Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama

ilustraciones, diagramas, fotografías, tablas

Autores:
Molina Bejarano, Jorge Luis
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86369
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86369
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Neoplasias de la Mama
Vesículas Extracelulares
Exosomas
Breast Neoplasms
Extracellular Vesicles
Exosomes
Cromatografía de exclusión por tamaño
Hipoxia
Ultracentrifugación diferencial
Angiogénesis
Factor de crecimiento vascular endotelial
Size exclusion chromatography
Differential ultracentrifugation
Hypoxia
Angiogenesis
Vascular endotelial growth factor
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_3df8b80ebd53442043be0fcdeeadc48a
oai_identifier_str oai:repositorio.unal.edu.co:unal/86369
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
dc.title.translated.eng.fl_str_mv Characterization of exosome-like extracellular vesicles with VEGF marker in a breast cancer model
title Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
spellingShingle Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Neoplasias de la Mama
Vesículas Extracelulares
Exosomas
Breast Neoplasms
Extracellular Vesicles
Exosomes
Cromatografía de exclusión por tamaño
Hipoxia
Ultracentrifugación diferencial
Angiogénesis
Factor de crecimiento vascular endotelial
Size exclusion chromatography
Differential ultracentrifugation
Hypoxia
Angiogenesis
Vascular endotelial growth factor
title_short Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
title_full Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
title_fullStr Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
title_full_unstemmed Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
title_sort Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
dc.creator.fl_str_mv Molina Bejarano, Jorge Luis
dc.contributor.advisor.none.fl_str_mv Umaña Pérez, Yadi Adriana
dc.contributor.author.none.fl_str_mv Molina Bejarano, Jorge Luis
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Hormonas
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
topic 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Neoplasias de la Mama
Vesículas Extracelulares
Exosomas
Breast Neoplasms
Extracellular Vesicles
Exosomes
Cromatografía de exclusión por tamaño
Hipoxia
Ultracentrifugación diferencial
Angiogénesis
Factor de crecimiento vascular endotelial
Size exclusion chromatography
Differential ultracentrifugation
Hypoxia
Angiogenesis
Vascular endotelial growth factor
dc.subject.decs.spa.fl_str_mv Neoplasias de la Mama
Vesículas Extracelulares
Exosomas
dc.subject.decs.eng.fl_str_mv Breast Neoplasms
Extracellular Vesicles
Exosomes
dc.subject.proposal.spa.fl_str_mv Cromatografía de exclusión por tamaño
Hipoxia
Ultracentrifugación diferencial
Angiogénesis
Factor de crecimiento vascular endotelial
dc.subject.proposal.eng.fl_str_mv Size exclusion chromatography
Differential ultracentrifugation
Hypoxia
Angiogenesis
Vascular endotelial growth factor
description ilustraciones, diagramas, fotografías, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-03T14:13:06Z
dc.date.available.none.fl_str_mv 2024-07-03T14:13:06Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86369
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86369
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Cancer IAfRo. Global Cancer Observatory Lyon, France: IARC; 2023 [cited 2023. Available from: https://gco.iarc.fr/
(INC) INdC. Anuario Estadístico 2021. Instituto Nacional de Cancerología (INC); 2022
Lötvall J, Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., & Théry, C. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles Co-Action Publishing. 2014;3
Couch Y, Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., Witwer, K. W., & Carter, D. R. F. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14)
Poupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev. 2021;176
Witwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles. 2017;6
Novoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: global institutional context and national state of the art. Biomedica. 2021;41(4):2-69
Witwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10
Ahmadi M, & Rezaie, J. Tumor cells derived-exosomes as angiogenenic agents: Possible therapeutic implications. 2020
Li I, Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Molecular Cancer. 2019;18(32)
Pei-pei H, Hang-zi, Chen. Extracellular vesicles in the tumor immune microenvironment. Cancer Letters. 2021;516:48-56
Xie QH, Zheng, J. Q., Ding, J. Y., Wu, Y. F., Liu, L., Yu, Z. L., & Chen, G. Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells. 2022;11(12)
Rincón-Riveros A, Lopez, L., Villegas, E. V., & Antonia Rodriguez, J. . Regulation of antitumor immune responses by exosomes derived from tumor and immune cells. Cancers. 2021;13(4):1-22
Li SJ, Chen, J. X., & Sun, Z. J. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Communications. 2021;41(9):830-50
Ludwig N, & Whiteside, T. L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets. 2018;22(5):409-17
Gurunathan S, Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8(4)
Abhange K, Makler, A., Wen, Y., Ramnauth, N., Mao, W., Asghar, W., & Wan, Y. Small extracellular vesicles in cancer. Bioactive materials. 2021;6(11):3705-43
Herrmann IK, Wood, M.J.A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748-59
Nguyen SL, Ahn, S. H., Greenberg, J. W., Collaer, B. W., Agnew, D. W., Arora, R., & Petroff, M. G. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Scientific Reports. 2021;11(1)
Pachane BC, Nunes, A. C. C., Cataldi, T. R., Micocci, K. C., Moreira, B. C., Labate, C. A., Selistre-de-Araujo, H. S., & Altei, W. F. . Small Extracellular Vesicles from Hypoxic Triple-Negative Breast Cancer Cells Induce Oxygen-Dependent Cell Invasion. Int J Mol Sci. 2022;23(20)
Grisard E, Lescure, A., Nevo, N., Corbé, M., Jouve, M., Lavieu, G., Joliot, A., Nery, E. D., Martin-Jaular, L., & Théry, C. Homosalate boosts the release of tumor-derived Extracellular Vesicles with anti-anoikis properties. bioRxiv. 2021
Vardaki I, Ceder, S., Rutishauser, D., Baltatzis, G., Foukakis, T., & Panaretakis, T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7(46):74966-78
Ngo NH, Chang, Y. H., Vuong, C. K., Yamashita, T., Obata-Yasuoka, M., Hamada, H., Osaka, M., Hiramatsu, Y., & Ohneda, O. Transformed extracellular vesicles with high angiogenic ability as therapeutics of distal ischemic tissues. Front Cell Dev Biol. 2022;10
Olejarz W, Kubiak-Tomaszewska, G., Chrzanowska, A., & Lorenc, T. Exosomes in angiogenesis and anti-angiogenic therapy in cancers. International Journal of Molecular Sciences. 2020;21(16):1-25
Hosaka K, Yang, Y., Seki, T. et al. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors. Nature Communications. 2020;11
Kut C, Mac Gabhann, F., & Popel, A. S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. British Journal of Cancer. 2007;97(7):978-85
Itatani Y, Kawada, K., Yamamoto, T., & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. International Journal of Molecular Sciences. 2018;19(4)
Ko SY, Lee, W., Kenny, H. A., Dang, L. H., Ellis, L. M., Jonasch, E., Lengyel, E., & Naora, H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Communications Biology. 2019;2(386)
Tirpe A, Gulei, D., Tirpe, G. R., Nutu, A., Irimie, A., Campomenosi, P., Pop, L. A., & Berindan-Neagoe, I. Beyond conventional: The new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy. International Journal of Molecular Sciences. 2020;21(21):1-22
Rosenberger L, Ezquer, M., Lillo-Vera, F., Pedraza, P. L., Ortúzar, M. I., González, P. L., Figueroa-Valdés, A. I., Cuenca, J., Ezquer, F., Khoury, M., & Alcayaga-Miranda, F. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports. 2019;9(1)
Kase Y, Uzawa, K., Wagai, S., Yoshimura, S., Yamamoto, J. I., Toeda, Y., Okubo, M., Eizuka, K., Ando, T., Nobuchi, T., Kawasaki, K., Saito, T., Iyoda, M., Nakashima, D., Kasamatsu, A., & Tanzawa, H. Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression. Scientific Reports. 2021;11(1)
García E, Luengo-Gil, G., de la Morena Barrios, P., Ayala de la Peña, F. Microvesículas en cáncer de mama. Rev Senol Patol Mamar. 2016;29(3):125-31
Gupta D ZA, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178
Richter M, Vader, P., & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev. 2021;173:416-26
Mathieu M, Martin-Jaular, L., Lavieu, G., & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17
Akers JC, Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1-11
Latifkar A, Hur, Y. H., Sanchez, J. C., Cerione, R. A., & Antonyak, M. A. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13)
Pegtel D, Gould, S. Exosomes. Annual Review of Biochemistry 2019;88(1):487-514
Ghossoub R, Lembo, F., Rubio, A. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5
Vidal M. Exosomes: Revisiting their role as “garbage bags.” Traffic. 2019;20(11):815-28
Record M, Silvente-Poirot, S., Poirot, M., & Wakelam, M. J. O. Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of lipid research. 2018;59(8):1316-24
Kobayashi T, Beuchat, M. H., Chevallier, J., Makino, A., Mayran, N., Escola, J. M., Lebrand, C., Cosson, P., Kobayashi, T., & Gruenberg, J. Separation and Characterization of Late Endosomal Membrane Domains. The Journal of biological chemistry. 2002;277(35):32157-64
Perrin P, Janssen, L., Janssen, H., van den Broek, B., Voortman, L. M., van Elsland, D., Berlin, I., & Neefjes, J. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Current biology. 2021;31(17):3884-93
Kalluri R, & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 2020;367
Cocozza F, Grisard, E., Martin-Jaular, L., Mathieu, M., Théry, C. SnapShot: Extracellular vesicles. Cell 2020;182(1):262
Doyle LM, & Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7)
Coumans FAW, Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A. F., Lacroix, R., Lee, Y., van Leeuwen, T. G., Mackman, N., Mäger, I., Nolan, J. P., van der Pol, E., Pegtel, D. M., Sahoo, S., Siljander, P. R. M., … Nieuwland, R. Methodological Guidelines to Study Extracellular Vesicles. Circulation research. 2017;120(10)
Patel GK, Khan, M.A., Zubair, H. et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9
Martínez-Greene JA, Hernández-Ortega, K., Quiroz-Baez, R., Resendis-Antonio, O., Pichardo-Casas, I., Sinclair, D. A., Budnik, B., Hidalgo-Miranda, A., Uribe-Querol, E., Ramos-Godínez, M. D. P., & Martínez-Martínez, E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles. 2021;10(6)
Keerthikumar S, Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology. 2016;428(4)
Poupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions: a systematic review. bioRxiv. 2021
Lai J, Chau, Z., Chen, SY., Hill, J, Korpany, K., Liang, NW., Lin, LH., Lin, YH., Liu, J., Liu, YC., Lunde, R., Shen, WT. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv Sci (Weinh). 2022;9(15)
Bio-Rad. Bio-Dot® SF Microfiltration Apparatus Instruction Manual, Rev D https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/M1706542.pdf: Bio-Rad;
Cao Y, Yu, X., Zeng, T., Fu, Z., Zhao, Y., Nie, B., Zhao, Y., Yin, Y., Li, G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. Journal of the American Chemical Society. 2022;144(30):13475-86
De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. Cell Stress and Chaperones. 2011;16(3):235-49
Welsh JA, Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. . Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles. 2024;13
Hoshino A, Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., Zambirinis, C. P., Rodrigues, G., Molina, H., Heissel, S., Mark, M. T., Steiner, L., Benito-Martin, A., Lucotti, S., Di Giannatale, A., Offer, K., Nakajima, M., Williams, C., Nogués, L., Pelissier Vatter, F. A., … Lyden, D. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell. 2020;182(4):1044-61
Kruger S, Abd Elmageed, Z. Y., Hawke, D. H., Wörner, P. M., Jansen, D. A., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14(44)
Wen SW, Lima, L. G., Lobb, R. J., Norris, E. L., Hastie, M. L., Krumeich, S., & Möller, A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics. 2019;19(8)
Muz B, de la Puente, P., Azab, F., & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92
Jiang H, Zhao, H., Zhang, M., He, Y., Li, X., Xu, Y., & Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol. 2022;13
King HW, Michael, M.Z. & Gleadle, J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(421)
Meng W, Hao, Y., He, C. et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18(57)
Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32
Pugh CW, & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine. 2003;9(6):677-84
Malda J, Klein, T. J., & Upton, Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13(9):2153-62
Godet I, Doctorman, S., Wu, F., & Gilkes, D. M. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells. 2022;11(4):686
Ray SK, & Mukherjee, S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov. 2022;17(1):80-91
Muñoz J, Chánez-Cárdenas, M. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556-70
Gao XX, Liu, C. H., Hu, Z. L., Li, H. Y., Chang, X., Li, Y. Y., Zhang, Y. Y., Zhai, Y., & Li, C. Q. The biological effect of cobalt chloride mimetic-hypoxia on nucleus pulposus cells and the comparability with physical hypoxia in vitro. Front Biosci (Landmark Ed). 2021;26(10):799-812
Kaczmarek M, Cachau, R. E., Topol, I. A., Kasprzak, K. S., Ghio, A., & Salnikow, K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol Sci. 2009;107(2):394-403
Technology CS. Angiogenesis. Angiogenesis Pathways. https://www.cellsignal.com/pathways/angiogenesis-pathway2018
Apte RS, Chen, D. S., & Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64
Melincovici CS, Boşca, A. B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., & Mihu, C. M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2)
Schubert A, & Boutros, M. Extracellular vesicles and oncogenic signaling. Mol Oncol. 2021;15(1):3-26
Sia D, Alsinet, C., Newell, P., & Villanueva, A. VEGF Signaling in Cancer Treatment, Current Pharmaceutical Design. Current Pharmaceutical Design. 2014;20(17):2834-42
Ren W, Hou, J., Yang, C., Wang, H., Wu, S., Wu, Y., Zhao, X., & Lu, C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1)
Conley A, Minciacchi, V. R., Lee, D. H., Knudsen, B. S., Karlan, B. Y., Citrigno, L., Viglietto, G., Tewari, M., Freeman, M. R., Demichelis, F., & Di Vizio, D. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology. 2017;14(3):305-16
Vera N, Acuña-Gallardo, S., Grünenwald, F., Caceres-Verschae, A., Realini, O., Acuña, R., Lladser, A., Illanes, S. E., & Varas-Godoy, M. Small extracellular vesicles released from ovarian cancer spheroids in response to cisplatin promote the pro-tumorigenic activity of mesenchymal stem cells. International Journal of Molecular Sciences. 2019;20(20)
Wang CA, Chang, I. H., Hou, P. C., Tai, Y. J., Li, W. N., Hsu, P. L., Wu, S. R., Chiu, W. T., Li, C. F., Shan, Y. S., & Tsai, S. J. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. Journal of Extracellular Vesicles. 2020;9(1)
Rana NK, Singh, P., & Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biological research. 2019;52(1)
Li Q, Ma, R., & Zhang, M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncology letters. 2018;15(1):1119-24
He G, Peng, X., Wei, S. et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer. 2022;21(19)
To KKW, & Cho, W. C. S. Exosome secretion from hypoxic cancer cells reshapes the tumor microenvironment and mediates drug resistance. Cancer Drug Resist. 2022;5(3):577-94
Tan S, Yang, Y., Yang, W. et al. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res. 2023;42(59)
Ko SY, Lee, W., Kenny, H.A. et al. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol. 2019;2
Fan Y, Pionneau, C., Cocozza, F., Boëlle, P. Y., Chardonnet, S., Charrin, S., Théry, C., Zimmermann, P., & Rubinstein, E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. Journal of Extracellular Vesicles. 2023;12(8)
Treps L, Perret, R., Edmond, S., Ricard, D., Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. Journal of Extracellular Vesicles. 2017;6(1)
Roucourt B, Meeussen, S., Bao, J., Zimmermann, P., & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412-28
Christianson HC, Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43)
Mulcahy L, Pink, R., Carter, D. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles. 2014;3
Najafi M, Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., Kharazinejad, E., & Mortezaee, K. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234(5):5700–21
Paskeh MDA, Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., Sethi, G., Zarrabi, A., Kumar, A. P., Tan, S. C., Papadakis, M., Alexiou, A., Islam, M. A., Mostafavi, E., & Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1)
Liu Q, Peng, F., & Chen, J. The Role of Exosomal MicroRNAs in the Tumor Microenvironment of Breast Cancer. Int J Mol Ciencia. 2019;20(16)
Yang E, Wang, X., Gong, Z., Yu, M., Wu, H., & Zhang, D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1)
Liu T, Hooda, J., Atkinson, J. M., Whiteside, T. L., Oesterreich, S., & Lee, A. V. Exosomes in Breast Cancer - Mechanisms of Action and Clinical Potential. Mol Cancer Res. 2021;19(6):935-45
Fridrichova I, & Zmetakova, I. MicroRNAs Contribute to Breast Cancer Invasiveness. Cells. 2019;8(11)
Huang S, Dong, M., & Chen, Q. Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. International journal of molecular sciences. 2022;23(22)
Ghalehbandi S, Yuzugulen, J., Pranjol, M. Z. I., & Pourgholami, M. H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949
Jakobsson L, Franco, C., Bentley, K. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12:943–53
Martín LC. Modelos celulares de interés biomédico para el estudio de la angiogénesis. España: Universidad de León; 2020
Birbrair A, Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1)
Mashouri L, Yousefi, H., Aref, A. R., Ahadi, A. M., Molaei, F., & Alahari, S. K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1)
Rasband WS. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA1997-2018
Zhang J, Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17-24
Shao C, Yang, F., Miao, S., Liu, W., Wang, C., Shu, Y., & Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1)
Zhang C, Ji, Q., Yang, Y., Li, Q., & Wang, Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat. 2018
Tang Q, Xiao, X., Li, R., He, H., Li, S., & Ma, C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022;27(19)
Yan W, Wu, X., Zhou, W., Fong, M. Y., Cao, M., Liu, J., Liu, X., Chen, C. H., Fadare, O., Pizzo, D. P., Wu, J., Liu, L., Liu, X., Chin, A. R., Ren, X., Chen, Y., Locasale, J. W., & Wang, S. E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5)
Luga V, Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., & Wrana, J. L. Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell. 2012;151(7):1542–56
Li XJ, Ren, Z. J., Tang, J. H., & Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cellular Physiology and Biochemistry. 2017;44(5):1741–8
Sueta A, Yamamoto, Y., Tomiguchi, M., Takeshita, T., Yamamoto-Ibusuki, M., & Iwase, H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8(41):69934-44
Donoso J A, S., González, J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic. 2021;22(7):204-20
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 89 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86369/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86369/2/1018453231.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86369/3/1018453231.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2e68c3fb5b5fded32e9a3f1879ec13dd
e023c54663d99ee218452a9f23aaf3a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089502957764608
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Umaña Pérez, Yadi Adrianad652013090d46425f836051252c18e62Molina Bejarano, Jorge Luis7719e6757eb07e28d65e28add9e09d1eGrupo de Investigación en Hormonas2024-07-03T14:13:06Z2024-07-03T14:13:06Z2024https://repositorio.unal.edu.co/handle/unal/86369Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasLos exosomas, un tipo de vesícula extracelular, emergen en condiciones fisiológicas y patológicas como en el cáncer de mama, desempeñando un papel clave en la comunicación intercelular dentro y fuera del microambiente tumoral. Para comprender su función es esencial realizar la caracterización física y molecular de su composición, así como establecer sus interacciones en contextos biológicos. En este trabajo, se obtuvieron exosomas provenientes del cultivo in vitro de la línea celular de cáncer de mama MCF7. En condiciones de normoxia, se evaluaron dos métodos comerciales, uno basado en cromatografía de exclusión por tamaño y otro en filtración dirigida. Los exosomas purificados se compararon con los obtenidos mediante el método tradicional de ultracentrifugación diferencial, y la cromatografía de exclusión por tamaño se seleccionó como el método con mayor rendimiento, economía y accesibilidad para la purificación de exosomas. Posteriormente, se obtuvieron exosomas de la misma línea celular en condiciones de hipoxia mimética inducida por cloruro de cobalto, observando una disminución tanto en la producción como en el tamaño de los exosomas comparados a la condición de normoxia, sumado a una mayor producción de VEGF, aunque no estuvo asociado directamente a los exosomas. Finalmente, se observó que los exosomas producidos en hipoxia mimética favorecen la migración en células MCF7 y promueven características específicas en la formación de tubos en la angiogénesis inducida sobre células HUVEC (Texto tomado de la fuente).Exosomes, a type of extracellular vesicle, arise in physiological and pathological conditions, such as breast cancer. They play a crucial role in intercellular communication within and outside the tumor microenvironment. To comprehend their function, it is essential to conduct a physical and molecular characterization of their composition and establish their interactions in biological contexts. In this work, exosomes were obtained from in vitro culture of the MCF7 breast cancer cell line. Under normoxic conditions, two commercial methods were evaluated, one based on size exclusion chromatography and the other on targeted filtration. Purified exosomes were compared with those obtained through the traditional method of differential ultracentrifugation, and size exclusion chromatography was chosen as the most economical and accessible method for exosome purification. Subsequently, exosomes were produced by the same cell line under conditions of mimetic hypoxia induced by cobalt chloride, showing a decrease in the production and size of exosomes compared to normoxia. Additionally, it was identified that VEGF was produced in higher concentrations under hypoxic conditions, although it was not associated with exosomes. Finally, it was observed that exosomes produced under mimetic hypoxia promote migration in MCF7 cells and promote specific characteristics in tube formation in angiogenesis induced in HUVEC cells.MaestríaMagíster en Ciencias - BioquímicaFactores de crecimiento, diferenciación y cáncerxvii, 89 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica610 - Medicina y salud::616 - EnfermedadesNeoplasias de la MamaVesículas ExtracelularesExosomasBreast NeoplasmsExtracellular VesiclesExosomesCromatografía de exclusión por tamañoHipoxiaUltracentrifugación diferencialAngiogénesisFactor de crecimiento vascular endotelialSize exclusion chromatographyDifferential ultracentrifugationHypoxiaAngiogenesisVascular endotelial growth factorCaracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mamaCharacterization of exosome-like extracellular vesicles with VEGF marker in a breast cancer modelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMCancer IAfRo. Global Cancer Observatory Lyon, France: IARC; 2023 [cited 2023. Available from: https://gco.iarc.fr/(INC) INdC. Anuario Estadístico 2021. Instituto Nacional de Cancerología (INC); 2022Lötvall J, Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., & Théry, C. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles Co-Action Publishing. 2014;3Couch Y, Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., Witwer, K. W., & Carter, D. R. F. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14)Poupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev. 2021;176Witwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles. 2017;6Novoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: global institutional context and national state of the art. Biomedica. 2021;41(4):2-69Witwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10Ahmadi M, & Rezaie, J. Tumor cells derived-exosomes as angiogenenic agents: Possible therapeutic implications. 2020Li I, Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Molecular Cancer. 2019;18(32)Pei-pei H, Hang-zi, Chen. Extracellular vesicles in the tumor immune microenvironment. Cancer Letters. 2021;516:48-56Xie QH, Zheng, J. Q., Ding, J. Y., Wu, Y. F., Liu, L., Yu, Z. L., & Chen, G. Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells. 2022;11(12)Rincón-Riveros A, Lopez, L., Villegas, E. V., & Antonia Rodriguez, J. . Regulation of antitumor immune responses by exosomes derived from tumor and immune cells. Cancers. 2021;13(4):1-22Li SJ, Chen, J. X., & Sun, Z. J. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Communications. 2021;41(9):830-50Ludwig N, & Whiteside, T. L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets. 2018;22(5):409-17Gurunathan S, Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8(4)Abhange K, Makler, A., Wen, Y., Ramnauth, N., Mao, W., Asghar, W., & Wan, Y. Small extracellular vesicles in cancer. Bioactive materials. 2021;6(11):3705-43Herrmann IK, Wood, M.J.A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748-59Nguyen SL, Ahn, S. H., Greenberg, J. W., Collaer, B. W., Agnew, D. W., Arora, R., & Petroff, M. G. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Scientific Reports. 2021;11(1)Pachane BC, Nunes, A. C. C., Cataldi, T. R., Micocci, K. C., Moreira, B. C., Labate, C. A., Selistre-de-Araujo, H. S., & Altei, W. F. . Small Extracellular Vesicles from Hypoxic Triple-Negative Breast Cancer Cells Induce Oxygen-Dependent Cell Invasion. Int J Mol Sci. 2022;23(20)Grisard E, Lescure, A., Nevo, N., Corbé, M., Jouve, M., Lavieu, G., Joliot, A., Nery, E. D., Martin-Jaular, L., & Théry, C. Homosalate boosts the release of tumor-derived Extracellular Vesicles with anti-anoikis properties. bioRxiv. 2021Vardaki I, Ceder, S., Rutishauser, D., Baltatzis, G., Foukakis, T., & Panaretakis, T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7(46):74966-78Ngo NH, Chang, Y. H., Vuong, C. K., Yamashita, T., Obata-Yasuoka, M., Hamada, H., Osaka, M., Hiramatsu, Y., & Ohneda, O. Transformed extracellular vesicles with high angiogenic ability as therapeutics of distal ischemic tissues. Front Cell Dev Biol. 2022;10Olejarz W, Kubiak-Tomaszewska, G., Chrzanowska, A., & Lorenc, T. Exosomes in angiogenesis and anti-angiogenic therapy in cancers. International Journal of Molecular Sciences. 2020;21(16):1-25Hosaka K, Yang, Y., Seki, T. et al. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors. Nature Communications. 2020;11Kut C, Mac Gabhann, F., & Popel, A. S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. British Journal of Cancer. 2007;97(7):978-85Itatani Y, Kawada, K., Yamamoto, T., & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. International Journal of Molecular Sciences. 2018;19(4)Ko SY, Lee, W., Kenny, H. A., Dang, L. H., Ellis, L. M., Jonasch, E., Lengyel, E., & Naora, H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Communications Biology. 2019;2(386)Tirpe A, Gulei, D., Tirpe, G. R., Nutu, A., Irimie, A., Campomenosi, P., Pop, L. A., & Berindan-Neagoe, I. Beyond conventional: The new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy. International Journal of Molecular Sciences. 2020;21(21):1-22Rosenberger L, Ezquer, M., Lillo-Vera, F., Pedraza, P. L., Ortúzar, M. I., González, P. L., Figueroa-Valdés, A. I., Cuenca, J., Ezquer, F., Khoury, M., & Alcayaga-Miranda, F. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports. 2019;9(1)Kase Y, Uzawa, K., Wagai, S., Yoshimura, S., Yamamoto, J. I., Toeda, Y., Okubo, M., Eizuka, K., Ando, T., Nobuchi, T., Kawasaki, K., Saito, T., Iyoda, M., Nakashima, D., Kasamatsu, A., & Tanzawa, H. Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression. Scientific Reports. 2021;11(1)García E, Luengo-Gil, G., de la Morena Barrios, P., Ayala de la Peña, F. Microvesículas en cáncer de mama. Rev Senol Patol Mamar. 2016;29(3):125-31Gupta D ZA, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178Richter M, Vader, P., & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev. 2021;173:416-26Mathieu M, Martin-Jaular, L., Lavieu, G., & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17Akers JC, Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1-11Latifkar A, Hur, Y. H., Sanchez, J. C., Cerione, R. A., & Antonyak, M. A. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13)Pegtel D, Gould, S. Exosomes. Annual Review of Biochemistry 2019;88(1):487-514Ghossoub R, Lembo, F., Rubio, A. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5Vidal M. Exosomes: Revisiting their role as “garbage bags.” Traffic. 2019;20(11):815-28Record M, Silvente-Poirot, S., Poirot, M., & Wakelam, M. J. O. Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of lipid research. 2018;59(8):1316-24Kobayashi T, Beuchat, M. H., Chevallier, J., Makino, A., Mayran, N., Escola, J. M., Lebrand, C., Cosson, P., Kobayashi, T., & Gruenberg, J. Separation and Characterization of Late Endosomal Membrane Domains. The Journal of biological chemistry. 2002;277(35):32157-64Perrin P, Janssen, L., Janssen, H., van den Broek, B., Voortman, L. M., van Elsland, D., Berlin, I., & Neefjes, J. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Current biology. 2021;31(17):3884-93Kalluri R, & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 2020;367Cocozza F, Grisard, E., Martin-Jaular, L., Mathieu, M., Théry, C. SnapShot: Extracellular vesicles. Cell 2020;182(1):262Doyle LM, & Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7)Coumans FAW, Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A. F., Lacroix, R., Lee, Y., van Leeuwen, T. G., Mackman, N., Mäger, I., Nolan, J. P., van der Pol, E., Pegtel, D. M., Sahoo, S., Siljander, P. R. M., … Nieuwland, R. Methodological Guidelines to Study Extracellular Vesicles. Circulation research. 2017;120(10)Patel GK, Khan, M.A., Zubair, H. et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9Martínez-Greene JA, Hernández-Ortega, K., Quiroz-Baez, R., Resendis-Antonio, O., Pichardo-Casas, I., Sinclair, D. A., Budnik, B., Hidalgo-Miranda, A., Uribe-Querol, E., Ramos-Godínez, M. D. P., & Martínez-Martínez, E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles. 2021;10(6)Keerthikumar S, Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology. 2016;428(4)Poupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions: a systematic review. bioRxiv. 2021Lai J, Chau, Z., Chen, SY., Hill, J, Korpany, K., Liang, NW., Lin, LH., Lin, YH., Liu, J., Liu, YC., Lunde, R., Shen, WT. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv Sci (Weinh). 2022;9(15)Bio-Rad. Bio-Dot® SF Microfiltration Apparatus Instruction Manual, Rev D https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/M1706542.pdf: Bio-Rad;Cao Y, Yu, X., Zeng, T., Fu, Z., Zhao, Y., Nie, B., Zhao, Y., Yin, Y., Li, G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. Journal of the American Chemical Society. 2022;144(30):13475-86De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. Cell Stress and Chaperones. 2011;16(3):235-49Welsh JA, Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. . Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles. 2024;13Hoshino A, Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., Zambirinis, C. P., Rodrigues, G., Molina, H., Heissel, S., Mark, M. T., Steiner, L., Benito-Martin, A., Lucotti, S., Di Giannatale, A., Offer, K., Nakajima, M., Williams, C., Nogués, L., Pelissier Vatter, F. A., … Lyden, D. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell. 2020;182(4):1044-61Kruger S, Abd Elmageed, Z. Y., Hawke, D. H., Wörner, P. M., Jansen, D. A., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14(44)Wen SW, Lima, L. G., Lobb, R. J., Norris, E. L., Hastie, M. L., Krumeich, S., & Möller, A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics. 2019;19(8)Muz B, de la Puente, P., Azab, F., & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92Jiang H, Zhao, H., Zhang, M., He, Y., Li, X., Xu, Y., & Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol. 2022;13King HW, Michael, M.Z. & Gleadle, J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(421)Meng W, Hao, Y., He, C. et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18(57)Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32Pugh CW, & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine. 2003;9(6):677-84Malda J, Klein, T. J., & Upton, Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13(9):2153-62Godet I, Doctorman, S., Wu, F., & Gilkes, D. M. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells. 2022;11(4):686Ray SK, & Mukherjee, S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov. 2022;17(1):80-91Muñoz J, Chánez-Cárdenas, M. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556-70Gao XX, Liu, C. H., Hu, Z. L., Li, H. Y., Chang, X., Li, Y. Y., Zhang, Y. Y., Zhai, Y., & Li, C. Q. The biological effect of cobalt chloride mimetic-hypoxia on nucleus pulposus cells and the comparability with physical hypoxia in vitro. Front Biosci (Landmark Ed). 2021;26(10):799-812Kaczmarek M, Cachau, R. E., Topol, I. A., Kasprzak, K. S., Ghio, A., & Salnikow, K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol Sci. 2009;107(2):394-403Technology CS. Angiogenesis. Angiogenesis Pathways. https://www.cellsignal.com/pathways/angiogenesis-pathway2018Apte RS, Chen, D. S., & Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64Melincovici CS, Boşca, A. B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., & Mihu, C. M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2)Schubert A, & Boutros, M. Extracellular vesicles and oncogenic signaling. Mol Oncol. 2021;15(1):3-26Sia D, Alsinet, C., Newell, P., & Villanueva, A. VEGF Signaling in Cancer Treatment, Current Pharmaceutical Design. Current Pharmaceutical Design. 2014;20(17):2834-42Ren W, Hou, J., Yang, C., Wang, H., Wu, S., Wu, Y., Zhao, X., & Lu, C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1)Conley A, Minciacchi, V. R., Lee, D. H., Knudsen, B. S., Karlan, B. Y., Citrigno, L., Viglietto, G., Tewari, M., Freeman, M. R., Demichelis, F., & Di Vizio, D. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology. 2017;14(3):305-16Vera N, Acuña-Gallardo, S., Grünenwald, F., Caceres-Verschae, A., Realini, O., Acuña, R., Lladser, A., Illanes, S. E., & Varas-Godoy, M. Small extracellular vesicles released from ovarian cancer spheroids in response to cisplatin promote the pro-tumorigenic activity of mesenchymal stem cells. International Journal of Molecular Sciences. 2019;20(20)Wang CA, Chang, I. H., Hou, P. C., Tai, Y. J., Li, W. N., Hsu, P. L., Wu, S. R., Chiu, W. T., Li, C. F., Shan, Y. S., & Tsai, S. J. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. Journal of Extracellular Vesicles. 2020;9(1)Rana NK, Singh, P., & Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biological research. 2019;52(1)Li Q, Ma, R., & Zhang, M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncology letters. 2018;15(1):1119-24He G, Peng, X., Wei, S. et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer. 2022;21(19)To KKW, & Cho, W. C. S. Exosome secretion from hypoxic cancer cells reshapes the tumor microenvironment and mediates drug resistance. Cancer Drug Resist. 2022;5(3):577-94Tan S, Yang, Y., Yang, W. et al. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res. 2023;42(59)Ko SY, Lee, W., Kenny, H.A. et al. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol. 2019;2Fan Y, Pionneau, C., Cocozza, F., Boëlle, P. Y., Chardonnet, S., Charrin, S., Théry, C., Zimmermann, P., & Rubinstein, E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. Journal of Extracellular Vesicles. 2023;12(8)Treps L, Perret, R., Edmond, S., Ricard, D., Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. Journal of Extracellular Vesicles. 2017;6(1)Roucourt B, Meeussen, S., Bao, J., Zimmermann, P., & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412-28Christianson HC, Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43)Mulcahy L, Pink, R., Carter, D. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles. 2014;3Najafi M, Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., Kharazinejad, E., & Mortezaee, K. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234(5):5700–21Paskeh MDA, Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., Sethi, G., Zarrabi, A., Kumar, A. P., Tan, S. C., Papadakis, M., Alexiou, A., Islam, M. A., Mostafavi, E., & Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1)Liu Q, Peng, F., & Chen, J. The Role of Exosomal MicroRNAs in the Tumor Microenvironment of Breast Cancer. Int J Mol Ciencia. 2019;20(16)Yang E, Wang, X., Gong, Z., Yu, M., Wu, H., & Zhang, D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1)Liu T, Hooda, J., Atkinson, J. M., Whiteside, T. L., Oesterreich, S., & Lee, A. V. Exosomes in Breast Cancer - Mechanisms of Action and Clinical Potential. Mol Cancer Res. 2021;19(6):935-45Fridrichova I, & Zmetakova, I. MicroRNAs Contribute to Breast Cancer Invasiveness. Cells. 2019;8(11)Huang S, Dong, M., & Chen, Q. Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. International journal of molecular sciences. 2022;23(22)Ghalehbandi S, Yuzugulen, J., Pranjol, M. Z. I., & Pourgholami, M. H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949Jakobsson L, Franco, C., Bentley, K. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12:943–53Martín LC. Modelos celulares de interés biomédico para el estudio de la angiogénesis. España: Universidad de León; 2020Birbrair A, Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1)Mashouri L, Yousefi, H., Aref, A. R., Ahadi, A. M., Molaei, F., & Alahari, S. K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1)Rasband WS. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA1997-2018Zhang J, Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17-24Shao C, Yang, F., Miao, S., Liu, W., Wang, C., Shu, Y., & Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1)Zhang C, Ji, Q., Yang, Y., Li, Q., & Wang, Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat. 2018Tang Q, Xiao, X., Li, R., He, H., Li, S., & Ma, C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022;27(19)Yan W, Wu, X., Zhou, W., Fong, M. Y., Cao, M., Liu, J., Liu, X., Chen, C. H., Fadare, O., Pizzo, D. P., Wu, J., Liu, L., Liu, X., Chin, A. R., Ren, X., Chen, Y., Locasale, J. W., & Wang, S. E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5)Luga V, Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., & Wrana, J. L. Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell. 2012;151(7):1542–56Li XJ, Ren, Z. J., Tang, J. H., & Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cellular Physiology and Biochemistry. 2017;44(5):1741–8Sueta A, Yamamoto, Y., Tomiguchi, M., Takeshita, T., Yamamoto-Ibusuki, M., & Iwase, H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8(41):69934-44Donoso J A, S., González, J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic. 2021;22(7):204-20EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86369/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018453231.2024.pdf1018453231.2024.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf6526869https://repositorio.unal.edu.co/bitstream/unal/86369/2/1018453231.2024.pdf2e68c3fb5b5fded32e9a3f1879ec13ddMD52THUMBNAIL1018453231.2024.pdf.jpg1018453231.2024.pdf.jpgGenerated Thumbnailimage/jpeg5191https://repositorio.unal.edu.co/bitstream/unal/86369/3/1018453231.2024.pdf.jpge023c54663d99ee218452a9f23aaf3a5MD53unal/86369oai:repositorio.unal.edu.co:unal/863692024-08-25 23:11:53.662Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=