Robust automatic assignment of nuclear magnetic resonance spectra for small molecules

Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the...

Full description

Autores:
Castillo Robles, Andrés Mauricio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/55957
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/55957
http://bdigital.unal.edu.co/51491/
Palabra clave:
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
NMR
assignment
prediction
peak-picking
learning
analysis
molecule
spectra
hose
RMN
Asignación
Predicción
Similitud
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_3e287bf7ba4a965129186025b5a67602
oai_identifier_str oai:repositorio.unal.edu.co:unal/55957
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
title Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
spellingShingle Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
NMR
assignment
prediction
peak-picking
learning
analysis
molecule
spectra
hose
RMN
Asignación
Predicción
Similitud
title_short Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
title_full Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
title_fullStr Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
title_full_unstemmed Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
title_sort Robust automatic assignment of nuclear magnetic resonance spectra for small molecules
dc.creator.fl_str_mv Castillo Robles, Andrés Mauricio
dc.contributor.advisor.spa.fl_str_mv Gonzalez Osorio, Fabio Augusto (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Castillo Robles, Andrés Mauricio
dc.contributor.spa.fl_str_mv Wist, Julien
dc.subject.ddc.spa.fl_str_mv 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
topic 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
NMR
assignment
prediction
peak-picking
learning
analysis
molecule
spectra
hose
RMN
Asignación
Predicción
Similitud
dc.subject.proposal.spa.fl_str_mv NMR
assignment
prediction
peak-picking
learning
analysis
molecule
spectra
hose
RMN
Asignación
Predicción
Similitud
description Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the noise; 2. it assigns the signals to atoms in the structure, and associates to each assignment a confidence value, which is used to sort all possible solutions; 3. it does not depend on chemical shifts predictions. So it can use the connectivity information observed in 2D NMR spectra and integrals to perform an assignment(coupling constants are also a possibility, but were not explored in this work). However, the system can use chemical shifts if available.; 4. it can learn in an unsupervised fashion, the relation between configurations of atoms and chemical shifts while solving assignment problems, which allows the system to improve while working. Analogous to the way a human works. This system is completely open source, as well as the data used in this work.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015
dc.date.accessioned.spa.fl_str_mv 2019-07-02T11:33:21Z
dc.date.available.spa.fl_str_mv 2019-07-02T11:33:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/55957
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/51491/
url https://repositorio.unal.edu.co/handle/unal/55957
http://bdigital.unal.edu.co/51491/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas
Ingeniería de Sistemas
dc.relation.references.spa.fl_str_mv Castillo Robles, Andrés Mauricio (2015) Robust automatic assignment of nuclear magnetic resonance spectra for small molecules. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/55957/1/80875147.2016.pdf
https://repositorio.unal.edu.co/bitstream/unal/55957/2/80875147.2016.pdf.jpg
bitstream.checksum.fl_str_mv 11b0781327668957d8b98206e84f037e
5b08d715b6065150f5dc2146bfa95cd1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089513762291712
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wist, JulienGonzalez Osorio, Fabio Augusto (Thesis advisor)cdc14b69-bf63-4f8c-ab69-fd166d3c8142-1Castillo Robles, Andrés Mauriciod276c6d4-87a9-4409-ad14-cecb63b1a7763002019-07-02T11:33:21Z2019-07-02T11:33:21Z2015https://repositorio.unal.edu.co/handle/unal/55957http://bdigital.unal.edu.co/51491/Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the noise; 2. it assigns the signals to atoms in the structure, and associates to each assignment a confidence value, which is used to sort all possible solutions; 3. it does not depend on chemical shifts predictions. So it can use the connectivity information observed in 2D NMR spectra and integrals to perform an assignment(coupling constants are also a possibility, but were not explored in this work). However, the system can use chemical shifts if available.; 4. it can learn in an unsupervised fashion, the relation between configurations of atoms and chemical shifts while solving assignment problems, which allows the system to improve while working. Analogous to the way a human works. This system is completely open source, as well as the data used in this work.En este trabajo describimos un sistema completamente automático de asignación de espectros de Resonancia Magnética Nuclear(RMN) para moléculas pequeñas. Este sistema tiene la siguientes características: 1. usa como entrada datos de RMN crudos. Lo que significa que debe ser capaz de extraer de ellos, la información que es útil y dejar de lado el ruido; 2. asigna las señales a átomos en la estructura, y asocia a cada asignación un valor de confianza, que es usado para ordenar todas las posibles soluciones; 3. no depende de predicciones de desplazamientos químicos, de forma que puede usar solo la información de conectividad observada en los espectros de RMN 2D y las integrales( las constantes de acople también son una posibilidad, pero no fueron exploradas en este trabajo). Sin embargo el sistema puede usar los desplazamientos químicos si están disponibles; 4. puede aprender de forma no supervisada, la relación entre configuraciones de átomos y desplazamientos químicos mientras resuelve problemas de asignación, lo que le permite mejorar mientras trabaja, de forma análoga a como lo hace un humano. Este sistema es completamente de código abierto, al igual que los datos que se usaron en este trabajo.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasCastillo Robles, Andrés Mauricio (2015) Robust automatic assignment of nuclear magnetic resonance spectra for small molecules. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringNMRassignmentpredictionpeak-pickinglearninganalysismoleculespectrahoseRMNAsignaciónPredicciónSimilitudRobust automatic assignment of nuclear magnetic resonance spectra for small moleculesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL80875147.2016.pdfapplication/pdf3262978https://repositorio.unal.edu.co/bitstream/unal/55957/1/80875147.2016.pdf11b0781327668957d8b98206e84f037eMD51THUMBNAIL80875147.2016.pdf.jpg80875147.2016.pdf.jpgGenerated Thumbnailimage/jpeg4197https://repositorio.unal.edu.co/bitstream/unal/55957/2/80875147.2016.pdf.jpg5b08d715b6065150f5dc2146bfa95cd1MD52unal/55957oai:repositorio.unal.edu.co:unal/559572024-03-20 23:11:31.361Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co