–101, 1 2015. doi: 10.1080/08927022.2015.1010082.
A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. UFF, a full periodic table force field for Molecular Mechanics and Molecular Dynamics simulations. Journal of the American Chemical Society, 114:10024–10035, 12 1992. ISSN 15205126. doi: 10.1021/JA00051A040.
Xiao Wang, Zhihao Feng, Ju Rong, Yannan Zhang, Yi Zhong, Jing Feng, Xiaohua Yu, and Zhaolin Zhan. Planar net-: A new high-performance metallic carbon anode material for lithium-ion batteries. Carbon, 142: 438–444, 2 2019. ISSN 0008-6223. doi: 10.1016/j.carbon.2018.10.075.
Tuan K.A. Hoang and David M. Antonelli. Exploiting the Kubas interac- tion in the design of hydrogen storage materials. Advanced Materials, 21: 1787–1800, 5 2009. ISSN 1521-4095. doi: 10.1002/ADMA.200802832
Archa Gulati and Rita Kakkar. DFT studies on storage and adsorption capacities of gases on MOFs. Density Functional Theory: Advances in Applications, pages 83–111, 1 2018. doi: 10.1515/psr-2017-0196.
Xi Wu, Feiyu Kang, Wenhui Duan, and Jia Li. Density Functional Theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Scien- ce: Materials International, 29:247–255, 6 2019. ISSN 1002-0071. doi: 10.1016/j.pnsc.2019.04.003.
Dewei Rao, Yunhui Wang, Zhaoshun Meng, Shanshan Yao, Xuan Chen, Xiangqian Shen, and Ruifeng Lu. Theoretical study of H2 adsorption on metal-doped Graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 40:14154–14162, 11 2015. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2015.08.107.
Santhanamoorthi Nachimuthu, Po Jung Lai, and Jyh Chiang Jiang. Effi- cient hydrogen storage in boron doped Graphene decorated by transition metals – A first-principles study. Carbon, 73:132–140, 7 2014. ISSN 0008- 6223. doi: 10.1016/j.carbon.2014.02.048.
I. Cabria, M. J. López, and J. A. Alonso. Enhancement of hydrogen physisorption on Graphene and carbon nanotubes by Li doping. The Journal of Chemical Physics, 123:204721, 11 2005. ISSN 0021-9606. doi: 10.1063/1.2125727.
C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel. High-capacity hydrogen storage by metallized Graphene. Applied Physics Letters, 93:043123, 7 2008. ISSN 0003-6951. doi: 10.1063/1.2963976.
Celal Utku Deniz, Humeyra Mert, and Cengiz Baykasoglu. Li-doped Fu- llerene pillared Graphene nanocomposites for enhancing hydrogen storage: A computational study. Computational Materials Science, 186:110023, 1 2021. ISSN 0927-0256. doi: 10.1016/j.commatsci.2020.110023.
Ruifeng Lu, Dewei Rao, Zelin Lu, Jinchao Qian, Feng Li, Haiping Wu, Yaqi Wang, Chuanyun Xiao, Kaiming Deng, Erjun Kan, and Weiqiao Deng. Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous Graphe- ne. Journal of Physical Chemistry C, 116:21291–21296, 10 2012. doi: 10.1021/JP308195M.
Andrey Tokarev, Alexander V. Avdeenkov, Henrietta Langmi, and Dmi- tri G. Bessarabov. Modeling hydrogen storage in boron-substituted Graphene decorated with potassium metal atoms. International Jour- nal of Energy Research, 39:524–528, 3 2015. ISSN 1099-114X. doi: 10.1002/ER.3268.
M. Rzepka, P. Lamp, and M. A. De La Casa-Lillo. Physisorption of hydrogen on microporous carbon and carbon nanotubes. Journal of Physical Chemistry B, 102:10894–10898, 1998. ISSN 15206106. doi: 10.1021/JP9829602.
H. J. Salavagione, J. Sherwood, M. De bruyn, V. L. Budarin, G. J. Ellis, J. H. Clark, and P. S. Shuttleworth. Identification of high performance solvents for the sustainable processing of Graphene. Green Chemistry, 19: 2550–2560, 6 2017. ISSN 1463-9270. doi: 10.1039/C7GC00112F.
Yanyan Xu, Huizhe Cao, Yanqin Xue, Biao Li, and Weihua Cai. Liquid- phase exfoliation of Graphene: An overview on exfoliation media, tech- niques, and challenges. Nanomaterials 2018, Vol. 8, Page 942, 8:942, 11 2018. ISSN 2079-4991. doi: 10.3390/nano8110942.
Serguei Patchkovskii, John S. Tse, Sergei N. Yurchenko, Lyuben Zhech- kov, Thomas Heine, and Gotthard Seifert. Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the Natio- nal Academy of Sciences, 102:10439–10444, 7 2005. ISSN 0027-8424. doi: 10.1073/PNAS.0501030102.
Farida Darkrim, Jean Vermesse, Pierre Malbrunot, and Dominique Levesque. Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. comparison with experiments. The Journal of Chemical Physics, 110:4020, 2 1999. ISSN 0021-9606. doi: 10.1063/1.478283.
Jeffrey J. Potoff and J. Ilja Siepmann. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal, 47: 1676–1682, 7 2001. ISSN 00011541. doi: 10.1002/AIC.690470719.
Tomonori Ohba, Atsushi Takase, Yuki Ohyama, and Hirofumi Kanoh. Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 61:40–46, 9 2013. ISSN 00086223. doi: 10.1016/j.carbon.2013.04.061.
Eugene A. Ustinov. Effect of crystallization and surface potential on the nitrogen adsorption isotherm on graphite: A refined Monte Car- lo simulation. Carbon, 100:52–63, 4 2016. ISSN 0008-6223. doi: 10.1016/j.carbon.2015.12.099.
Hamed Akbarzadeh, Mohsen Abbaspour, Sirous Salemi, and Mahnaz Ak- bari. Injection of mixture of shale gases in a nanoscale pore of graphite and their displacement by CO2/N2 gases using molecular dynamics study. Journal of Molecular Liquids, 248:439–446, 12 2017. ISSN 0167-7322. doi: 10.1016/j.molliq.2017.10.089.
S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu, D. Sun, and X. Lu. First-row transition-metal-doped Graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics, 16:100301, 1 2021. ISSN 2542-5293. doi: 10.1016/j.mtphys.2020.100301.
Xiaoqing Lu, Maohuai Wang, Guanwei Luo, Sainan Zhou, Jiahui Wang, Huili Xin, Zhaojie Wang, Siyuan Liu, and Shuxian Wei. High-efficiency CO2 capture and separation over N2 in penta-Graphene pores: insights from GCMC and DFT simulations. Journal of Materials Science 2020 55:35, 55:16603–16611, 9 2020. ISSN 1573-4803. doi: 10.1007/S10853- 020-05251-9.
A. Gotzias, E. Tylianakis, G. Froudakis, and Th Steriotis. Adsorption in micro and mesoporous slit carbons with oxygen surface functionalities. Microporous and Mesoporous Materials, 209:141–149, 6 2015. ISSN 1387- 1811. doi: 10.1016/j.micromeso.2014.08.052.
Chunyan Fan, D. D. Do, D. Nicholson, Jacek Jagiello, Jeffrey Ken- vin, and Marissa Puzan. Monte Carlo simulation and experimental studies on the low temperature characterization of nitrogen adsorption on graphite. Carbon, 52:158–170, 2 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2012.09.017.
Md Bin Yeamin, N. Faginas-Lago, M. Albertí, I. G. Cuesta, J. Sánchez- Marín, and A. M.J. Sánchez De Merás. Multi-scale theoretical investigation of molecular hydrogen adsorption over Graphene: Coronene as a case study. RSC Advances, 4:54447–54453, 10 2014. ISSN 20462069. doi: 10.1039/C4RA08487J.
Fernando Pirani, Simona Brizi, Luiz F. Roncaratti, Piergiorgio Casavec- chia, David Cappelletti, and Franco Vecchiocattivi. Beyond the Lennard- Jones model: a simple and accurate potential function probed by high reso- lution scattering data useful for Molecular Dynamics simulations. Physical Chemistry Chemical Physics, 10:5489–5503, 9 2008. ISSN 1463-9084. doi: 10.1039/B808524B.
Eric W. Lemmon, Marcia L. Huber, and Jacob W. Leachman. Revised standardized equation for hydrogen gas densities for fuel consumption ap- plications. Journal of Research of the National Institute of Standards and Technology, 113:341, 2008. ISSN 1044677X. doi: 10.6028/JRES.113.028.
Jelle Vekeman, Daniel Bahamon, Inmaculada García Cuesta, Noelia Faginas-Lago, José Sánchez-Marín, Alfredo Sánchez de Merás, and Lourdes F. Vega. Grand Canonical Monte Carlo simulations to determine the optimal interlayer distance of a Graphene slit-shaped pore for ad- sorption of methane, hydrogen and their equimolar mixture. Nanomaterials 2021, Vol. 11, Page 2534, 11:2534, 9 2021. ISSN 20794991. doi: 10.3390/NANO11102534.
J. C. Charlier, X. Gonze, and J. P. Michenaud. First-principles study of the stacking effect on the electronic properties of graphite(s). Carbon, 32: 289–299, 1 1994. ISSN 0008-6223. doi: 10.1016/0008-6223(94)90192-9.
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Sum- mary for Policymakers. Cambridge University Press, Cambridge, UK and New York, USA, 2022. ISBN 9781009325844. Accessed March 15th, 2024.
BP. Statistical review of world energy 2021. Technical report, 2021. URL https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-econom Accessed March 15th, 2024.
Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, and Fan Yang. The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46:10548–10569, 3 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2020.12.123.
Viacheslav Zgonnik. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203:103140, 4 2020. ISSN 00128252. doi: 10.1016/j.earscirev.2020.103140.
Vatsal Jain and Balasubramanian Kandasubramanian. Functionalized graphene materials for hydrogen storage. Journal of Materials Science 2019 55:5, 55:1865–1903, 11 2019. ISSN 1573-4803. doi: 10.1007/S10853- 019-04150-Y.
Alberto Bianco, Hui Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Ro- bert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon, and Jin Zhang. All in the Graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon, 65:1–6, 12 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2013.08.038.
IRENA. World energy transitions outlook: 1.5°c path- way, International Renewable Energy Agency. Tech- nical report, Abu Dhabi, UAE, 2021. URL: https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook. Accessed March 15th, 2024.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field in atomically thin carbon films. Science, 306:666–669, 10 2004. ISSN 00368075. doi: 10.1126/science.1102896.
József Tóth. Uniform interpretation of gas/solid adsorption. Advances in Colloid and Interface Science, 55:1–239, 3 1995. ISSN 0001-8686. doi: 10.1016/0001-8686(94)00226-3.
Mahdieh Mozaffari Majd, Vahid Kordzadeh-Kermani, Vahab Ghalan- dari, Anis Askari, and Mika Sillanpää. Adsorption isotherm models: A comprehensive and systematic review (20102020). Science of The Total Environment, 812:151334, 3 2022. ISSN 0048-9697. doi: 10.1016/J.scitotenv.2021.151334.
HyMARC. Hydrogen storage materials database, June 2020. URL https://datahub.hymarc.org/dataset/hydrogen-storage-materials-db. Accessed March 15th, 2024.
Ali Eftekhari and Parvaneh Jafarkhani. Curly Graphene with specious interlayers displaying superior capacity for hydrogen storage. Journal of Physical Chemistry C, 117:25845–25851, 12 2013. ISSN 19327447. doi: 10.1021/jp410044v.
Wenhui Yuan, Baoqing Li, and Li Li. A green synthetic ap- proach to Graphene nanosheets for hydrogen adsorption. Applied Surface Science, 257:10183–10187, 9 2011. ISSN 0169-4332. doi: 10.1016/j.apsusc.2011.07.015.
Nikolaos Kostoglou, Afshin Tarat, Ian Walters, Vladislav Ryzhkov, Chris- tos Tampaxis, Georgia Charalambopoulou, Theodore Steriotis, Christian Mitterer, and Claus Rebholz. Few-Layer Graphene-like flakes derived by plasma treatment: A potential material for hydrogen adsorption and storage. Microporous and Mesoporous Materials, 225:482–487, 5 2016. ISSN 1387-1811. doi: 10.1016/j.micromeso.2016.01.027.
Zhongren Li, Fang Zheng, Lingfei Wang, Fangli Duan, and Xiaojing Mu. Effect of hydrogen adsorption on the atomic-scale wear of Few-Layer Graphene. Tribology International, 164:107208, 12 2021. ISSN 0301-679X. doi: 10.1016/j.triboint.2021.107208.
Kendall T. Thomson and Keith E. Gubbins. Modeling structural morpho- logy of microporous carbons by Reverse Monte Carlo. Langmuir, 16:5761– 5773, 6 2000. ISSN 07437463. doi: 10.1021/LA991581C.
Jacek Jagiello and James P. Olivier. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon, 55:70–80, 4 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2012.12.011.
Lai Peng Ma, Zhong Shuai Wu, Jing Li, Er Dong Wu, Wen Cai Ren, and Hui Ming Cheng. Hydrogen adsorption behavior of graphene above critical temperature. International Journal of Hydrogen Energy, 34:2329–2332, 3 2009. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2008.12.079.
William A. Steele. The physical interaction of gases with crystalline solids: I. gas-solid energies and properties of isolated adsorbed atoms. Surface Science, 36:317–352, 4 1973. ISSN 0039-6028. doi: 10.1016/0039- 6028(73)90264-1.
Piotr Kowalczyk, Piotr A. Gauden, Sylwester Furmaniak, Artur P. Terzyk, Marek Wi´sniewski, Anna Ilnicka, Jerzy Lukaszewicz, Andrzej Burian, Jerzy W-loch, and Alexander V. Neimark. Morphologically disordered pore model for characterization of micro- mesoporous carbons. Carbon, 111: 358–370, 1 2017. ISSN 0008-6223. doi: 10.1016/j.carbon.2016.09.070.
Anubhav Jain, Yongwoo Shin, and Kristin A. Persson. Computational predictions of energy materials using density functional theory. Natu- re Reviews Materials 2016 1:1, 1:1–13, 1 2016. ISSN 2058-8437. doi: 10.1038/NATREVMATS.2015.4.
Ponniah Vajeeston, Ponniah Ravindran, and Helmer Fjellv˚ag. Predicting new materials for hydrogen storage application. Materials 2009, Vol. 2, Pages 2296-2318, 2:2296–2318, 12 2009. doi: 10.3390/MA2042296.
Srinivas Gadipelli and Zheng Xiao Guo. Graphene-based mate- rials: Synthesis and gas sorption, storage and separation. Pro- gress in Materials Science, 69:1–60, 4 2015. ISSN 0079-6425. doi: 10.1016/J.PMATSCI.2014.10.004.
Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, and Alexandre Tkatchenko. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory. Progress in Surface Science, 91:72–100, 5 2016. ISSN 0079-6816. doi: 10.1016/J.PROGSURF.2016.05.001.
Jeffrey R. Reimers, Musen Li, Dongya Wan, Tim Gould, and Michael J. Ford. Surface adsorption. Non-Covalent Interactions in Quantum Chemistry and Physics: Theory and Applications, pages 387–416, 1 2017. doi: 10.1016/B978-0-12-809835-6.00015-3.
Minho Kim, Won June Kim, Eok Kyun Lee, S´ebastien Leb`egue, and Hyungjun Kim. Recent development of atom-pairwise van der waals corrections for density functional theory: From molecules to solids. In- ternational Journal of Quantum Chemistry, 116:598–607, 4 2016. ISSN 1097-461X. doi: 10.1002/QUA.25061.
Isaac F. Silvera and Victor V. Goldman. The isotropic intermolecular potential for h2 and d2 in the solid and gas phases. The Journal of Chemical Physics, 69:4209–4213, 11 1978. ISSN 0021-9606. doi: 10.1063/1.437103.
Ji´ı Klimeˇs and Angelos Michaelides. Perspective: Advances and challenges in treating van der waals dispersion forces in density functional theory. Journal of Chemical Physics, 137:120901, 9 2012. ISSN 00219606. doi: 10.1063/1.4754130/190906.
Rocío Rodríguez-Cantano, Ricardo Pérez De Tudela, Massimiliano Bartolomei, Marta I. Hernández, José Campos-Martínez, Tomás González- Lezana, Pablo Villarreal, Javier Hernández-Rojas, and José Bretón. Examination of the feynman-hibbs approach in the study of coronene clusters at low temperatures. Journal of Physical Chemistry A, 120:5370– 5379, 7 2016. ISSN 15205215. doi: 10.1021/acs.jpca.6b01926.
Luis M. Sesé. Feynman-hibbs potentials and path integrals for quantum lennard-jones systems: Theory and monte carlo simulations. Molecular Physics, 85:931–947, 8 1995. ISSN 13623028. doi: 10.1080/00268979500101571.
A. Martin-Calvo, J. J. Gutiérrez-Sevillano, I. Matito-Martos, T. J.H. Vlugt, and S. Calero. Identifying zeolite topologies for storage and release of hydrogen. Journal of Physical Chemistry C, 122:12485–12493, 6 2018. ISSN 19327455. doi: 10.1021/acs.jpcc.8b02263.
Grigoriy L. Aranovich and Marc D. Donohue. Adsorption of supercritical fluids. Journal of Colloid and Interface Science, 180:537–541, 6 1996. ISSN 0021-9797. doi: 10.1006/JCIS.1996.0334.
Lourdes F. Vega and Sandra E. Kentish. The hydrogen economy preface. Industrial & Engineering Chemistry Research, 61:6065–6066, 5 2022. ISSN 15205045. doi: 10.1021/acs.iecr.2C01090.
Hai-Ru Li, Ceng Zhang, Wan-Biao Ren, Ying-Jin Wang, and Tao Han. Geometric structures and hydrogen storage properties of M2B7 (M=Be, Mg, Ca) clusters. International Journal of Hydrogen Energy, 4 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.03.213.
Lu Luo, Yalan Zhou, Wen Yan, Lingcong Luo, Jianping Deng, Mizi Fan, and Weigang Zhao. In-situ one-step synthesis of activated carbon@MIL- 101 (Cr) composites for hydrogen storage. International Journal of Hydro- gen Energy, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.128.
Lan Bi, Jie Yin, Xin Huang, Yunhui Wang, and Zhihong Yang. Graphe- ne pillared with hybrid fullerene and nanotube as a novel 3d framework for hydrogen storage: A DFT and GCMC study. International Jour- nal of Hydrogen Energy, 45:17637–17648, 7 2020. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2020.04.227.
Rekha Pachaiappan, Saravanan Rajendran, P. Senthil Kumar, Dai Viet N. Vo, Tuan K.A. Hoang, and Lorena Cornejo-Ponce. Recent advances in carbon nitride-based nanomaterials for hydrogen production and storage. International Journal of Hydrogen Energy, 47:37490–37516, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.09.062.
Brinti Mondal, Ajit Kundu, and Brahmananda Chakraborty. High- capacity hydrogen storage in zirconium decorated zeolite templated carbon: Predictions from DFT simulations. International Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.056.
Maria Kapsi, Charitomeni M. Veziri, George Pilatos, Georgios N. Karani- kolos, and George E. Romanos. Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation. In- ternational Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.08.266.
Suye Yu, Xianhe Meng, Zhifang Li, Wenqian Zhang, and Xin Ju. He- terofullerene C48B12-impregnated MOF-5 and IRMOF-10 for hydrogen storage: A combined DFT and GCMC simulations study. International Journal of Hydrogen Energy, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.123.
Anupama Ghosh, K. S. Subrahmanyam, Katla Sai Krishna, Sudipta Dat- ta, A. Govindaraj, Swapan K. Pati, and C. N.R. Rao. Uptake of H2 and CO2 by graphene. Journal of Physical Chemistry C, 112:15704–15707, 10 2008. ISSN 19327447. doi: 10.1021/JP805802W.
Gagus Ketut Sunnardianto, George Bokas, Abdelrahman Hussein, Carey Walters, Othonas A. Moultos, and Poulumi Dey. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. International Journal of Hydrogen Energy, 46:5485–5494, 1 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2020.11.068.
Daniel Bahamon, Wei Anlu, Santiago Builes, Maryam Khaleel, and Lourdes F. Vega. Effect of amine functionalization of MOF adsor- bents for enhanced CO2 capture and separation: A molecular simulation study. Frontiers in Chemistry, 8:574622, 1 2021. ISSN 22962646. doi: 10.3389/fchem.2020.574622.
Diana P. Vargas, Liliana Giraldo, and Juan C. Moreno-Piraján. CO2 adsorption on activated carbon honeycomb-monoliths: A comparison of Langmuir and Tóth models. International Journal of Molecular Sciences 2012, Vol. 13, Pages 8388-8397, 13:8388–8397, 7 2012. ISSN 1422-0067. doi: 10.3390/ijms13078388.
Quingrong Zheng, Xiaohua Wang, and Shuai Gao. Adsorption equilibrium of hydrogen on graphene sheets and activated carbon. Cryogenics, 61:143– 148, 5 2014. ISSN 0011-2275. doi: 10.1016/j.cryogenics.2014.01.005.
Jan Kohout. Modified arrhenius equation in materials science, chemistry and biology. Molecules, 26(23), 2021. ISSN 1420-3049. doi: 10.3390/molecules26237162.
Santiago Builes, Thomas Roussel, Camelia Matei Ghimbeu, Julien Par- mentier, Roger Gadiou, Cathie Vix-Guterl, and Lourdes F. Vega. Microporous carbon adsorbents with high co2 capacities for industrial applications. Physical Chemistry Chemical Physics, 13:16063–16070, 8 2011. ISSN 1463-9084. doi: 10.1039/C1CP21673B.
Panuwat Lawtae, Krittamet Phothong, Chaiyot Tangsathitkulchai, and Atichat Wongkoblap. Analysis of gas adsorption and pore development of microporous-mesoporous activated carbon based on GCMC simulation and a surface defect model. Journal of Porous Materials, pages 1–17, 6 2023. ISSN 15734854. doi: 10.1007/s10934-023-01493-5.
Lan Bi, Zhicheng Miao, Yan Ge, Ziyi Liu, Yi Xu, Jie Yin, Xin Huang, Yunhui Wang, and Zhihong Yang. Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. International Journal of Hydrogen Energy, 47:32552–32564, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.07.134.
Fatma Oguz Erdogan, Cenk Celik, Anil Can Turkmen, Ali Enis Sadak, and Evren Cucu. Hydrogen sorption studies of palladium decorated graphene nanoplatelets and carbon samples. International Journal of Hydrogen Energy, 2 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.01.026.
M. Gallouze, A. Kellou, and M. Drir. Adsorption isotherms of H2 on defected graphene: DFT and Monte Carlo studies. International Journal of Hydrogen Energy, 41:5522–5530, 4 2016. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2016.02.032.
Deepak Kag, Nitin Luhadiya, Nagesh D. Patil, and S.I. Kundalwal. Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. International Journal of Hydrogen Energy, 5 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2021.04.098.
Li-Juan Ma, Ting Han, Zhichao Hao, Jianfeng Wang, Jianfeng Jia, and Hai-Shun Wu. Bonding states of hydrogen for supported ti clusters on pristine and defective graphene. International Journal of Hydrogen Energy, 1 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.12.351.
Janet Wong, Shwetank Yadav, Jasmine Tam, and Chandra Veer Singh. A van der waals density functional theory comparison of metal decorated graphene systems for hydrogen adsorption. Journal of Applied Physics, 115, 6 2014. ISSN 10897550. doi: 10.1063/1.4882197/372338.
Yanwei Wen, Fan Xie, Xiaolin Liu, Xiao Liu, Rong Chen, Kyeongjae Cho, and Bin Shan. Tunable h2 binding on alkaline and alkaline earth metals decorated graphene substrates from first-principles calculations. International Journal of Hydrogen Energy, 42:10064–10071, 4 2017. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2017.02.023.
Marisol Ibarra-Rodríguez and Mario Sánchez. Lithium clusters on graphene surface and their ability to adsorb hydrogen molecules. International Journal of Hydrogen Energy, 46:21984–21993, 6 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.04.028.
Wenjiang Liu, Cheng Zhang, Mingsen Deng, and Shaohong Cai. The structural and electronic properties of metal atoms adsorbed on graphene. Physica E: Low-dimensional Systems and Nanostructures, 93:265–270, 9 2017. ISSN 1386-9477. doi: 10.1016/J.PHYSE.2017.06.021.
Luis F. Salas-Guerrero, Santiago Builes, and Gustavo A. Orozco. Development of atomistic graphene models for H2 adsorption from experimental data and Monte Carlo simulations. International Journal of Hydrogen Energy, 11 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.10.161.
Tina Düren, Franck Millange, Gérard Férey, Krista S. Walton, and Randall Q. Snurr. Calculating geometric surface areas as a characterization tool for Metal Organic Frameworks. Journal of Physical Chemistry C, 111: 15350–15356, 10 2007. ISSN 19327447. doi: 10.1021/JP074723H.
Heera T. Nair, Prafulla K. Jha, and Brahmananda Chakraborty. High- capacity hydrogen storage in zirconium decorated psi-graphene: acumen from density functional theory and molecular dynamics simulations. In- ternational Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/J.IJHYDENE.2022.08.084.
Wu Qin, Xin Li, Wen Wen Bian, Xiu Juan Fan, and Jing Yao Qi. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene sur- faces. Biomaterials, 31:1007–1016, 2 2010. ISSN 0142-9612. doi: 10.1016/J.BIOMATERIALS.2009.10.013.
Jegan S. Pushparajalingam, Marco Kalweit, Mathieu Labois, and Dimitris Drikakis. Molecular dynamics of adsorption of argon on graphene, car- bon nanotubes and carbon nanotubes bundles. Journal of Computational and Theoretical Nanoscience, 6:2156–2163, 10 2009. ISSN 15461955. doi: 10.1166/JCTN.2009.1267.
Athanassios Z. Panagiotopoulos. Direct determination of phase coexistence properties of fluids by monte carlo simulation in a new ensemble. Molecular Physics, 61:813–826, 1987. ISSN 13623028. doi: 10.1080/00268978700101491.
D. Frenkel. Biased monte carlo methods. AIP Conference Proceedings, 690:99–109, 11 2003. ISSN 0094-243X. doi: 10.1063/1.1632121.
Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2002. ISBN 978-0-12- 267351-1.
David Sholl and Janice Steckel. Density Functional Theory: A practical introduction. John Wiley & Sons Inc., 2009. ISBN 978-0-470-37317-0.
Thomas D. Ku¨hne. Second generation Car–Parrinello molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4:391– 406, 7 2014. ISSN 1759-0884. doi: 10.1002/WCMS.1176.
Lode Pollet. Recent developments in quantum Monte Carlo simulations with applications for cold gases. Reports on Progress in Physics, 75: 094501, 8 2012. ISSN 0034-4885. doi: 10.1088/0034-4885/75/9/094501.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85839/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85839/2/DocumentoFinal.pdf
https://repositorio.unal.edu.co/bitstream/unal/85839/3/DocumentoFinal.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
49bf96b72612b1c9b1d520fca9da2b74
db0d3e2562ea000c3b0d59053f19d638
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089653421080576
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco Alvarado, Gustavo Adolfo869ebab98f073cb506305d69d50e98e8600Salas Guerrero, Luis Felipeef709d368d8c184257336791c2c166e8600Grupo de Investigación en Procesos Químicos y BioquímicosSalas Guerrero, Luis Felipe [0000-0002-1457-8706]Salas Guerrero, Luis Felipe [1026299113]Salas-Guerrero, Luis F. [58035032700]2024-04-02T01:31:37Z2024-04-02T01:31:37Z2024https://repositorio.unal.edu.co/handle/unal/85839Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl hidrógeno puede desempeñar un papel significativo en la transición energética, ya que transporta una gran cantidad de energía por unidad de masa y puede producirse utilizando energías renovables. Por lo tanto, puede utilizarse como combustible de bajo carbono para el transporte y la movilidad. Sin embargo, un cuello de botella clave para la implementación masiva del hidrógeno como vector energético es su almacenamiento. Una solución potencial es el desarrollo de materiales adsorbentes para nuevos sistemas de almacenamiento. En particular, el grafeno de pocas capas (FLG) es un candidato para funcionar como base para nuevos materiales adsorbentes. En este trabajo, se explora el efecto de las características morfológicas y la funcionalización de este material con litio y calcio en la adsorción de hidrógeno mediante simulación molecular. La investigación permite obtener información sobre los fenómenos de adsorción. Los resultados de este trabajo proporcionan un análisis sistemático utilizando simulaciones de Monte Carlo Gran Canónico (GCMC). Se demuestra que el modelo puede predecir adecuadamente las isotermas experimentales y se desarrolla un modelo fácil de aplicar para predecir la morfología característica a partir de las isotermas de hidrógeno. También se muestra que existe un efecto no lineal y sinérgico entre el tamaño característico de los poros del material y el nivel de funcionalización con átomos metálicos. La cobertura metálica puede aumentar la adsorción hasta cuatro veces en comparación con el material no funcionalizado, y el efecto es mayor a bajas presiones. Finalmente, se concluye que el material funcionalizado puede alcanzar y superar el objetivo de 65 mg/g a 100 bar y 77 K, lo que muestra aplicaciones potenciales para el almacenamiento de hidrógeno a temperaturas más altas que el punto de condensación y presiones moderadas. (Texto tomado de la fuente).Hydrogen can play a significant role in the energy transition due to its ability to transport a large amount of energy per unit of mass and its potential to be produced using renewable energies. Consequently, it can be used as a low-carbon fuel for transportation. However, a key bottleneck to the widespread implementation of hydrogen as an energy vector is its storage. A potential solution lies in the development of adsorbent materials for new storage systems. Specifically, Few Layers Graphene (FLG) is considered a candidate to serve as a template for adsorptive materials. In this study, the effects of the morphological characteristics and functionalization of FLG with lithium and calcium on hydrogen adsorption are explored using molecular simulation. This investigation provides insights into the adsorption phenomena. The results of this study offer a systematic analysis using Grand Canonical Monte Carlo (GCMC) simulations. It is demonstrated that the model can accurately predict experimental isotherms, and an easy-to-apply model is developed to predict the characteristic morphology from hydrogen isotherms. Additionally, a non-linear and synergistic effect is observed between the characteristic pore size of the material and the level of functionalization with metallic atoms. The metallic coverage can increase adsorption up to four times compared to the non-functionalized material, with the most significant effect observed at low pressures. Hence, the functionalized material can achieve and surpass the target of 65 mg/g at 100 bar and 77 K, indicating potential applications for hydrogen storage at temperatures higher than the boiling point and moderate pressures.Texto en inglésMaestríaMagíster en Ingeniería - Ingeniería QuímicaCatalytical and petrochemical processesx, 74 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::666 - Cerámica y tecnologías afinesAdsorciónGrafenoAlmacenamiento de hidrógenoMonte Carlo Gran CanónicoAdsorptionGrapheneHydrogen storageGrand Canonical Monte CarloQuímica experimentalQuímica inorgánicaTecnología de materialesExperimental chemistryInorganic chemistryMaterials engineeringEffect of metallic functionalization and interlaminar space on the hydrogen adsorption over graphene via Grand Canonical Monte Carlo (GCMC)Impacto de la funcionalización con metales y el espacio interlaminar en la adsorción de hidrógeno sobre grafeno evaluado con simulación Monte Carlo Gran Canónico (GCMC)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGiulio Guandalini and Stefano Campanari. Well-to-wheel driving cycle si- mulations for freight transportation: Battery and hydrogen fuel cell elec- tric vehicles. 2018 International Conference of Electrical and Electro- nic Technologies for Automotive, AUTOMOTIVE 2018, 10 2018. doi: 10.23919/EETA.2018.8493216.Carlo Cunanan, Manh Kien Tran, Youngwoo Lee, Shinghei Kwok, Vincent Leung, and Michael Fowler. A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies 2021, Vol. 3, Pages 474-489, 3:474–489, 6 2021. ISSN 2571-8797. doi: 10.3390/cleantechnol3020028.International Energy Agency. Energy technology perspectives 2020 – analysis - iea, 2020. URL https://www.iea.org/reports/energy-technology-perspectives-2020. Accessed March 15th, 2024.William J. Atteridge and Stephen Anthony Lloyd. Thoughts on use of hydrogen to power railway trains. Proceedings of the Institution of Me- chanical Engineers, Part A: Journal of Power and Energy, 235:306–316, 3 2020. ISSN 20412967. doi: 10.1177/0957650920912086.Krzysztof Jastrzebski and Piotr Kula. Emerging technology for a green, sustainable energy-promising materials for hydrogen storage, from nano- tubes to Graphene — A review. Materials 2021, Vol. 14, Page 2499, 14: 2499, 5 2021. doi: 10.3390/ma14102499.Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, and Hai Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering, 29:1–12, 1 2021. ISSN 1004-9541. doi: 10.1016/j.cjche.2020.08.024.R. Pedicini, R. Pedicini, I. Gatto, M. F. Gatto, M. F. Gatto, and E. Pas- salacqua. Carbonaceous materials in hydrogen storage. Hydrogen Storage Technologies, pages 197–228, 8 2018. doi: 10.1002/9781119460572.CH7.Michael Fischer, Frank Hoffmann, and Michael Fr¨oba. Preferred hydro- gen adsorption sites in various MOFs — A comparative computational study. ChemPhysChem, 10:2647–2657, 10 2009. ISSN 1439-7641. doi: 10.1002/CPHC.200900459.Fan Zhang, Pengcheng Zhao, Meng Niu, and Jon Maddy. The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41:14535–14552, 9 2016. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2016.05.293.G. Srinivas, Yanwu Zhu, Richard Piner, Neal Skipper, Mark Ellerby, and Rod Ruoff. Synthesis of Graphene-like nanosheets and their hydrogen adsorption capacity. Carbon, 48:630–635, 3 2010. ISSN 0008-6223. doi: 10.1016/j.carbon.2009.10.003.Pierre Bénard and Richard Chahine. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scripta Materialia, 56:803–808, 5 2007. ISSN 1359-6462. doi: 10.1016/j.scriptamat.2007.01.008.A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science, 20:367–382, 10 2015. ISSN 1359-0294. doi: 10.1016/j.cocis.2015.11.004.Theodosis Skaltsas, Xiaoxing Ke, Carla Bittencourt, and Nicos Tagmatar- chis. Ultrasonication induces oxygenated species and defects onto exfo- liated Graphene. Journal of Physical Chemistry C, 117:23272–23278, 11 2013. ISSN 19327447. doi: 10.1021/JP4057048.D. P. Broom and M. Hirscher. Irreproducibility in hydrogen storage ma- terial research. Energy and Environmental Science, 9:3368–3380, 11 2016. ISSN 17545706. doi: 10.1039/c6ee01435f.Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Miche- le Byrne, Yurii K. Gun’Ko, John J. Boland, Peter Niraj, Georg Dues- berg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vitto- rio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman. High-yield production of Graphene by liquid-phase exfoliation of graphite. Natu- re Nanotechnology 2008 3:9, 3:563–568, 8 2008. ISSN 1748-3395. doi: 10.1038/nnano.2008.215.Solution phase production of Graphene with controlled thickness via den- sity differentiation. Nano Letters, 9:4031–4036, 12 2009. ISSN 15306984. doi: 10.1021/NL902200B.Chih Jen Shih, Shangchao Lin, Michael S. Strano, and Daniel Blanksch- tein. Understanding the stabilization of liquid-phase-exfoliated graphe- ne in polar solvents: Molecular dynamics simulations and kinetic theory of colloid aggregation. Journal of the American Chemical Society, 132: 14638–14648, 10 2010. ISSN 00027863. doi: 10.1021/JA1064284.Mingmin Shi, Qiang Wu, Xin Huang, Zhaoshun Meng, Yunhui Wang, Zhihong Yang, Jing Hu, Yi Xu, Huaihong Zhao, and Gang Yan. A density functional theory and grand canonical Monte Carlo simula- tions study the hydrogen storage on the Li-decorated net-. Interna- tional Journal of Hydrogen Energy, 5 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2021.04.027.Jinbo Hao, Feng Wei, Xinhui Zhang, Long Li, Changcheng Chen, Ge Wu, Liyuan Wu, Dan Liang, Xiaoguang Ma, Pengfei Lu, and Haizhi Song. An investigation of Li-decorated N-doped penta-Graphene for hydrogen storage. International Journal of Hydrogen Energy, 46:25533–25542, 7 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.05.089.I. Cabria, A. Lebon, M. B. Torres, L. J. Gallego, and A. Vega. Hy- drogen storage capacity of Li-decorated borophene and pristine Graphe- ne slit pores: A combined ab initio and quantum-thermodynamic study. Applied Surface Science, 562:150019, 10 2021. ISSN 0169-4332. doi: 10.1016/j.apsusc.2021.150019.Leslie J. Murray, Mircea Dinc˘a, and Jeffrey R. Long. Hydrogen storage in Metal–Organic Frameworks. Chemical Society Reviews, 38:1294–1314, 4 2009. ISSN 1460-4744. doi: 10.1039/B802256A.E. Tylianakis and G. E. Froudakis. Grand canonical Monte Carlo method for gas adsorption and separation. Journal of Computational and Theoretical Nanoscience, 6:335–348, 2 2009. ISSN 15461955. doi: 10.1166/JCTN.2009.1040.Tengfei Luo and John R. Lloyd. Grand Canonical Monte Carlo simulation of hydrogen adsorption in different carbon nanostructures. International Journal of Energy for a Clean Environment, 10:37–56, 2009. ISSN 2150- 3621. doi: 10.1615/interjenercleanenv.V10.I1-4.30.K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. W. Daud. Solid-state materials and methods for hydrogen storage: A critical review. Chemical Engineering & Technology, 33:213–226, 2 2010. ISSN 1521-4125. doi: 10.1002/CEAT.200900376.US Department of Energy DOE. Technical targets for onboard hydro- gen storage for light-duty vehicles — department of energy, 2015. URL https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-liYouning Gong and Chunxu Pan. Preparation of high-quality Graphe- ne via electrochemical exfoliation in acidic electrolytes: A review. MRS Advances 2017 2:30, 2:1611–1619, 1 2017. ISSN 2059-8521. doi: 10.1557/ADV.2017.62.Qinyu Wang and J. Karl Johnson. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slitpores. The Journal of Chemical Physics, 110:577, 12 1998. ISSN 0021-9606. doi: 10.1063/1.478114.Piotr Kowalczyk, Hideki Tanaka, Robert Ho-lyst, Katsumi Kaneko, Taku- mi Ohmori, and Junichi Miyamoto. Storage of hydrogen at 303 k in graphi- te slitlike pores from Grand Canonical Monte Carlo simulation. Journal of Physical Chemistry B, 109:17174–17183, 9 2005. ISSN 15206106. doi: 10.1021/JP0529063.Sudarsan Karki and Somendra Nath Chakraborty. A Monte Carlo simu- lation study of hydrogen adsorption in slit-shaped pores. Microporous and Mesoporous Materials, 317:110970, 4 2021. ISSN 1387-1811. doi: 10.1016/j.micromeso.2021.110970.Ling Ma, Jian Min Zhang, Ke Wei Xu, and Vincent Ji. Hydro- gen adsorption and storage of Ca-decorated Graphene with topologi- cal defects: A first-principles study. Physica E: Low-dimensional Sys- tems and Nanostructures, 63:45–51, 9 2014. ISSN 1386-9477. doi: 10.1016/j.physe.2014.05.004.Saad Asadullah Sharief, Rahmat Agung Susantyoko, Mayada Alhashem, and Saif Almheiri. Synthesis of Few-Layer Graphene-like sheets from carbon-based powders via electrochemical exfoliation, using carbon black as an example. Journal of Materials Science 2017 52:18, 52:11004–11013, 6 2017. ISSN 1573-4803. doi: 10.1007/S10853-017-1275-3.Y. G. Zhou, X. T. Zu, F. Gao, J. L. Nie, and H. Y. Xiao. Adsor- ption of hydrogen on boron-doped Graphene: A first-principles predic- tion. Journal of Applied Physics, 105:014309, 1 2009. ISSN 0021-8979. doi: 10.1063/1.3056380.Elochukwu Stephen Agudosi, Ezzat Chan Abdullah, Arshid Numan, Nabi- sab Mujawar Mubarak, Mohammad Khalid, and Nurizan Omar. A review of the Graphene synthesis routes and its applications in electrochemical energy storage. Critical Reviews in Solid State and Materials Sciences, 45:339–377, 9 2020. ISSN 15476561. doi: 10.1080/10408436.2019.1632793.Joerg Bakker, Christian Sachs, Dietmar Otte, Rainer Justen, Lars Han- nawald, and Flavio Friesen. Analysis of fuel cell vehicles equipped with compressed hydrogen storage systems from a road accident safety perspec- tive. SAE International Journal of Passenger Cars - Mechanical Systems, 4:332–342, 4 2011. ISSN 19463995. doi: 10.4271/2011-01-0545.Vivek P. Utgikar and Todd Thiesen. Safety of compressed hydrogen fuel tanks: Leakage from stationary vehicles. Technology in Society, 27:315– 320, 8 2005. ISSN 0160791X. doi: 10.1016/j.techsoc.2005.04.005.Stephen L. Mayo, Barry D. Olafson, and William A. Goddard. DREI- DING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94:8897–8909, 2002. doi: 10.1021/J100389A010.Farida Darkrim and Dominique Levesque. Monte Carlo simulations of hy- drogen adsorption in single-walled carbon nanotubes. The Journal of Che- mical Physics, 109:4981, 9 1998. ISSN 0021-9606. doi: 10.1063/1.477109.David Dubbeldam, Sofía Calero, Donald E. Ellis, and Randall Q. Snurr. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulations, 42:81–101, 1 2015. doi: 10.1080/08927022.2015.1010082.A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. UFF, a full periodic table force field for Molecular Mechanics and Molecular Dynamics simulations. Journal of the American Chemical Society, 114:10024–10035, 12 1992. ISSN 15205126. doi: 10.1021/JA00051A040.Xiao Wang, Zhihao Feng, Ju Rong, Yannan Zhang, Yi Zhong, Jing Feng, Xiaohua Yu, and Zhaolin Zhan. Planar net-: A new high-performance metallic carbon anode material for lithium-ion batteries. Carbon, 142: 438–444, 2 2019. ISSN 0008-6223. doi: 10.1016/j.carbon.2018.10.075.Tuan K.A. Hoang and David M. Antonelli. Exploiting the Kubas interac- tion in the design of hydrogen storage materials. Advanced Materials, 21: 1787–1800, 5 2009. ISSN 1521-4095. doi: 10.1002/ADMA.200802832Archa Gulati and Rita Kakkar. DFT studies on storage and adsorption capacities of gases on MOFs. Density Functional Theory: Advances in Applications, pages 83–111, 1 2018. doi: 10.1515/psr-2017-0196.Xi Wu, Feiyu Kang, Wenhui Duan, and Jia Li. Density Functional Theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Scien- ce: Materials International, 29:247–255, 6 2019. ISSN 1002-0071. doi: 10.1016/j.pnsc.2019.04.003.Dewei Rao, Yunhui Wang, Zhaoshun Meng, Shanshan Yao, Xuan Chen, Xiangqian Shen, and Ruifeng Lu. Theoretical study of H2 adsorption on metal-doped Graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 40:14154–14162, 11 2015. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2015.08.107.Santhanamoorthi Nachimuthu, Po Jung Lai, and Jyh Chiang Jiang. Effi- cient hydrogen storage in boron doped Graphene decorated by transition metals – A first-principles study. Carbon, 73:132–140, 7 2014. ISSN 0008- 6223. doi: 10.1016/j.carbon.2014.02.048.I. Cabria, M. J. López, and J. A. Alonso. Enhancement of hydrogen physisorption on Graphene and carbon nanotubes by Li doping. The Journal of Chemical Physics, 123:204721, 11 2005. ISSN 0021-9606. doi: 10.1063/1.2125727.C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel. High-capacity hydrogen storage by metallized Graphene. Applied Physics Letters, 93:043123, 7 2008. ISSN 0003-6951. doi: 10.1063/1.2963976.Celal Utku Deniz, Humeyra Mert, and Cengiz Baykasoglu. Li-doped Fu- llerene pillared Graphene nanocomposites for enhancing hydrogen storage: A computational study. Computational Materials Science, 186:110023, 1 2021. ISSN 0927-0256. doi: 10.1016/j.commatsci.2020.110023.Ruifeng Lu, Dewei Rao, Zelin Lu, Jinchao Qian, Feng Li, Haiping Wu, Yaqi Wang, Chuanyun Xiao, Kaiming Deng, Erjun Kan, and Weiqiao Deng. Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous Graphe- ne. Journal of Physical Chemistry C, 116:21291–21296, 10 2012. doi: 10.1021/JP308195M.Andrey Tokarev, Alexander V. Avdeenkov, Henrietta Langmi, and Dmi- tri G. Bessarabov. Modeling hydrogen storage in boron-substituted Graphene decorated with potassium metal atoms. International Jour- nal of Energy Research, 39:524–528, 3 2015. ISSN 1099-114X. doi: 10.1002/ER.3268.M. Rzepka, P. Lamp, and M. A. De La Casa-Lillo. Physisorption of hydrogen on microporous carbon and carbon nanotubes. Journal of Physical Chemistry B, 102:10894–10898, 1998. ISSN 15206106. doi: 10.1021/JP9829602.H. J. Salavagione, J. Sherwood, M. De bruyn, V. L. Budarin, G. J. Ellis, J. H. Clark, and P. S. Shuttleworth. Identification of high performance solvents for the sustainable processing of Graphene. Green Chemistry, 19: 2550–2560, 6 2017. ISSN 1463-9270. doi: 10.1039/C7GC00112F.Yanyan Xu, Huizhe Cao, Yanqin Xue, Biao Li, and Weihua Cai. Liquid- phase exfoliation of Graphene: An overview on exfoliation media, tech- niques, and challenges. Nanomaterials 2018, Vol. 8, Page 942, 8:942, 11 2018. ISSN 2079-4991. doi: 10.3390/nano8110942.Serguei Patchkovskii, John S. Tse, Sergei N. Yurchenko, Lyuben Zhech- kov, Thomas Heine, and Gotthard Seifert. Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the Natio- nal Academy of Sciences, 102:10439–10444, 7 2005. ISSN 0027-8424. doi: 10.1073/PNAS.0501030102.Farida Darkrim, Jean Vermesse, Pierre Malbrunot, and Dominique Levesque. Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. comparison with experiments. The Journal of Chemical Physics, 110:4020, 2 1999. ISSN 0021-9606. doi: 10.1063/1.478283.Jeffrey J. Potoff and J. Ilja Siepmann. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal, 47: 1676–1682, 7 2001. ISSN 00011541. doi: 10.1002/AIC.690470719.Tomonori Ohba, Atsushi Takase, Yuki Ohyama, and Hirofumi Kanoh. Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 61:40–46, 9 2013. ISSN 00086223. doi: 10.1016/j.carbon.2013.04.061.Eugene A. Ustinov. Effect of crystallization and surface potential on the nitrogen adsorption isotherm on graphite: A refined Monte Car- lo simulation. Carbon, 100:52–63, 4 2016. ISSN 0008-6223. doi: 10.1016/j.carbon.2015.12.099.Hamed Akbarzadeh, Mohsen Abbaspour, Sirous Salemi, and Mahnaz Ak- bari. Injection of mixture of shale gases in a nanoscale pore of graphite and their displacement by CO2/N2 gases using molecular dynamics study. Journal of Molecular Liquids, 248:439–446, 12 2017. ISSN 0167-7322. doi: 10.1016/j.molliq.2017.10.089.S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu, D. Sun, and X. Lu. First-row transition-metal-doped Graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics, 16:100301, 1 2021. ISSN 2542-5293. doi: 10.1016/j.mtphys.2020.100301.Xiaoqing Lu, Maohuai Wang, Guanwei Luo, Sainan Zhou, Jiahui Wang, Huili Xin, Zhaojie Wang, Siyuan Liu, and Shuxian Wei. High-efficiency CO2 capture and separation over N2 in penta-Graphene pores: insights from GCMC and DFT simulations. Journal of Materials Science 2020 55:35, 55:16603–16611, 9 2020. ISSN 1573-4803. doi: 10.1007/S10853- 020-05251-9.A. Gotzias, E. Tylianakis, G. Froudakis, and Th Steriotis. Adsorption in micro and mesoporous slit carbons with oxygen surface functionalities. Microporous and Mesoporous Materials, 209:141–149, 6 2015. ISSN 1387- 1811. doi: 10.1016/j.micromeso.2014.08.052.Chunyan Fan, D. D. Do, D. Nicholson, Jacek Jagiello, Jeffrey Ken- vin, and Marissa Puzan. Monte Carlo simulation and experimental studies on the low temperature characterization of nitrogen adsorption on graphite. Carbon, 52:158–170, 2 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2012.09.017.Md Bin Yeamin, N. Faginas-Lago, M. Albertí, I. G. Cuesta, J. Sánchez- Marín, and A. M.J. Sánchez De Merás. Multi-scale theoretical investigation of molecular hydrogen adsorption over Graphene: Coronene as a case study. RSC Advances, 4:54447–54453, 10 2014. ISSN 20462069. doi: 10.1039/C4RA08487J.Fernando Pirani, Simona Brizi, Luiz F. Roncaratti, Piergiorgio Casavec- chia, David Cappelletti, and Franco Vecchiocattivi. Beyond the Lennard- Jones model: a simple and accurate potential function probed by high reso- lution scattering data useful for Molecular Dynamics simulations. Physical Chemistry Chemical Physics, 10:5489–5503, 9 2008. ISSN 1463-9084. doi: 10.1039/B808524B.Eric W. Lemmon, Marcia L. Huber, and Jacob W. Leachman. Revised standardized equation for hydrogen gas densities for fuel consumption ap- plications. Journal of Research of the National Institute of Standards and Technology, 113:341, 2008. ISSN 1044677X. doi: 10.6028/JRES.113.028.Jelle Vekeman, Daniel Bahamon, Inmaculada García Cuesta, Noelia Faginas-Lago, José Sánchez-Marín, Alfredo Sánchez de Merás, and Lourdes F. Vega. Grand Canonical Monte Carlo simulations to determine the optimal interlayer distance of a Graphene slit-shaped pore for ad- sorption of methane, hydrogen and their equimolar mixture. Nanomaterials 2021, Vol. 11, Page 2534, 11:2534, 9 2021. ISSN 20794991. doi: 10.3390/NANO11102534.J. C. Charlier, X. Gonze, and J. P. Michenaud. First-principles study of the stacking effect on the electronic properties of graphite(s). Carbon, 32: 289–299, 1 1994. ISSN 0008-6223. doi: 10.1016/0008-6223(94)90192-9.IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Sum- mary for Policymakers. Cambridge University Press, Cambridge, UK and New York, USA, 2022. ISBN 9781009325844. Accessed March 15th, 2024.BP. Statistical review of world energy 2021. Technical report, 2021. URL https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-econom Accessed March 15th, 2024.Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, and Fan Yang. The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46:10548–10569, 3 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2020.12.123.Viacheslav Zgonnik. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203:103140, 4 2020. ISSN 00128252. doi: 10.1016/j.earscirev.2020.103140.Vatsal Jain and Balasubramanian Kandasubramanian. Functionalized graphene materials for hydrogen storage. Journal of Materials Science 2019 55:5, 55:1865–1903, 11 2019. ISSN 1573-4803. doi: 10.1007/S10853- 019-04150-Y.Alberto Bianco, Hui Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Ro- bert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon, and Jin Zhang. All in the Graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon, 65:1–6, 12 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2013.08.038.IRENA. World energy transitions outlook: 1.5°c path- way, International Renewable Energy Agency. Tech- nical report, Abu Dhabi, UAE, 2021. URL: https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook. Accessed March 15th, 2024.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field in atomically thin carbon films. Science, 306:666–669, 10 2004. ISSN 00368075. doi: 10.1126/science.1102896.József Tóth. Uniform interpretation of gas/solid adsorption. Advances in Colloid and Interface Science, 55:1–239, 3 1995. ISSN 0001-8686. doi: 10.1016/0001-8686(94)00226-3.Mahdieh Mozaffari Majd, Vahid Kordzadeh-Kermani, Vahab Ghalan- dari, Anis Askari, and Mika Sillanpää. Adsorption isotherm models: A comprehensive and systematic review (20102020). Science of The Total Environment, 812:151334, 3 2022. ISSN 0048-9697. doi: 10.1016/J.scitotenv.2021.151334.HyMARC. Hydrogen storage materials database, June 2020. URL https://datahub.hymarc.org/dataset/hydrogen-storage-materials-db. Accessed March 15th, 2024.Ali Eftekhari and Parvaneh Jafarkhani. Curly Graphene with specious interlayers displaying superior capacity for hydrogen storage. Journal of Physical Chemistry C, 117:25845–25851, 12 2013. ISSN 19327447. doi: 10.1021/jp410044v.Wenhui Yuan, Baoqing Li, and Li Li. A green synthetic ap- proach to Graphene nanosheets for hydrogen adsorption. Applied Surface Science, 257:10183–10187, 9 2011. ISSN 0169-4332. doi: 10.1016/j.apsusc.2011.07.015.Nikolaos Kostoglou, Afshin Tarat, Ian Walters, Vladislav Ryzhkov, Chris- tos Tampaxis, Georgia Charalambopoulou, Theodore Steriotis, Christian Mitterer, and Claus Rebholz. Few-Layer Graphene-like flakes derived by plasma treatment: A potential material for hydrogen adsorption and storage. Microporous and Mesoporous Materials, 225:482–487, 5 2016. ISSN 1387-1811. doi: 10.1016/j.micromeso.2016.01.027.Zhongren Li, Fang Zheng, Lingfei Wang, Fangli Duan, and Xiaojing Mu. Effect of hydrogen adsorption on the atomic-scale wear of Few-Layer Graphene. Tribology International, 164:107208, 12 2021. ISSN 0301-679X. doi: 10.1016/j.triboint.2021.107208.Kendall T. Thomson and Keith E. Gubbins. Modeling structural morpho- logy of microporous carbons by Reverse Monte Carlo. Langmuir, 16:5761– 5773, 6 2000. ISSN 07437463. doi: 10.1021/LA991581C.Jacek Jagiello and James P. Olivier. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon, 55:70–80, 4 2013. ISSN 0008-6223. doi: 10.1016/j.carbon.2012.12.011.Lai Peng Ma, Zhong Shuai Wu, Jing Li, Er Dong Wu, Wen Cai Ren, and Hui Ming Cheng. Hydrogen adsorption behavior of graphene above critical temperature. International Journal of Hydrogen Energy, 34:2329–2332, 3 2009. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2008.12.079.William A. Steele. The physical interaction of gases with crystalline solids: I. gas-solid energies and properties of isolated adsorbed atoms. Surface Science, 36:317–352, 4 1973. ISSN 0039-6028. doi: 10.1016/0039- 6028(73)90264-1.Piotr Kowalczyk, Piotr A. Gauden, Sylwester Furmaniak, Artur P. Terzyk, Marek Wi´sniewski, Anna Ilnicka, Jerzy Lukaszewicz, Andrzej Burian, Jerzy W-loch, and Alexander V. Neimark. Morphologically disordered pore model for characterization of micro- mesoporous carbons. Carbon, 111: 358–370, 1 2017. ISSN 0008-6223. doi: 10.1016/j.carbon.2016.09.070.Anubhav Jain, Yongwoo Shin, and Kristin A. Persson. Computational predictions of energy materials using density functional theory. Natu- re Reviews Materials 2016 1:1, 1:1–13, 1 2016. ISSN 2058-8437. doi: 10.1038/NATREVMATS.2015.4.Ponniah Vajeeston, Ponniah Ravindran, and Helmer Fjellv˚ag. Predicting new materials for hydrogen storage application. Materials 2009, Vol. 2, Pages 2296-2318, 2:2296–2318, 12 2009. doi: 10.3390/MA2042296.Srinivas Gadipelli and Zheng Xiao Guo. Graphene-based mate- rials: Synthesis and gas sorption, storage and separation. Pro- gress in Materials Science, 69:1–60, 4 2015. ISSN 0079-6425. doi: 10.1016/J.PMATSCI.2014.10.004.Reinhard J. Maurer, Victor G. Ruiz, Javier Camarillo-Cisneros, Wei Liu, Nicola Ferri, Karsten Reuter, and Alexandre Tkatchenko. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory. Progress in Surface Science, 91:72–100, 5 2016. ISSN 0079-6816. doi: 10.1016/J.PROGSURF.2016.05.001.Jeffrey R. Reimers, Musen Li, Dongya Wan, Tim Gould, and Michael J. Ford. Surface adsorption. Non-Covalent Interactions in Quantum Chemistry and Physics: Theory and Applications, pages 387–416, 1 2017. doi: 10.1016/B978-0-12-809835-6.00015-3.Minho Kim, Won June Kim, Eok Kyun Lee, S´ebastien Leb`egue, and Hyungjun Kim. Recent development of atom-pairwise van der waals corrections for density functional theory: From molecules to solids. In- ternational Journal of Quantum Chemistry, 116:598–607, 4 2016. ISSN 1097-461X. doi: 10.1002/QUA.25061.Isaac F. Silvera and Victor V. Goldman. The isotropic intermolecular potential for h2 and d2 in the solid and gas phases. The Journal of Chemical Physics, 69:4209–4213, 11 1978. ISSN 0021-9606. doi: 10.1063/1.437103.Ji´ı Klimeˇs and Angelos Michaelides. Perspective: Advances and challenges in treating van der waals dispersion forces in density functional theory. Journal of Chemical Physics, 137:120901, 9 2012. ISSN 00219606. doi: 10.1063/1.4754130/190906.Rocío Rodríguez-Cantano, Ricardo Pérez De Tudela, Massimiliano Bartolomei, Marta I. Hernández, José Campos-Martínez, Tomás González- Lezana, Pablo Villarreal, Javier Hernández-Rojas, and José Bretón. Examination of the feynman-hibbs approach in the study of coronene clusters at low temperatures. Journal of Physical Chemistry A, 120:5370– 5379, 7 2016. ISSN 15205215. doi: 10.1021/acs.jpca.6b01926.Luis M. Sesé. Feynman-hibbs potentials and path integrals for quantum lennard-jones systems: Theory and monte carlo simulations. Molecular Physics, 85:931–947, 8 1995. ISSN 13623028. doi: 10.1080/00268979500101571.A. Martin-Calvo, J. J. Gutiérrez-Sevillano, I. Matito-Martos, T. J.H. Vlugt, and S. Calero. Identifying zeolite topologies for storage and release of hydrogen. Journal of Physical Chemistry C, 122:12485–12493, 6 2018. ISSN 19327455. doi: 10.1021/acs.jpcc.8b02263.Grigoriy L. Aranovich and Marc D. Donohue. Adsorption of supercritical fluids. Journal of Colloid and Interface Science, 180:537–541, 6 1996. ISSN 0021-9797. doi: 10.1006/JCIS.1996.0334.Lourdes F. Vega and Sandra E. Kentish. The hydrogen economy preface. Industrial & Engineering Chemistry Research, 61:6065–6066, 5 2022. ISSN 15205045. doi: 10.1021/acs.iecr.2C01090.Hai-Ru Li, Ceng Zhang, Wan-Biao Ren, Ying-Jin Wang, and Tao Han. Geometric structures and hydrogen storage properties of M2B7 (M=Be, Mg, Ca) clusters. International Journal of Hydrogen Energy, 4 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.03.213.Lu Luo, Yalan Zhou, Wen Yan, Lingcong Luo, Jianping Deng, Mizi Fan, and Weigang Zhao. In-situ one-step synthesis of activated carbon@MIL- 101 (Cr) composites for hydrogen storage. International Journal of Hydro- gen Energy, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.128.Lan Bi, Jie Yin, Xin Huang, Yunhui Wang, and Zhihong Yang. Graphe- ne pillared with hybrid fullerene and nanotube as a novel 3d framework for hydrogen storage: A DFT and GCMC study. International Jour- nal of Hydrogen Energy, 45:17637–17648, 7 2020. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2020.04.227.Rekha Pachaiappan, Saravanan Rajendran, P. Senthil Kumar, Dai Viet N. Vo, Tuan K.A. Hoang, and Lorena Cornejo-Ponce. Recent advances in carbon nitride-based nanomaterials for hydrogen production and storage. International Journal of Hydrogen Energy, 47:37490–37516, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.09.062.Brinti Mondal, Ajit Kundu, and Brahmananda Chakraborty. High- capacity hydrogen storage in zirconium decorated zeolite templated carbon: Predictions from DFT simulations. International Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.056.Maria Kapsi, Charitomeni M. Veziri, George Pilatos, Georgios N. Karani- kolos, and George E. Romanos. Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation. In- ternational Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.08.266.Suye Yu, Xianhe Meng, Zhifang Li, Wenqian Zhang, and Xin Ju. He- terofullerene C48B12-impregnated MOF-5 and IRMOF-10 for hydrogen storage: A combined DFT and GCMC simulations study. International Journal of Hydrogen Energy, 10 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.09.123.Anupama Ghosh, K. S. Subrahmanyam, Katla Sai Krishna, Sudipta Dat- ta, A. Govindaraj, Swapan K. Pati, and C. N.R. Rao. Uptake of H2 and CO2 by graphene. Journal of Physical Chemistry C, 112:15704–15707, 10 2008. ISSN 19327447. doi: 10.1021/JP805802W.Gagus Ketut Sunnardianto, George Bokas, Abdelrahman Hussein, Carey Walters, Othonas A. Moultos, and Poulumi Dey. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. International Journal of Hydrogen Energy, 46:5485–5494, 1 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2020.11.068.Daniel Bahamon, Wei Anlu, Santiago Builes, Maryam Khaleel, and Lourdes F. Vega. Effect of amine functionalization of MOF adsor- bents for enhanced CO2 capture and separation: A molecular simulation study. Frontiers in Chemistry, 8:574622, 1 2021. ISSN 22962646. doi: 10.3389/fchem.2020.574622.Diana P. Vargas, Liliana Giraldo, and Juan C. Moreno-Piraján. CO2 adsorption on activated carbon honeycomb-monoliths: A comparison of Langmuir and Tóth models. International Journal of Molecular Sciences 2012, Vol. 13, Pages 8388-8397, 13:8388–8397, 7 2012. ISSN 1422-0067. doi: 10.3390/ijms13078388.Quingrong Zheng, Xiaohua Wang, and Shuai Gao. Adsorption equilibrium of hydrogen on graphene sheets and activated carbon. Cryogenics, 61:143– 148, 5 2014. ISSN 0011-2275. doi: 10.1016/j.cryogenics.2014.01.005.Jan Kohout. Modified arrhenius equation in materials science, chemistry and biology. Molecules, 26(23), 2021. ISSN 1420-3049. doi: 10.3390/molecules26237162.Santiago Builes, Thomas Roussel, Camelia Matei Ghimbeu, Julien Par- mentier, Roger Gadiou, Cathie Vix-Guterl, and Lourdes F. Vega. Microporous carbon adsorbents with high co2 capacities for industrial applications. Physical Chemistry Chemical Physics, 13:16063–16070, 8 2011. ISSN 1463-9084. doi: 10.1039/C1CP21673B.Panuwat Lawtae, Krittamet Phothong, Chaiyot Tangsathitkulchai, and Atichat Wongkoblap. Analysis of gas adsorption and pore development of microporous-mesoporous activated carbon based on GCMC simulation and a surface defect model. Journal of Porous Materials, pages 1–17, 6 2023. ISSN 15734854. doi: 10.1007/s10934-023-01493-5.Lan Bi, Zhicheng Miao, Yan Ge, Ziyi Liu, Yi Xu, Jie Yin, Xin Huang, Yunhui Wang, and Zhihong Yang. Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. International Journal of Hydrogen Energy, 47:32552–32564, 9 2022. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.07.134.Fatma Oguz Erdogan, Cenk Celik, Anil Can Turkmen, Ali Enis Sadak, and Evren Cucu. Hydrogen sorption studies of palladium decorated graphene nanoplatelets and carbon samples. International Journal of Hydrogen Energy, 2 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.01.026.M. Gallouze, A. Kellou, and M. Drir. Adsorption isotherms of H2 on defected graphene: DFT and Monte Carlo studies. International Journal of Hydrogen Energy, 41:5522–5530, 4 2016. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2016.02.032.Deepak Kag, Nitin Luhadiya, Nagesh D. Patil, and S.I. Kundalwal. Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. International Journal of Hydrogen Energy, 5 2021. ISSN 03603199. doi: 10.1016/j.ijhydene.2021.04.098.Li-Juan Ma, Ting Han, Zhichao Hao, Jianfeng Wang, Jianfeng Jia, and Hai-Shun Wu. Bonding states of hydrogen for supported ti clusters on pristine and defective graphene. International Journal of Hydrogen Energy, 1 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2022.12.351.Janet Wong, Shwetank Yadav, Jasmine Tam, and Chandra Veer Singh. A van der waals density functional theory comparison of metal decorated graphene systems for hydrogen adsorption. Journal of Applied Physics, 115, 6 2014. ISSN 10897550. doi: 10.1063/1.4882197/372338.Yanwei Wen, Fan Xie, Xiaolin Liu, Xiao Liu, Rong Chen, Kyeongjae Cho, and Bin Shan. Tunable h2 binding on alkaline and alkaline earth metals decorated graphene substrates from first-principles calculations. International Journal of Hydrogen Energy, 42:10064–10071, 4 2017. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2017.02.023.Marisol Ibarra-Rodríguez and Mario Sánchez. Lithium clusters on graphene surface and their ability to adsorb hydrogen molecules. International Journal of Hydrogen Energy, 46:21984–21993, 6 2021. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2021.04.028.Wenjiang Liu, Cheng Zhang, Mingsen Deng, and Shaohong Cai. The structural and electronic properties of metal atoms adsorbed on graphene. Physica E: Low-dimensional Systems and Nanostructures, 93:265–270, 9 2017. ISSN 1386-9477. doi: 10.1016/J.PHYSE.2017.06.021.Luis F. Salas-Guerrero, Santiago Builes, and Gustavo A. Orozco. Development of atomistic graphene models for H2 adsorption from experimental data and Monte Carlo simulations. International Journal of Hydrogen Energy, 11 2023. ISSN 0360-3199. doi: 10.1016/j.ijhydene.2023.10.161.Tina Düren, Franck Millange, Gérard Férey, Krista S. Walton, and Randall Q. Snurr. Calculating geometric surface areas as a characterization tool for Metal Organic Frameworks. Journal of Physical Chemistry C, 111: 15350–15356, 10 2007. ISSN 19327447. doi: 10.1021/JP074723H.Heera T. Nair, Prafulla K. Jha, and Brahmananda Chakraborty. High- capacity hydrogen storage in zirconium decorated psi-graphene: acumen from density functional theory and molecular dynamics simulations. In- ternational Journal of Hydrogen Energy, 9 2022. ISSN 0360-3199. doi: 10.1016/J.IJHYDENE.2022.08.084.Wu Qin, Xin Li, Wen Wen Bian, Xiu Juan Fan, and Jing Yao Qi. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene sur- faces. Biomaterials, 31:1007–1016, 2 2010. ISSN 0142-9612. doi: 10.1016/J.BIOMATERIALS.2009.10.013.Jegan S. Pushparajalingam, Marco Kalweit, Mathieu Labois, and Dimitris Drikakis. Molecular dynamics of adsorption of argon on graphene, car- bon nanotubes and carbon nanotubes bundles. Journal of Computational and Theoretical Nanoscience, 6:2156–2163, 10 2009. ISSN 15461955. doi: 10.1166/JCTN.2009.1267.Athanassios Z. Panagiotopoulos. Direct determination of phase coexistence properties of fluids by monte carlo simulation in a new ensemble. Molecular Physics, 61:813–826, 1987. ISSN 13623028. doi: 10.1080/00268978700101491.D. Frenkel. Biased monte carlo methods. AIP Conference Proceedings, 690:99–109, 11 2003. ISSN 0094-243X. doi: 10.1063/1.1632121.Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2002. ISBN 978-0-12- 267351-1.David Sholl and Janice Steckel. Density Functional Theory: A practical introduction. John Wiley & Sons Inc., 2009. ISBN 978-0-470-37317-0.Thomas D. Ku¨hne. Second generation Car–Parrinello molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4:391– 406, 7 2014. ISSN 1759-0884. doi: 10.1002/WCMS.1176.Lode Pollet. Recent developments in quantum Monte Carlo simulations with applications for cold gases. Reports on Progress in Physics, 75: 094501, 8 2012. ISSN 0034-4885. doi: 10.1088/0034-4885/75/9/094501.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85839/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALDocumentoFinal.pdfDocumentoFinal.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf11987950https://repositorio.unal.edu.co/bitstream/unal/85839/2/DocumentoFinal.pdf49bf96b72612b1c9b1d520fca9da2b74MD52THUMBNAILDocumentoFinal.pdf.jpgDocumentoFinal.pdf.jpgGenerated Thumbnailimage/jpeg5480https://repositorio.unal.edu.co/bitstream/unal/85839/3/DocumentoFinal.pdf.jpgdb0d3e2562ea000c3b0d59053f19d638MD53unal/85839oai:repositorio.unal.edu.co:unal/858392024-08-23 23:11:33.145Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=