Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the...
- Autores:
-
Castillo Robles, Andrés Mauricio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/55957
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/55957
http://bdigital.unal.edu.co/51491/
- Palabra clave:
- 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
NMR
assignment
prediction
peak-picking
learning
analysis
molecule
spectra
hose
RMN
Asignación
Predicción
Similitud
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_3e287bf7ba4a965129186025b5a67602 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/55957 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
title |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
spellingShingle |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering NMR assignment prediction peak-picking learning analysis molecule spectra hose RMN Asignación Predicción Similitud |
title_short |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
title_full |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
title_fullStr |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
title_full_unstemmed |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
title_sort |
Robust automatic assignment of nuclear magnetic resonance spectra for small molecules |
dc.creator.fl_str_mv |
Castillo Robles, Andrés Mauricio |
dc.contributor.advisor.spa.fl_str_mv |
Gonzalez Osorio, Fabio Augusto (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Castillo Robles, Andrés Mauricio |
dc.contributor.spa.fl_str_mv |
Wist, Julien |
dc.subject.ddc.spa.fl_str_mv |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering NMR assignment prediction peak-picking learning analysis molecule spectra hose RMN Asignación Predicción Similitud |
dc.subject.proposal.spa.fl_str_mv |
NMR assignment prediction peak-picking learning analysis molecule spectra hose RMN Asignación Predicción Similitud |
description |
Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the noise; 2. it assigns the signals to atoms in the structure, and associates to each assignment a confidence value, which is used to sort all possible solutions; 3. it does not depend on chemical shifts predictions. So it can use the connectivity information observed in 2D NMR spectra and integrals to perform an assignment(coupling constants are also a possibility, but were not explored in this work). However, the system can use chemical shifts if available.; 4. it can learn in an unsupervised fashion, the relation between configurations of atoms and chemical shifts while solving assignment problems, which allows the system to improve while working. Analogous to the way a human works. This system is completely open source, as well as the data used in this work. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:33:21Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:33:21Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/55957 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/51491/ |
url |
https://repositorio.unal.edu.co/handle/unal/55957 http://bdigital.unal.edu.co/51491/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Castillo Robles, Andrés Mauricio (2015) Robust automatic assignment of nuclear magnetic resonance spectra for small molecules. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/55957/1/80875147.2016.pdf https://repositorio.unal.edu.co/bitstream/unal/55957/2/80875147.2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
11b0781327668957d8b98206e84f037e 5b08d715b6065150f5dc2146bfa95cd1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089513762291712 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wist, JulienGonzalez Osorio, Fabio Augusto (Thesis advisor)cdc14b69-bf63-4f8c-ab69-fd166d3c8142-1Castillo Robles, Andrés Mauriciod276c6d4-87a9-4409-ad14-cecb63b1a7763002019-07-02T11:33:21Z2019-07-02T11:33:21Z2015https://repositorio.unal.edu.co/handle/unal/55957http://bdigital.unal.edu.co/51491/Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the noise; 2. it assigns the signals to atoms in the structure, and associates to each assignment a confidence value, which is used to sort all possible solutions; 3. it does not depend on chemical shifts predictions. So it can use the connectivity information observed in 2D NMR spectra and integrals to perform an assignment(coupling constants are also a possibility, but were not explored in this work). However, the system can use chemical shifts if available.; 4. it can learn in an unsupervised fashion, the relation between configurations of atoms and chemical shifts while solving assignment problems, which allows the system to improve while working. Analogous to the way a human works. This system is completely open source, as well as the data used in this work.En este trabajo describimos un sistema completamente automático de asignación de espectros de Resonancia Magnética Nuclear(RMN) para moléculas pequeñas. Este sistema tiene la siguientes características: 1. usa como entrada datos de RMN crudos. Lo que significa que debe ser capaz de extraer de ellos, la información que es útil y dejar de lado el ruido; 2. asigna las señales a átomos en la estructura, y asocia a cada asignación un valor de confianza, que es usado para ordenar todas las posibles soluciones; 3. no depende de predicciones de desplazamientos químicos, de forma que puede usar solo la información de conectividad observada en los espectros de RMN 2D y las integrales( las constantes de acople también son una posibilidad, pero no fueron exploradas en este trabajo). Sin embargo el sistema puede usar los desplazamientos químicos si están disponibles; 4. puede aprender de forma no supervisada, la relación entre configuraciones de átomos y desplazamientos químicos mientras resuelve problemas de asignación, lo que le permite mejorar mientras trabaja, de forma análoga a como lo hace un humano. Este sistema es completamente de código abierto, al igual que los datos que se usaron en este trabajo.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasCastillo Robles, Andrés Mauricio (2015) Robust automatic assignment of nuclear magnetic resonance spectra for small molecules. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringNMRassignmentpredictionpeak-pickinglearninganalysismoleculespectrahoseRMNAsignaciónPredicciónSimilitudRobust automatic assignment of nuclear magnetic resonance spectra for small moleculesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL80875147.2016.pdfapplication/pdf3262978https://repositorio.unal.edu.co/bitstream/unal/55957/1/80875147.2016.pdf11b0781327668957d8b98206e84f037eMD51THUMBNAIL80875147.2016.pdf.jpg80875147.2016.pdf.jpgGenerated Thumbnailimage/jpeg4197https://repositorio.unal.edu.co/bitstream/unal/55957/2/80875147.2016.pdf.jpg5b08d715b6065150f5dc2146bfa95cd1MD52unal/55957oai:repositorio.unal.edu.co:unal/559572024-03-20 23:11:31.361Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |