Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process

ilustraciones, diagramas

Autores:
Manrique Waldo, Raiza Johanna
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83957
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83957
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Pirólisis
Hidrogenación
Hydrogenation
Pyrolysis
Pyrolysis bio-oil
Pyrolytic lignin
Oligomers
Structures
Fractionation
Bio-oil upgrading
Bioaceite de pirólisis
Lignina pirolítica
Oligómeros
Estructuras
Fraccionamiento
Mejoramiento del bioaceite
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_3d9de1b123e3ceb8f4673c5610b5d575
oai_identifier_str oai:repositorio.unal.edu.co:unal/83957
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
dc.title.translated.spa.fl_str_mv Estudio de la interacción entre los oligómeros de la fracción pesada del bioaceite de pirólisis rápida y un catalizador en el proceso de hidrotratamiento
title Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
spellingShingle Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Pirólisis
Hidrogenación
Hydrogenation
Pyrolysis
Pyrolysis bio-oil
Pyrolytic lignin
Oligomers
Structures
Fractionation
Bio-oil upgrading
Bioaceite de pirólisis
Lignina pirolítica
Oligómeros
Estructuras
Fraccionamiento
Mejoramiento del bioaceite
title_short Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
title_full Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
title_fullStr Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
title_full_unstemmed Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
title_sort Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process
dc.creator.fl_str_mv Manrique Waldo, Raiza Johanna
dc.contributor.advisor.none.fl_str_mv Chejne, Farid
García Pérez, Manuel
dc.contributor.author.none.fl_str_mv Manrique Waldo, Raiza Johanna
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada y Energías Alternativas
dc.contributor.orcid.none.fl_str_mv Chejne, Farid [0000-0003-0445-7609]
Manrique Waldo, Raiza Johanna [0000-0002-6702-5419]
dc.contributor.cvlac.spa.fl_str_mv Raiza Manrique Waldo
dc.contributor.scopus.spa.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=57195741838
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Raiza-Manrique
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=vWdtrjUAAAAJ&hl=es&oi=ao
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
topic 660 - Ingeniería química::661 - Tecnología de químicos industriales
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Pirólisis
Hidrogenación
Hydrogenation
Pyrolysis
Pyrolysis bio-oil
Pyrolytic lignin
Oligomers
Structures
Fractionation
Bio-oil upgrading
Bioaceite de pirólisis
Lignina pirolítica
Oligómeros
Estructuras
Fraccionamiento
Mejoramiento del bioaceite
dc.subject.lemb.spa.fl_str_mv Pirólisis
Hidrogenación
dc.subject.lemb.eng.fl_str_mv Hydrogenation
Pyrolysis
dc.subject.proposal.eng.fl_str_mv Pyrolysis bio-oil
Pyrolytic lignin
Oligomers
Structures
Fractionation
Bio-oil upgrading
dc.subject.proposal.spa.fl_str_mv Bioaceite de pirólisis
Lignina pirolítica
Oligómeros
Estructuras
Fraccionamiento
Mejoramiento del bioaceite
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-02T15:17:24Z
dc.date.available.none.fl_str_mv 2023-06-02T15:17:24Z
dc.date.issued.none.fl_str_mv 2023-06-01
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv DataPaper
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83957
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83957
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv [1] L. F. Cabeza, A. Palacios, S. Serrano, D. Ürge-Vorsatz, and C. Barreneche, “Comparison of past projections of global and regional primary and final energy consumption with historical data,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 681–688, 2018. doi: 10.1016/j.rser.2017.09.073.
[2] A. K. Vuppaladadiyam et al., “Biomass pyrolysis: A review on recent advancements and green hydrogen production,” Bioresource Technology, vol. 364. Elsevier Ltd, Nov. 01, 2022. doi: 10.1016/j.biortech.2022.128087.
[3] J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 309–322, 2017. doi: 10.1016/j.rser.2017.03.072.
[4] Unidad de Planeación Minero Energética, “Atlas del Potencial Energético de la Biomasa en Colombia,” Bogota D.C, 2008. [Online]. Available: http://www1.upme.gov.co/sites/default/files/article/1768/files/Atlas de Biomasa Residual Colombia__.pdf
[5] V. Duc Bui et al., “Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy,” Sustainable Energy Technologies and Assessments, vol. 55, Feb. 2023, doi: 10.1016/j.seta.2022.102991.
[6] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, Dec. 2018, doi: 10.1016/j.renene.2017.04.035.
[7] W. Yin, R. H. Venderbosch, and H. J. Heeres, 8 - Recent developments in the catalytic hydrotreatment of pyrolysis liquids. Elsevier Ltd., 2017. doi: 10.1016/B978-0-08-101029-7.00007-2.
[8] X. Li et al., “Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst,” Fuel, vol. 116, pp. 642–649, 2014, doi: 10.1016/j.fuel.2013.08.046.
[9] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, 2017, doi: 10.1016/j.fuproc.2016.08.021.
[10] W. Laosiripojana, W. Kiatkittipong, and C. Sakdaronnarong, “Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials,” Renew Energy, vol. 135, pp. 1048–1055, 2019, doi: 10.1016/j.renene.2018.12.069.
[11] S. Kadarwati et al., “Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al 2 O 3 catalyst,” J Anal Appl Pyrolysis, vol. 118, pp. 136–143, 2016, doi: 10.1016/j.jaap.2016.01.011.
[12] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups,” J Anal Appl Pyrolysis, vol. 60, no. 1, pp. 41–54, 2001, doi: 10.1016/S0165-2370(00)00110-8.
[13] K. Iisa, A. C. Johansson, E. Pettersson, R. J. French, K. A. Orton, and H. Wiinikka, “Chemical and physical characterization of aerosols from fast pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 142, no. February, pp. 1–9, 2019, doi: 10.1016/j.jaap.2019.04.022.
[14] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.
[15] M. Matos et al., “Acetone:Water fractionation of pyrolytic lignin improves its antioxidant and antibacterial activity,” J Anal Appl Pyrolysis, vol. 156, Jun. 2021, doi: 10.1016/j.jaap.2021.105175.
[16] M. B. Figueirêdo, “Valorization Strategies for Pyrolytic Lignin,” University of Groningen, 2020.
[17] X. Zhang, H. Ma, T. Li, and S. Wu, “Oligomers obtained from sequential fractionation of lignin pyrolysis oil,” Energy Convers Manag, vol. 201, no. July, p. 112181, 2019, doi: 10.1016/j.enconman.2019.112181.
[18] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.
[19] M. U. Garba, U. Musa, A. G. Olugbenga, Y. S. Mohammad, M. Yahaya, and A. A. Ibrahim, “Catalytic upgrading of bio-oil from bagasse: Thermogravimetric analysis and fixed bed pyrolysis,” Beni Suef Univ J Basic Appl Sci, vol. 7, no. 4, pp. 776–781, 2018, doi: 10.1016/j.bjbas.2018.11.004.
[20] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, and D. Chiaramonti, “Fuel oil quality and combustion of fast pyrolysis bio-oils,” VTT Publications, no. 87, p. 79, 2013, doi: http://dx.doi.org/10.1016/j.apenergy.2013.11.040.
[21] I. Hita, E. Rodríguez, M. Olazar, J. Bilbao, J. M. Arandes, and P. Castaño, “Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil,” Energy & Fuels, vol. 29, no. 8, pp. 5458–5466, Aug. 2015, doi: 10.1021/acs.energyfuels.5b01181.
[22] A. H. Zacher, M. v. Olarte, D. M. Santosa, D. C. Elliott, and S. B. Jones, “A review and perspective of recent bio-oil hydrotreating research,” Green Chemistry, vol. 16, no. 2, pp. 491–515, 2014, doi: 10.1039/c3gc41382a.
[23] A. Abbas, Z. Wang, Y. Zhang, P. Peng, and D. She, “Lignin-based controlled release fertilizers: A review,” Int J Biol Macromol, Oct. 2022, doi: 10.1016/j.ijbiomac.2022.09.265.
[24] A. J. Ragauskas et al., “Lignin valorization: Improving lignin processing in the biorefinery,” Science, vol. 344, no. 6185. American Association for the Advancement of Science, 2014. doi: 10.1126/science.1246843.
[25] M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, and M. R. Rahimpour, “Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation,” Energy and Environmental Science, vol. 7, no. 1. Royal Society of Chemistry, pp. 103–129, 2014. doi: 10.1039/c3ee43081b.
[26] A. Agarwal, M. Rana, and J. H. Park, “Advancement in technologies for the depolymerization of lignin,” Fuel Processing Technology, vol. 181. Elsevier B.V., pp. 115–132, Dec. 01, 2018. doi: 10.1016/j.fuproc.2018.09.017.
[27] J. C. del Río, J. Rencoret, A. Gutiérrez, T. Elder, H. Kim, and J. Ralph, “Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall,” ACS Sustainable Chemistry and Engineering, vol. 8, no. 13. American Chemical Society, pp. 4997–5012, Apr. 06, 2020. doi: 10.1021/acssuschemeng.0c01109
[28] M. M. Campbell and R. R. Sederoff, “Variation in Lignin Content and Composition’ Mechanisms of Control and lmplications for the Genetic lmprovement of Plants.” [Online]. Available: https://academic.oup.com/plphys/article/110/1/3/6068918
[29] L. Zhang, A. Larsson, A. Moldin, and U. Edlund, “Comparison of lignin distribution, structure, and morphology in wheat straw and wood,” Industrial Crops and Products, vol. 187. Elsevier B.V., Nov. 01, 2022. doi: 10.1016/j.indcrop.2022.115432.
[30] Y. Pu, D. Zhang, P. M. Singh, and A. J. Ragauskas, “The new forestry biofuels sector,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 1. pp. 58–73, Jan. 2008. doi: 10.1002/bbb.48.
[31] S. Sethupathy et al., “Lignin valorization: Status, challenges and opportunities,” Bioresource Technology, vol. 347. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.biortech.2022.126696.
[32] S. Wang et al., “Comparison of the pyrolysis behavior of lignins from different tree species,” Biotechnol Adv, vol. 27, no. 5, pp. 562–567, Sep. 2009, doi: 10.1016/j.biotechadv.2009.04.010.
[33] R. Md Salim, J. Asik, and M. S. Sarjadi, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark,” Wood Sci Technol, vol. 55, no. 2, pp. 295–313, Mar. 2021, doi: 10.1007/s00226-020-01258-2.
[34] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, Aug. 2007, doi: 10.1016/j.fuel.2006.12.013.
[35] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.
[36] C. Chio, M. Sain, and W. Qin, “Lignin utilization: A review of lignin depolymerization from various aspects,” Renewable and Sustainable Energy Reviews, vol. 107. Elsevier Ltd, pp. 232–249, Jun. 01, 2019. doi: 10.1016/j.rser.2019.03.008.
[37] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renewable and Sustainable Energy Reviews, vol. 12, no. 2, pp. 504–517, 2008, doi: 10.1016/j.rser.2006.07.014.
[38] R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review,” J Anal Appl Pyrolysis, vol. 129, no. July 2017, pp. 134–149, 2018, doi: 10.1016/j.jaap.2017.11.019.
[39] Y. Shen and K. Yoshikawa, “Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review,” Renewable and Sustainable Energy Reviews, vol. 21. pp. 371–392, 2013. doi: 10.1016/j.rser.2012.12.062.
[40] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2006, doi: 10.1016/j.fuel.2006.12.013.
[41] M. Brebu and C. Vasile, “THERMAL DEGRADATION OF LIGNIN-A REVIEW,” 2010.
[42] H. Kawamoto, “Lignin pyrolysis reactions,” Journal of Wood Science, vol. 63, no. 2, pp. 117–132, 2017, doi: 10.1007/s10086-016-1606-z.
[43] C. A. Mullen and A. A. Boateng, “Catalytic pyrolysis-GC/MS of lignin from several sources,” Fuel Processing Technology, vol. 91, no. 11, pp. 1446–1458, 2010, doi: 10.1016/j.fuproc.2010.05.022.
[44] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.
[45] T. Kotake, H. Kawamoto, and S. Saka, “Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin,” J Anal Appl Pyrolysis, vol. 105, pp. 309–316, 2014, doi: 10.1016/j.jaap.2013.11.018.
[46] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.
[47] S. Saka, M. Asmadi, and H. Kawamoto, “Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins,” J Anal Appl Pyrolysis, vol. 92, no. 2, pp. 417–425, 2011.
[48] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.
[49] E. B. Ledesma, N. D. Marsh, A. K. Sandrowitz, and M. J. Wornat, “AN EXPERIMENTAL STUDY ON THE THERMAL DECOMPOSITION OF CATECHOL,” 2002.
[50] K. Lopez Camas and A. Ullah, “Depolymerization of lignin into high-value products,” Biocatal Agric Biotechnol, vol. 40, Mar. 2022, doi: 10.1016/j.bcab.2022.102306.
[51] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.
[52] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, p. 106140, 2019, doi: 10.1016/j.fuproc.2019.106140.
[53] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, 2019, doi: 10.1016/j.fuproc.2019.106140.
[54] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01242.
[55] M. Garcia-Perez, S. Wang, J. Shen, M. Rhodes, W. J. Lee, and C. Z. Li, “Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass,” Energy and Fuels, vol. 22, no. 3, pp. 2022–2032, 2008, doi: 10.1021/ef7007634.
[56] M. Garcia-Perez et al., “Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products,” Ind Eng Chem Res, vol. 47, no. 6, pp. 1846–1854, 2008, doi: 10.1021/ie071497p.
[57] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.
[58] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils, vol. 31, no. 2. 2017. doi: 10.1021/acs.energyfuels.6b02950.
[59] S. Li, Z. Luo, W. Wang, K. Lu, Y. Yang, and X. Liang, “Characterization of pyrolytic lignin and insight into its formation mechanisms using novel techniques and DFT method,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116516.
[60] Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, and K. Barta, “Bright Side of Lignin Depolymerization: Toward New Platform Chemicals,” Chemical Reviews, vol. 118, no. 2. American Chemical Society, pp. 614–678, Jan. 24, 2018. doi: 10.1021/acs.chemrev.7b00588.
[61] L. Fan et al., “Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters,” Bioresource Technology, vol. 241. Elsevier Ltd, pp. 1118–1126, 2017. doi: 10.1016/j.biortech.2017.05.129
[62] Y. H. Chan et al., “Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects,” Chemical Engineering Journal, vol. 397. Elsevier B.V., Oct. 01, 2020. doi: 10.1016/j.cej.2020.125406.
[63] Q. Cai, T. Gong, T. Yu, and S. Zhang, “Comparison of hydrocracking and cracking of pyrolytic lignin over different Ni-based catalysts for light aromatics production,” Fuel Processing Technology, vol. 240, p. 107564, Feb. 2023, doi: 10.1016/j.fuproc.2022.107564.
[64] X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, “Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst,” J Catal, vol. 281, no. 1, pp. 21–29, Jul. 2011, doi: 10.1016/j.jcat.2011.03.030.
[65] S. Chen, “Green Oil Production by Hydroprocessing,” International Journal of Clean Coal and Energy, vol. 01, no. 04, pp. 43–55, 2012, doi: 10.4236/ijcce.2012.14005.
[66] Y. He, Y. Bie, J. Lehtonen, R. Liu, and J. Cai, “Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: Process optimization and reaction kinetics,” Fuel, vol. 239, no. August 2018, pp. 1015–1027, 2019, doi: 10.1016/j.fuel.2018.11.103.
[67] M. Auersvald et al., “Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable refinery intermediates,” Fuel, vol. 238, no. June 2018, pp. 98–110, 2019, doi: 10.1016/j.fuel.2018.10.090.
[68] M. B. Figueirêdo, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals: Identification of feed-product relations,” Biomass Bioenergy, vol. 134, no. January, 2020, doi: 10.1016/j.biombioe.2020.105484.
[69] C. Amen-Chen, H. Pakdel, and C. Roy, “Production of monomeric phenols by thermochemical conversion of biomass: a review.”
[70] X. Zhang, Q. Chen, Q. Zhang, C. Wang, L. Ma, and Y. Xu, “Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst,” J Anal Appl Pyrolysis, vol. 135, pp. 60–66, Oct. 2018, doi: 10.1016/j.jaap.2018.09.020.
[71] B. Hu et al., “Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds,” Fuel Processing Technology, vol. 237. Elsevier B.V., Dec. 01, 2022. doi: 10.1016/j.fuproc.2022.107465.
[72] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog Energy Combust Sci, vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.
[73] S. Wang et al., “Pyrolysis of wood/biomass for bio-oil: a critical review.,” Prog Energy Combust Sci, vol. 62, no. 4, pp. 848–889, 2017, doi: 10.1021/ef0502397.
[74] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.
[75] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour Technol, vol. 271, no. September 2018, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.
[76] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Current Opinion in Biotechnology, vol. 56. Elsevier Ltd, pp. 240–249, Apr. 01, 2019. doi: 10.1016/j.copbio.2019.02.019.
[77] E. Rosini et al., “Cascade enzymatic cleavage of the β-O-4 linkage in a lignin model compound,” Catal Sci Technol, vol. 6, no. 7, pp. 2195–2205, Apr. 2016, doi: 10.1039/c5cy01591j.
[78] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.
[79] X. Jiang, Q. Lu, B. Hu, J. Liu, C. Dong, and Y. Yang, “Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study,” Fuel, vol. 215, pp. 386–394, Mar. 2018, doi: 10.1016/j.fuel.2017.11.084.
[80] B. Hu et al., “Hydroxyl-Assisted Hydrogen Transfer Interaction in Lignin Pyrolysis: An Extended Concerted Interaction Mechanism,” Energy and Fuels, vol. 35, no. 16, pp. 13170–13180, Aug. 2021, doi: 10.1021/acs.energyfuels.1c01606.
[81] Y. Huang, H. Wang, X. Zhang, Q. Zhang, C. Wang, and L. Ma, “CO2 pyrolysis kinetics and characteristics of lignin-rich hydrolysis residue produced from a tandem process of steam-stripping and acid hydrolysis,” Fuel, vol. 316, May 2022, doi: 10.1016/j.fuel.2022.123361.
[82] L. Wang et al., “Fast pyrolysis of guaiacyl-syringyl (GS) type milled wood lignin: Product characteristics and CH4 formation mechanism study,” Science of the Total Environment, vol. 838, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156395.
[83] E. Terrell and M. Garcia-Perez, “Vacuum Pyrolysis of Hybrid Poplar Milled Wood Lignin with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Analysis of Feedstock and Products for the Elucidation of Reaction Mechanisms,” Energy and Fuels, vol. 34, no. 11, pp. 14249–14263, Nov. 2020, doi: 10.1021/acs.energyfuels.0c02928.
[84] X. Fu, Q. Li, and C. Hu, “Identification and structural characterization of oligomers formed from the pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 144, Nov. 2019, doi: 10.1016/j.jaap.2019.104696.
[85] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, 2018, doi: 10.1016/j.renene.2017.04.035.
[86] J. Huang, C. Liu, H. Tong, W. Li, and D. Wu, “A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin,” Comput Theor Chem, vol. 1045, pp. 1–9, Oct. 2014, doi: 10.1016/j.comptc.2014.06.009.
[87] I. Fonts et al., “Thermodynamic and physical property estimation of compounds derived from the fast pyrolysis of lignocellulosic materials,” Energy and Fuels, vol. 35, no. 21, pp. 17114–17137, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01709.
[88] E. Terrell, “Estimation of Hansen solubility parameters with regularized regression for biomass conversion products: An application of adaptable group contribution,” Chem Eng Sci, vol. 248, Feb. 2022, doi: 10.1016/j.ces.2021.117184.
[89] E. Leng, Y. Guo, J. Chen, S. Liu, J. E, and Y. Xue, “A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass,” Fuel, vol. 309, no. October 2021, p. 122102, 2022, doi: 10.1016/j.fuel.2021.122102.
[90] P. F. Britt, A. C. Buchanan, M. J. Cooney, and D. R. Martineau, “Flash vacuum pyrolysis of methoxy-substituted lignin model compounds,” Journal of Organic Chemistry, vol. 65, no. 5, pp. 1376–1389, Mar. 2000, doi: 10.1021/jo991479k.
[91] P. F. Britt, A. C. Buchanan, and E. A. Malcolm, “Thermolysis of Phenethyl Phenyl Ether: A Model for Ether Linkages in Lignin and Low Rank Coal,” 1995. doi: https://doi.org/10.1021/jo00125a044.
[92] S. Zhou, B. Pecha, M. van Kuppevelt, A. G. McDonald, and M. Garcia-Perez, “Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products,” Biomass Bioenergy, vol. 66, pp. 398–409, 2014, doi: 10.1016/j.biombioe.2014.03.064.
[93] Y. Fan et al., “Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins,” Bioresour Technol, vol. 350, Apr. 2022, doi: 10.1016/j.biortech.2022.126908.
[94] M. Lei, S. Wu, J. Liang, and C. Liu, “Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis,” J Anal Appl Pyrolysis, vol. 138, pp. 249–260, Mar. 2019, doi: 10.1016/j.jaap.2019.01.004.
[95] J. M. Younker, A. Beste, and A. C. Buchanan, “Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds,” ChemPhysChem, vol. 12, no. 18, pp. 3556–3565, 2011, doi: 10.1002/cphc.201100477.
[96] Y. Ünal, W. Nassif, B. C. Özaydin, and K. Sayin, “Scale factor database for the vibration frequencies calculated in M06-2X, one of the DFT methods,” Vib Spectrosc, vol. 112, Jan. 2021, doi: 10.1016/j.vibspec.2020.103189.
[97] F. Stankovikj and M. Garcia-perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy & Fuels, vol. 30, no. 8, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.
[98] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. doi: https://doi.org/10.1021/ci00019a016.
[99] M. Satou, D. Itoh, H. Hattori, and T. Yoshida, “Evaluation of ring size distribution in a heavy oil based on boiling point and molecular weight distributions,” 2000. doi: https://doi.org/10.1016/S0016-2361(99)00168-4.
[100] W. Yuan, A. C. Hansen, and Q. Zhang, “Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels,” Fuel, vol. 84, no. 7–8, pp. 943–950, May 2005, doi: 10.1016/j.fuel.2005.01.007.
[101] Al. L. Lydersen, R. A. Greenkorn, and O. A. Hougen, “Estimation of critical properties of organic compounds,” Madison, 1955. Accessed: Feb. 06, 2023. [Online]. Available: https://scholar.google.com/scholar_lookup?hl=en&publication_year=1955&author=A.+L.+Lydersen&author=R.+A.+Greenkorn&author=O.+A.+Hougen&title=Estimation+of+Critical+Properties+of+Organic+Compounds
[102] K. G. Joback, “A unified approach to physical property estimation using multivariate statistical techniques.” 1984.
[103] E. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int J Thermophys, vol. 29, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.
[104] C. F. Chueh and A. C. Swanson, “Estimation of Liquid Heat Capacity,” Can J Chem Eng, vol. 51, 1973.
[105] J. E. Hurst and B. K. Harrison, “Estimation of liquid and solid heat capacities using a modified kopp’s rule,” Chem Eng Commun, vol. 112, no. 1, pp. 21–30, 1992, doi: 10.1080/00986449208935989
[106] B. Keith Harrison and W. H. Seaton, “Solution to Missing Group Problem for Estimation of Ideal Gas Heat Capacities,” Ind Eng Chem Res, vol. 27, no. 8, pp. 1536–1540, 1988, doi: 10.1021/ie00080a031.
[107] I. Fonts et al., “Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials,” Energy and Fuels, 2021, doi: 10.1021/acs.energyfuels.1c01709.
[108] M. Lei, S. Wu, C. Liu, J. Liang, and R. Xiao, “Revealing the pyrolysis behavior of 5-5′ biphenyl-type lignin fragment. Part I: A mechanistic study on fragmentation via experiments and theoretical calculation,” Fuel Processing Technology, vol. 217, Jun. 2021, doi: 10.1016/j.fuproc.2021.106812.
[109] D. Chen, K. Cen, X. Cao, F. Chen, J. Zhang, and J. Zhou, “Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield,” Renewable and Sustainable Energy Reviews, vol. 136, Feb. 2021, doi: 10.1016/j.rser.2020.110444.
[110] C. Li et al., “Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry,” Environ Sci Technol Lett, vol. 8, no. 8, pp. 633–638, Aug. 2021, doi: 10.1021/acs.estlett.1c00369.
[111] Z. Pan, A. Puente-Urbina, A. Bodi, J. A. van Bokhoven, and P. Hemberger, “Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone,” Chem Sci, vol. 12, no. 9, pp. 3161–3169, Mar. 2021, doi: 10.1039/d1sc00654a.
[112] Q. Zhou, Z. Luo, G. Li, and S. Li, “EPR detection of key radicals during coking process of lignin monomer pyrolysis,” J Anal Appl Pyrolysis, vol. 152, Nov. 2020, doi: 10.1016/j.jaap.2020.104948
[113] G. Paul and J. Gajewski, “Benzoquinone Methide: An Intermediate in the Gas-Phase Pyrolysis of Chroman,” J. Org. Chem, vol. 58, pp. 5060–5062, 1993.
[114] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.
[115] E. Terrel and M. Garcia-Perez, “Novel Strategy to analyze FT-ICR MS data of biomass pyrolysis oil for oligomeric structure assignment,” 2020.
[116] N. Aktaş, N. Şahiner, Ö. Kantoğlu, B. Salih, and A. Tanyolaç, “Biosynthesis and Characterization of Laccase Catalyzed Poly(Catechol),” J Polym Environ, vol. 11, no. 3, pp. 123–128, 2003, doi: 10.1023/A:1024639231900.
[117] P. W. Hsieh, S. A. Al-Suwayeh, C. L. Fang, C. F. Lin, C. C. Chen, and J. Y. Fang, “The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, no. 2, pp. 369–378, Jun. 2012, doi: 10.1016/j.ejpb.2012.03.006.
[118] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.
[119] S. Wang, Y. Wang, Q. Cai, X. Wang, H. Jin, and Z. Luo, “Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil,” Sep Purif Technol, vol. 122, pp. 248–255, Feb. 2014, doi: 10.1016/j.seppur.2013.11.017.
[120] J. Y. Kim, H. Hwang, S. Oh, Y. S. Kim, U. J. Kim, and J. W. Choi, “Investigation of structural modification and thermal characteristics of lignin after heat treatment,” Int J Biol Macromol, vol. 66, pp. 57–65, May 2014, doi: 10.1016/j.ijbiomac.2014.02.013.
[121] B. Scholze, C. Hanser, and D. Meier, “Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part II. GPC, carbonyl goups, and 13 C-NMR,” 2001. [Online]. Available: www.elsevier.com/locate/jaap
[122] A. R. Teixeira et al., “Aerosol generation by reactive boiling ejection of molten cellulose,” Energy Environ Sci, vol. 4, no. 10, pp. 4306–4321, 2011, doi: 10.1039/c1ee01876k.
[123] M. B. Pecha et al., “Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood,” Ind Eng Chem Res, vol. 56, no. 32, pp. 9079–9089, Aug. 2017, doi: 10.1021/acs.iecr.7b02085.
[124] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelines
[125] C. Stephan, M. Dicko, P. Stringari, and C. Coquelet, “Liquid-liquid equilibria of water + solutes (acetic acid/ acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation,” Fluid Phase Equilib, vol. 468, pp. 49–57, Jul. 2018, doi: 10.1016/j.fluid.2018.04.016.
[126] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.
[127] R. V. S. Silva, V. B. Pereira, K. T. Stelzer, T. A. Almeida, G. A. Romeiro, and D. A. Azevedo, “Comprehensive study of the liquid products from slow pyrolysis of crambe seeds: Bio-oil and organic compounds of the aqueous phase,” Biomass Bioenergy, vol. 123, pp. 78–88, Apr. 2019, doi: 10.1016/j.biombioe.2019.02.014.
[128] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil ( pyrolytic lignin ). Part I . PY – GC / MS , FTIR , and functional groups,” vol. 60, pp. 41–54, 2001.
[129] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. Garcia-Perez, Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01287.
[130] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, “Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils,” Energy and Fuels, vol. 31, no. 2, pp. 1650–1664, Feb. 2017, doi: 10.1021/acs.energyfuels.6b02950.
[131] J. Shi, D. Xing, and J. Li, “FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment,” in Energy Procedia, Elsevier Ltd, 2012, pp. 758–762. doi: 10.1016/j.egypro.2012.01.122.
[132] T. Kishimoto, Y. Uraki, and M. Ubukata, “Synthesis of β-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy,” Org Biomol Chem, vol. 6, no. 16, pp. 2982–2987, 2008, doi: 10.1039/b805460f.
[133] B. Sukhbaatar, P. H. Steele, and M. G. Kim, “Bio-oil lignin for OSB binder,” 2009.
[134] X. Dong, M. Dong, Y. Lu, A. Turley, T. Jin, and C. Wu, “Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production,” Ind Crops Prod, vol. 34, no. 3, pp. 1629–1634, Nov. 2011, doi: 10.1016/j.indcrop.2011.06.002.
[135] X. Huang, T. I. Korányi, M. D. Boot, and E. J. M. Hensen, “Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics,” Green Chemistry, vol. 17, no. 11, pp. 4941–4950, Jun. 2015, doi: 10.1039/c5gc01120e.
[136] F. Leng, Y. Wang, J. Chen, S. Wang, J. Zhou, and Z. Luo, “Characterization of pyrolytic lignins with different activities obtained from bio-oil,” Chin J Chem Eng, vol. 25, no. 3, pp. 324–329, Mar. 2017, doi: 10.1016/j.cjche.2016.06.015.
[137] B. Panchal et al., “Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease,” Energy, vol. 219, Mar. 2021, doi: 10.1016/j.energy.2020.119637.
[138] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.
[139] X. Hu et al., “Polymerization on heating up of bio-oil: A model compound study,” AIChE Journal, vol. 59, no. 3, pp. 888–900, Mar. 2013, doi: 10.1002/aic.13857.
[140] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.
[141] Y. Han, F. Stankovikj, and M. Garcia-Perez, “Co-hydrotreatment of tire pyrolysis oil and vegetable oil for the production of transportation fuels,” Fuel Processing Technology, vol. 159, pp. 328–339, 2017, doi: 10.1016/j.fuproc.2017.01.048.
[142] D. C. Lv, K. Jiang, K. Li, Y. Q. Liu, D. Wang, and Y. Y. Ye, “Effective suppression of coke formation with lignin-derived oil during the upgrading of pyrolysis oils,” Biomass Bioenergy, vol. 159, Apr. 2022, doi: 10.1016/j.biombioe.2022.106425.
[143] Y. Han, A. P. P. Pires, and M. Garcia-Perez, “Co-hydrotreatment of the Bio-oil Lignin-Rich Fraction and Vegetable Oil,” Energy and Fuels, vol. 34, no. 1, pp. 516–529, Jan. 2020, doi: 10.1021/acs.energyfuels.9b03344.
[144] P. Vozka and G. Kilaz, “How to obtain a detailed chemical composition for middle distillates via GC × GC-FID without the need of GC × GC-TOF/MS,” Fuel, vol. 247, pp. 368–377, Jul. 2019, doi: 10.1016/j.fuel.2019.03.009.
[145] A. P. P. Pires, Y. Han, J. Kramlich, and M. Garcia-Perez, “Alternative jet fuel properties,” 2018.
[146] S. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels.” [Online]. Available: http://www.fuel
[147] A. P. Richards, D. Haycock, J. Frandsen, and T. H. Fletcher, “A review of coal heating value correlations with application to coal char, tar, and other fuels,” Fuel, vol. 283. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.fuel.2020.118942.
[148] S. G. Sourelis, “The hydrogenation process,” J Am Oil Chem Soc, vol. 33, no. 10, pp. 488–494, 1956, doi: 10.1007/BF02612307.
[149] M. C. Vásquez, E. E. Silva, and E. F. Castillo, “Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production,” Biomass and Bioenergy, vol. 105. Elsevier Ltd, pp. 197–206, 2017. doi: 10.1016/j.biombioe.2017.07.008.
[150] Z. Zhang et al., “LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel,” Fuel, vol. 333, Feb. 2023, doi: 10.1016/j.fuel.2022.126341.
[151] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, Jan. 2017, doi: 10.1016/j.fuproc.2016.08.021.
[152] R. H. Venderbosch, A. R. Ardiyanti, J. Wildschut, A. Oasmaa, and H. J. Heeres, “Stabilization of biomass-derived pyrolysis oils,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 5, pp. 674–686, May 2010, doi: 10.1002/jctb.2354.
[153] Z. Tang, Y. Zhang, and Q. Guo, “Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol,” Ind Eng Chem Res, vol. 49, no. 5, pp. 2040–2046, Mar. 2010, doi: 10.1021/ie9015842.
[154] C. C. Schmitt et al., “Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1769–1782, Oct. 2018, doi: 10.1007/s11244-018-1009-z.
[155] T. A. Al-Attas et al., “Recent Advances in Heavy Oil Upgrading Using Dispersed Catalysts,” Energy and Fuels, vol. 33, no. 9, pp. 7917–7949, Sep. 2019, doi: 10.1021/acs.energyfuels.9b01532.
[156] Y. W. Chua, Y. Yu, and H. Wu, “Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures,” Fuel, vol. 200, pp. 70–75, 2017, doi: 10.1016/j.fuel.2017.03.035.
[157] M. B. Figueirêdo, Z. Jotic, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts,” Fuel Processing Technology, vol. 189, pp. 28–38, Jun. 2019, doi: 10.1016/j.fuproc.2019.02.020.
[158] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.
[159] G. Zhou et al., “Preparation and characterization of NiW-nHA composite catalyst for hydrocracking,” Nanoscale, vol. 4, no. 24, pp. 7698–7703, 2012, doi: 10.1039/c2nr31486j.
[160] L. M. Orozco, D. A. Echeverri, L. Sánchez, and L. A. Rios, “Second-generation green diesel from castor oil: Development of a new and efficient continuous-production process,” Chemical Engineering Journal, vol. 322, pp. 149–156, 2017, doi: 10.1016/j.cej.2017.04.027.
[161] S. Zhou, M. Garcia-Perez, B. Pecha, A. G. McDonald, S. R. A. Kersten, and R. J. M. Westerhof, “Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood,” Energy and Fuels, vol. 27, no. 3, pp. 1428–1438, Mar. 2013, doi: 10.1021/ef3019832.
[162] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.
[163] C.-Z. Li, F. Wu, H.-Y. Cai, and R. Kandiyoti, “UV-Fluorescence Spectroscopy of Coal Pyrolysis Tars,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelines
[164] M. Gholizadeh et al., “Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor,” Fuel Processing Technology, vol. 146, pp. 76–84, Jun. 2016, doi: 10.1016/j.fuproc.2016.01.026.
[165] R. K. Sharma et al., “Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts,” Catal Today, vol. 198, no. 1, pp. 314–320, Dec. 2012, doi: 10.1016/j.cattod.2012.05.036.
[166] L. M. Balster, S. Zabarnick, R. C. Striebich, L. M. Shafer, and Z. J. West, “Analysis of polar species in jet fuel and determination of their role in autoxidative deposit formation,” Energy and Fuels, vol. 20, no. 6, pp. 2564–2571, Nov. 2006, doi: 10.1021/ef060275l.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 96 páginas + 1 Anexo
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83957/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83957/2/1152186564.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83957/3/1152186564.2023.SupplementaryMaterial.pdf
https://repositorio.unal.edu.co/bitstream/unal/83957/4/1152186564.2023.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/83957/5/1152186564.2023.SupplementaryMaterial.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
974c9a89697c8ad36216669f554f3a49
9be92b716bc500dc13e9e11b565eb34b
e4ef956833307553f8dcafe70c31e064
3d8483e4022eaaa869a1fd5e96bf4b9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089760251052032
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne, Farid5f55a1a2aa209c6410295ac96392e6b6García Pérez, Manuela1b55cd912e5792e06790c630c03544bManrique Waldo, Raiza Johanna52ea2c1b51a419be9cdf11b07e1c49f5Termodinámica Aplicada y Energías AlternativasChejne, Farid [0000-0003-0445-7609]Manrique Waldo, Raiza Johanna [0000-0002-6702-5419]Raiza Manrique Waldohttps://www.scopus.com/authid/detail.uri?authorId=57195741838https://www.researchgate.net/profile/Raiza-Manriquehttps://scholar.google.com/citations?user=vWdtrjUAAAAJ&hl=es&oi=ao2023-06-02T15:17:24Z2023-06-02T15:17:24Z2023-06-01https://repositorio.unal.edu.co/handle/unal/83957Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasBiomass fast pyrolysis bio-oil is a promising alternative to be used as a source of fuels and chemicals. It hosts a wide variety of compounds and comes from renewable sources. Pyrolysis oil is formed by water, light organics (GC/MS detectable compounds), Oligomeric fractions derived from lignin and holocellulose. This dissertation focusses on the identification of oligomeric molecules in the pyrolytic lignin fraction and its catalytic hydrodeoxygenation. This fraction can potentially be used to produce fuels and chemicals via hydrodeoxygenation. The chemical structure of pyrolytic lignin oligomeric molecules is poorly known. In this study, quantum mechanical simulation was used to propose the structures based on calculations of the electronic structure. The DFT calculations were used to identify the thermodynamically most probable chemical structures of pyrolytic lignin molecules resulting from lignin pyrolysis followed by demethylation. The structure of new molecules of dimer, trimer and tetramer oligomers from pyrolytic lignin were proposed. The pyrolytic lignin fraction was further fractionated by solid-liquid extraction and the resulting subfraction thoroughly characterized using FTIR, UV-fluorescence and HSQC-NMR. Ethyl acetate subfractions was characterized by phenolic compounds with methoxyl substituents while acetone and isopropanol subfractions showed more aliphatic characteristics. Pyrolytic lignin fraction from BTG was hydrotreated with a sulfided NiMo/Al2O3 catalyst. Hydrotreating experiments were carried out with mixtures of pyrolytic lignin and yellow grease to obtain liquid fuels. All blends induced coke formation values between 0.7 and 2.5 wt. %, indicating that pyrolytic lignin has potential to reduce coke formation during the process. The results obtained in this thesis will allow the definition of strategies for the design of biorefineries including pyrolytic lignin to obtain products.El bioaceite de pirólisis rápida de biomasa es una alternativa prometedora para ser utilizada como fuente de combustibles y productos químicos. Alberga una amplia variedad de compuestos y proviene de fuentes renovables. El aceite de pirólisis está formado por agua, compuestos orgánicos ligeros (compuestos detectables por GC/MS), fracciones oligoméricas derivadas de la lignina y holocelulosa. Esta tesis se centra en la identificación de moléculas oligoméricas en la fracción pirolítica de lignina y su hidrodesoxigenación catalítica. Esta fracción se puede utilizar potencialmente para la producción de combustibles y productos químicos a través de la hidrodesoxigenación. La estructura química de las moléculas oligoméricas de lignina pirolítica es poco conocida. En este estudio, se utilizó simulación mecánica cuántica para proponer las estructuras basadas en cálculos de la estructura electrónica. Los cálculos DFT se utilizaron para identificar las estructuras químicas termodinámicamente más probables de las moléculas de lignina pirolítica resultantes de la pirólisis de lignina seguida de desmetilación. Se propuso la estructura de nuevas moléculas de oligómeros dímeros, trímeros y tetrámeros a partir de lignina pirolítica. La fracción de lignina pirolítica se fraccionó adicionalmente mediante extracción sólido-líquido y la subfracción resultante se caracterizó minuciosamente usando FTIR, UV-fluorescencia, HSQC-NMR. Las subfracciones de acetato de etilo se caracterizaron por compuestos fenólicos con sustituyentes metoxilo, mientras que la subfracción de acetona e isopropanol mostró características más alifáticas. Se realizó el hidrotratmiento de la fracción de lignina pirolítica de BTG con un catalizador de NiMo/Al2O3 sulfurado. Se realizaron experimentos de hidrotratamiento con mezclas de lignina pirolítica y grasa amarilla para obtener combustibles líquidos. Todas las mezclas obtuvieron valores de formación de coque entre 0,7 y 2,5 en peso. %, lo que indica que la lignina pirolítica tiene potencial para reducir la formación de coque durante el proceso. Los resultados obtenidos en esta tesis permitirán definir estrategias para el diseño de biorrefinerías que incluyan lignina pirolítica para la obtención de productos. (Texto tomado de la fuente)World BankDoctoradoDoctor en IngenieríaValorization of the pyrolytic ligninValorización de la lignina pirolíticaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxviii, 96 páginas + 1 Anexoapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::661 - Tecnología de químicos industriales660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosPirólisisHidrogenaciónHydrogenationPyrolysisPyrolysis bio-oilPyrolytic ligninOligomersStructuresFractionationBio-oil upgradingBioaceite de pirólisisLignina pirolíticaOligómerosEstructurasFraccionamientoMejoramiento del bioaceiteStudy of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment processEstudio de la interacción entre los oligómeros de la fracción pesada del bioaceite de pirólisis rápida y un catalizador en el proceso de hidrotratamientoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06DataPaperhttp://purl.org/redcol/resource_type/TDRedColLaReferencia[1] L. F. Cabeza, A. Palacios, S. Serrano, D. Ürge-Vorsatz, and C. Barreneche, “Comparison of past projections of global and regional primary and final energy consumption with historical data,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 681–688, 2018. doi: 10.1016/j.rser.2017.09.073.[2] A. K. Vuppaladadiyam et al., “Biomass pyrolysis: A review on recent advancements and green hydrogen production,” Bioresource Technology, vol. 364. Elsevier Ltd, Nov. 01, 2022. doi: 10.1016/j.biortech.2022.128087.[3] J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 309–322, 2017. doi: 10.1016/j.rser.2017.03.072.[4] Unidad de Planeación Minero Energética, “Atlas del Potencial Energético de la Biomasa en Colombia,” Bogota D.C, 2008. [Online]. Available: http://www1.upme.gov.co/sites/default/files/article/1768/files/Atlas de Biomasa Residual Colombia__.pdf[5] V. Duc Bui et al., “Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy,” Sustainable Energy Technologies and Assessments, vol. 55, Feb. 2023, doi: 10.1016/j.seta.2022.102991.[6] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, Dec. 2018, doi: 10.1016/j.renene.2017.04.035.[7] W. Yin, R. H. Venderbosch, and H. J. Heeres, 8 - Recent developments in the catalytic hydrotreatment of pyrolysis liquids. Elsevier Ltd., 2017. doi: 10.1016/B978-0-08-101029-7.00007-2.[8] X. Li et al., “Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst,” Fuel, vol. 116, pp. 642–649, 2014, doi: 10.1016/j.fuel.2013.08.046.[9] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, 2017, doi: 10.1016/j.fuproc.2016.08.021.[10] W. Laosiripojana, W. Kiatkittipong, and C. Sakdaronnarong, “Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials,” Renew Energy, vol. 135, pp. 1048–1055, 2019, doi: 10.1016/j.renene.2018.12.069.[11] S. Kadarwati et al., “Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al 2 O 3 catalyst,” J Anal Appl Pyrolysis, vol. 118, pp. 136–143, 2016, doi: 10.1016/j.jaap.2016.01.011.[12] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups,” J Anal Appl Pyrolysis, vol. 60, no. 1, pp. 41–54, 2001, doi: 10.1016/S0165-2370(00)00110-8.[13] K. Iisa, A. C. Johansson, E. Pettersson, R. J. French, K. A. Orton, and H. Wiinikka, “Chemical and physical characterization of aerosols from fast pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 142, no. February, pp. 1–9, 2019, doi: 10.1016/j.jaap.2019.04.022.[14] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.[15] M. Matos et al., “Acetone:Water fractionation of pyrolytic lignin improves its antioxidant and antibacterial activity,” J Anal Appl Pyrolysis, vol. 156, Jun. 2021, doi: 10.1016/j.jaap.2021.105175.[16] M. B. Figueirêdo, “Valorization Strategies for Pyrolytic Lignin,” University of Groningen, 2020.[17] X. Zhang, H. Ma, T. Li, and S. Wu, “Oligomers obtained from sequential fractionation of lignin pyrolysis oil,” Energy Convers Manag, vol. 201, no. July, p. 112181, 2019, doi: 10.1016/j.enconman.2019.112181.[18] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.[19] M. U. Garba, U. Musa, A. G. Olugbenga, Y. S. Mohammad, M. Yahaya, and A. A. Ibrahim, “Catalytic upgrading of bio-oil from bagasse: Thermogravimetric analysis and fixed bed pyrolysis,” Beni Suef Univ J Basic Appl Sci, vol. 7, no. 4, pp. 776–781, 2018, doi: 10.1016/j.bjbas.2018.11.004.[20] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, and D. Chiaramonti, “Fuel oil quality and combustion of fast pyrolysis bio-oils,” VTT Publications, no. 87, p. 79, 2013, doi: http://dx.doi.org/10.1016/j.apenergy.2013.11.040.[21] I. Hita, E. Rodríguez, M. Olazar, J. Bilbao, J. M. Arandes, and P. Castaño, “Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil,” Energy & Fuels, vol. 29, no. 8, pp. 5458–5466, Aug. 2015, doi: 10.1021/acs.energyfuels.5b01181.[22] A. H. Zacher, M. v. Olarte, D. M. Santosa, D. C. Elliott, and S. B. Jones, “A review and perspective of recent bio-oil hydrotreating research,” Green Chemistry, vol. 16, no. 2, pp. 491–515, 2014, doi: 10.1039/c3gc41382a.[23] A. Abbas, Z. Wang, Y. Zhang, P. Peng, and D. She, “Lignin-based controlled release fertilizers: A review,” Int J Biol Macromol, Oct. 2022, doi: 10.1016/j.ijbiomac.2022.09.265.[24] A. J. Ragauskas et al., “Lignin valorization: Improving lignin processing in the biorefinery,” Science, vol. 344, no. 6185. American Association for the Advancement of Science, 2014. doi: 10.1126/science.1246843.[25] M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, and M. R. Rahimpour, “Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation,” Energy and Environmental Science, vol. 7, no. 1. Royal Society of Chemistry, pp. 103–129, 2014. doi: 10.1039/c3ee43081b.[26] A. Agarwal, M. Rana, and J. H. Park, “Advancement in technologies for the depolymerization of lignin,” Fuel Processing Technology, vol. 181. Elsevier B.V., pp. 115–132, Dec. 01, 2018. doi: 10.1016/j.fuproc.2018.09.017.[27] J. C. del Río, J. Rencoret, A. Gutiérrez, T. Elder, H. Kim, and J. Ralph, “Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall,” ACS Sustainable Chemistry and Engineering, vol. 8, no. 13. American Chemical Society, pp. 4997–5012, Apr. 06, 2020. doi: 10.1021/acssuschemeng.0c01109[28] M. M. Campbell and R. R. Sederoff, “Variation in Lignin Content and Composition’ Mechanisms of Control and lmplications for the Genetic lmprovement of Plants.” [Online]. Available: https://academic.oup.com/plphys/article/110/1/3/6068918[29] L. Zhang, A. Larsson, A. Moldin, and U. Edlund, “Comparison of lignin distribution, structure, and morphology in wheat straw and wood,” Industrial Crops and Products, vol. 187. Elsevier B.V., Nov. 01, 2022. doi: 10.1016/j.indcrop.2022.115432.[30] Y. Pu, D. Zhang, P. M. Singh, and A. J. Ragauskas, “The new forestry biofuels sector,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 1. pp. 58–73, Jan. 2008. doi: 10.1002/bbb.48.[31] S. Sethupathy et al., “Lignin valorization: Status, challenges and opportunities,” Bioresource Technology, vol. 347. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.biortech.2022.126696.[32] S. Wang et al., “Comparison of the pyrolysis behavior of lignins from different tree species,” Biotechnol Adv, vol. 27, no. 5, pp. 562–567, Sep. 2009, doi: 10.1016/j.biotechadv.2009.04.010.[33] R. Md Salim, J. Asik, and M. S. Sarjadi, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark,” Wood Sci Technol, vol. 55, no. 2, pp. 295–313, Mar. 2021, doi: 10.1007/s00226-020-01258-2.[34] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, Aug. 2007, doi: 10.1016/j.fuel.2006.12.013.[35] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.[36] C. Chio, M. Sain, and W. Qin, “Lignin utilization: A review of lignin depolymerization from various aspects,” Renewable and Sustainable Energy Reviews, vol. 107. Elsevier Ltd, pp. 232–249, Jun. 01, 2019. doi: 10.1016/j.rser.2019.03.008.[37] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renewable and Sustainable Energy Reviews, vol. 12, no. 2, pp. 504–517, 2008, doi: 10.1016/j.rser.2006.07.014.[38] R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review,” J Anal Appl Pyrolysis, vol. 129, no. July 2017, pp. 134–149, 2018, doi: 10.1016/j.jaap.2017.11.019.[39] Y. Shen and K. Yoshikawa, “Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review,” Renewable and Sustainable Energy Reviews, vol. 21. pp. 371–392, 2013. doi: 10.1016/j.rser.2012.12.062.[40] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2006, doi: 10.1016/j.fuel.2006.12.013.[41] M. Brebu and C. Vasile, “THERMAL DEGRADATION OF LIGNIN-A REVIEW,” 2010.[42] H. Kawamoto, “Lignin pyrolysis reactions,” Journal of Wood Science, vol. 63, no. 2, pp. 117–132, 2017, doi: 10.1007/s10086-016-1606-z.[43] C. A. Mullen and A. A. Boateng, “Catalytic pyrolysis-GC/MS of lignin from several sources,” Fuel Processing Technology, vol. 91, no. 11, pp. 1446–1458, 2010, doi: 10.1016/j.fuproc.2010.05.022.[44] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.[45] T. Kotake, H. Kawamoto, and S. Saka, “Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin,” J Anal Appl Pyrolysis, vol. 105, pp. 309–316, 2014, doi: 10.1016/j.jaap.2013.11.018.[46] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.[47] S. Saka, M. Asmadi, and H. Kawamoto, “Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins,” J Anal Appl Pyrolysis, vol. 92, no. 2, pp. 417–425, 2011.[48] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.[49] E. B. Ledesma, N. D. Marsh, A. K. Sandrowitz, and M. J. Wornat, “AN EXPERIMENTAL STUDY ON THE THERMAL DECOMPOSITION OF CATECHOL,” 2002.[50] K. Lopez Camas and A. Ullah, “Depolymerization of lignin into high-value products,” Biocatal Agric Biotechnol, vol. 40, Mar. 2022, doi: 10.1016/j.bcab.2022.102306.[51] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.[52] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, p. 106140, 2019, doi: 10.1016/j.fuproc.2019.106140.[53] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, 2019, doi: 10.1016/j.fuproc.2019.106140.[54] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01242.[55] M. Garcia-Perez, S. Wang, J. Shen, M. Rhodes, W. J. Lee, and C. Z. Li, “Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass,” Energy and Fuels, vol. 22, no. 3, pp. 2022–2032, 2008, doi: 10.1021/ef7007634.[56] M. Garcia-Perez et al., “Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products,” Ind Eng Chem Res, vol. 47, no. 6, pp. 1846–1854, 2008, doi: 10.1021/ie071497p.[57] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.[58] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils, vol. 31, no. 2. 2017. doi: 10.1021/acs.energyfuels.6b02950.[59] S. Li, Z. Luo, W. Wang, K. Lu, Y. Yang, and X. Liang, “Characterization of pyrolytic lignin and insight into its formation mechanisms using novel techniques and DFT method,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116516.[60] Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, and K. Barta, “Bright Side of Lignin Depolymerization: Toward New Platform Chemicals,” Chemical Reviews, vol. 118, no. 2. American Chemical Society, pp. 614–678, Jan. 24, 2018. doi: 10.1021/acs.chemrev.7b00588.[61] L. Fan et al., “Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters,” Bioresource Technology, vol. 241. Elsevier Ltd, pp. 1118–1126, 2017. doi: 10.1016/j.biortech.2017.05.129[62] Y. H. Chan et al., “Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects,” Chemical Engineering Journal, vol. 397. Elsevier B.V., Oct. 01, 2020. doi: 10.1016/j.cej.2020.125406.[63] Q. Cai, T. Gong, T. Yu, and S. Zhang, “Comparison of hydrocracking and cracking of pyrolytic lignin over different Ni-based catalysts for light aromatics production,” Fuel Processing Technology, vol. 240, p. 107564, Feb. 2023, doi: 10.1016/j.fuproc.2022.107564.[64] X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, “Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst,” J Catal, vol. 281, no. 1, pp. 21–29, Jul. 2011, doi: 10.1016/j.jcat.2011.03.030.[65] S. Chen, “Green Oil Production by Hydroprocessing,” International Journal of Clean Coal and Energy, vol. 01, no. 04, pp. 43–55, 2012, doi: 10.4236/ijcce.2012.14005.[66] Y. He, Y. Bie, J. Lehtonen, R. Liu, and J. Cai, “Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: Process optimization and reaction kinetics,” Fuel, vol. 239, no. August 2018, pp. 1015–1027, 2019, doi: 10.1016/j.fuel.2018.11.103.[67] M. Auersvald et al., “Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable refinery intermediates,” Fuel, vol. 238, no. June 2018, pp. 98–110, 2019, doi: 10.1016/j.fuel.2018.10.090.[68] M. B. Figueirêdo, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals: Identification of feed-product relations,” Biomass Bioenergy, vol. 134, no. January, 2020, doi: 10.1016/j.biombioe.2020.105484.[69] C. Amen-Chen, H. Pakdel, and C. Roy, “Production of monomeric phenols by thermochemical conversion of biomass: a review.”[70] X. Zhang, Q. Chen, Q. Zhang, C. Wang, L. Ma, and Y. Xu, “Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst,” J Anal Appl Pyrolysis, vol. 135, pp. 60–66, Oct. 2018, doi: 10.1016/j.jaap.2018.09.020.[71] B. Hu et al., “Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds,” Fuel Processing Technology, vol. 237. Elsevier B.V., Dec. 01, 2022. doi: 10.1016/j.fuproc.2022.107465.[72] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog Energy Combust Sci, vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.[73] S. Wang et al., “Pyrolysis of wood/biomass for bio-oil: a critical review.,” Prog Energy Combust Sci, vol. 62, no. 4, pp. 848–889, 2017, doi: 10.1021/ef0502397.[74] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.[75] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour Technol, vol. 271, no. September 2018, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.[76] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Current Opinion in Biotechnology, vol. 56. Elsevier Ltd, pp. 240–249, Apr. 01, 2019. doi: 10.1016/j.copbio.2019.02.019.[77] E. Rosini et al., “Cascade enzymatic cleavage of the β-O-4 linkage in a lignin model compound,” Catal Sci Technol, vol. 6, no. 7, pp. 2195–2205, Apr. 2016, doi: 10.1039/c5cy01591j.[78] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.[79] X. Jiang, Q. Lu, B. Hu, J. Liu, C. Dong, and Y. Yang, “Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study,” Fuel, vol. 215, pp. 386–394, Mar. 2018, doi: 10.1016/j.fuel.2017.11.084.[80] B. Hu et al., “Hydroxyl-Assisted Hydrogen Transfer Interaction in Lignin Pyrolysis: An Extended Concerted Interaction Mechanism,” Energy and Fuels, vol. 35, no. 16, pp. 13170–13180, Aug. 2021, doi: 10.1021/acs.energyfuels.1c01606.[81] Y. Huang, H. Wang, X. Zhang, Q. Zhang, C. Wang, and L. Ma, “CO2 pyrolysis kinetics and characteristics of lignin-rich hydrolysis residue produced from a tandem process of steam-stripping and acid hydrolysis,” Fuel, vol. 316, May 2022, doi: 10.1016/j.fuel.2022.123361.[82] L. Wang et al., “Fast pyrolysis of guaiacyl-syringyl (GS) type milled wood lignin: Product characteristics and CH4 formation mechanism study,” Science of the Total Environment, vol. 838, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156395.[83] E. Terrell and M. Garcia-Perez, “Vacuum Pyrolysis of Hybrid Poplar Milled Wood Lignin with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Analysis of Feedstock and Products for the Elucidation of Reaction Mechanisms,” Energy and Fuels, vol. 34, no. 11, pp. 14249–14263, Nov. 2020, doi: 10.1021/acs.energyfuels.0c02928.[84] X. Fu, Q. Li, and C. Hu, “Identification and structural characterization of oligomers formed from the pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 144, Nov. 2019, doi: 10.1016/j.jaap.2019.104696.[85] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, 2018, doi: 10.1016/j.renene.2017.04.035.[86] J. Huang, C. Liu, H. Tong, W. Li, and D. Wu, “A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin,” Comput Theor Chem, vol. 1045, pp. 1–9, Oct. 2014, doi: 10.1016/j.comptc.2014.06.009.[87] I. Fonts et al., “Thermodynamic and physical property estimation of compounds derived from the fast pyrolysis of lignocellulosic materials,” Energy and Fuels, vol. 35, no. 21, pp. 17114–17137, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01709.[88] E. Terrell, “Estimation of Hansen solubility parameters with regularized regression for biomass conversion products: An application of adaptable group contribution,” Chem Eng Sci, vol. 248, Feb. 2022, doi: 10.1016/j.ces.2021.117184.[89] E. Leng, Y. Guo, J. Chen, S. Liu, J. E, and Y. Xue, “A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass,” Fuel, vol. 309, no. October 2021, p. 122102, 2022, doi: 10.1016/j.fuel.2021.122102.[90] P. F. Britt, A. C. Buchanan, M. J. Cooney, and D. R. Martineau, “Flash vacuum pyrolysis of methoxy-substituted lignin model compounds,” Journal of Organic Chemistry, vol. 65, no. 5, pp. 1376–1389, Mar. 2000, doi: 10.1021/jo991479k.[91] P. F. Britt, A. C. Buchanan, and E. A. Malcolm, “Thermolysis of Phenethyl Phenyl Ether: A Model for Ether Linkages in Lignin and Low Rank Coal,” 1995. doi: https://doi.org/10.1021/jo00125a044.[92] S. Zhou, B. Pecha, M. van Kuppevelt, A. G. McDonald, and M. Garcia-Perez, “Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products,” Biomass Bioenergy, vol. 66, pp. 398–409, 2014, doi: 10.1016/j.biombioe.2014.03.064.[93] Y. Fan et al., “Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins,” Bioresour Technol, vol. 350, Apr. 2022, doi: 10.1016/j.biortech.2022.126908.[94] M. Lei, S. Wu, J. Liang, and C. Liu, “Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis,” J Anal Appl Pyrolysis, vol. 138, pp. 249–260, Mar. 2019, doi: 10.1016/j.jaap.2019.01.004.[95] J. M. Younker, A. Beste, and A. C. Buchanan, “Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds,” ChemPhysChem, vol. 12, no. 18, pp. 3556–3565, 2011, doi: 10.1002/cphc.201100477.[96] Y. Ünal, W. Nassif, B. C. Özaydin, and K. Sayin, “Scale factor database for the vibration frequencies calculated in M06-2X, one of the DFT methods,” Vib Spectrosc, vol. 112, Jan. 2021, doi: 10.1016/j.vibspec.2020.103189.[97] F. Stankovikj and M. Garcia-perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy & Fuels, vol. 30, no. 8, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.[98] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. doi: https://doi.org/10.1021/ci00019a016.[99] M. Satou, D. Itoh, H. Hattori, and T. Yoshida, “Evaluation of ring size distribution in a heavy oil based on boiling point and molecular weight distributions,” 2000. doi: https://doi.org/10.1016/S0016-2361(99)00168-4.[100] W. Yuan, A. C. Hansen, and Q. Zhang, “Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels,” Fuel, vol. 84, no. 7–8, pp. 943–950, May 2005, doi: 10.1016/j.fuel.2005.01.007.[101] Al. L. Lydersen, R. A. Greenkorn, and O. A. Hougen, “Estimation of critical properties of organic compounds,” Madison, 1955. Accessed: Feb. 06, 2023. [Online]. Available: https://scholar.google.com/scholar_lookup?hl=en&publication_year=1955&author=A.+L.+Lydersen&author=R.+A.+Greenkorn&author=O.+A.+Hougen&title=Estimation+of+Critical+Properties+of+Organic+Compounds[102] K. G. Joback, “A unified approach to physical property estimation using multivariate statistical techniques.” 1984.[103] E. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int J Thermophys, vol. 29, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.[104] C. F. Chueh and A. C. Swanson, “Estimation of Liquid Heat Capacity,” Can J Chem Eng, vol. 51, 1973.[105] J. E. Hurst and B. K. Harrison, “Estimation of liquid and solid heat capacities using a modified kopp’s rule,” Chem Eng Commun, vol. 112, no. 1, pp. 21–30, 1992, doi: 10.1080/00986449208935989[106] B. Keith Harrison and W. H. Seaton, “Solution to Missing Group Problem for Estimation of Ideal Gas Heat Capacities,” Ind Eng Chem Res, vol. 27, no. 8, pp. 1536–1540, 1988, doi: 10.1021/ie00080a031.[107] I. Fonts et al., “Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials,” Energy and Fuels, 2021, doi: 10.1021/acs.energyfuels.1c01709.[108] M. Lei, S. Wu, C. Liu, J. Liang, and R. Xiao, “Revealing the pyrolysis behavior of 5-5′ biphenyl-type lignin fragment. Part I: A mechanistic study on fragmentation via experiments and theoretical calculation,” Fuel Processing Technology, vol. 217, Jun. 2021, doi: 10.1016/j.fuproc.2021.106812.[109] D. Chen, K. Cen, X. Cao, F. Chen, J. Zhang, and J. Zhou, “Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield,” Renewable and Sustainable Energy Reviews, vol. 136, Feb. 2021, doi: 10.1016/j.rser.2020.110444.[110] C. Li et al., “Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry,” Environ Sci Technol Lett, vol. 8, no. 8, pp. 633–638, Aug. 2021, doi: 10.1021/acs.estlett.1c00369.[111] Z. Pan, A. Puente-Urbina, A. Bodi, J. A. van Bokhoven, and P. Hemberger, “Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone,” Chem Sci, vol. 12, no. 9, pp. 3161–3169, Mar. 2021, doi: 10.1039/d1sc00654a.[112] Q. Zhou, Z. Luo, G. Li, and S. Li, “EPR detection of key radicals during coking process of lignin monomer pyrolysis,” J Anal Appl Pyrolysis, vol. 152, Nov. 2020, doi: 10.1016/j.jaap.2020.104948[113] G. Paul and J. Gajewski, “Benzoquinone Methide: An Intermediate in the Gas-Phase Pyrolysis of Chroman,” J. Org. Chem, vol. 58, pp. 5060–5062, 1993.[114] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.[115] E. Terrel and M. Garcia-Perez, “Novel Strategy to analyze FT-ICR MS data of biomass pyrolysis oil for oligomeric structure assignment,” 2020.[116] N. Aktaş, N. Şahiner, Ö. Kantoğlu, B. Salih, and A. Tanyolaç, “Biosynthesis and Characterization of Laccase Catalyzed Poly(Catechol),” J Polym Environ, vol. 11, no. 3, pp. 123–128, 2003, doi: 10.1023/A:1024639231900.[117] P. W. Hsieh, S. A. Al-Suwayeh, C. L. Fang, C. F. Lin, C. C. Chen, and J. Y. Fang, “The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, no. 2, pp. 369–378, Jun. 2012, doi: 10.1016/j.ejpb.2012.03.006.[118] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.[119] S. Wang, Y. Wang, Q. Cai, X. Wang, H. Jin, and Z. Luo, “Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil,” Sep Purif Technol, vol. 122, pp. 248–255, Feb. 2014, doi: 10.1016/j.seppur.2013.11.017.[120] J. Y. Kim, H. Hwang, S. Oh, Y. S. Kim, U. J. Kim, and J. W. Choi, “Investigation of structural modification and thermal characteristics of lignin after heat treatment,” Int J Biol Macromol, vol. 66, pp. 57–65, May 2014, doi: 10.1016/j.ijbiomac.2014.02.013.[121] B. Scholze, C. Hanser, and D. Meier, “Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part II. GPC, carbonyl goups, and 13 C-NMR,” 2001. [Online]. Available: www.elsevier.com/locate/jaap[122] A. R. Teixeira et al., “Aerosol generation by reactive boiling ejection of molten cellulose,” Energy Environ Sci, vol. 4, no. 10, pp. 4306–4321, 2011, doi: 10.1039/c1ee01876k.[123] M. B. Pecha et al., “Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood,” Ind Eng Chem Res, vol. 56, no. 32, pp. 9079–9089, Aug. 2017, doi: 10.1021/acs.iecr.7b02085.[124] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelines[125] C. Stephan, M. Dicko, P. Stringari, and C. Coquelet, “Liquid-liquid equilibria of water + solutes (acetic acid/ acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation,” Fluid Phase Equilib, vol. 468, pp. 49–57, Jul. 2018, doi: 10.1016/j.fluid.2018.04.016.[126] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.[127] R. V. S. Silva, V. B. Pereira, K. T. Stelzer, T. A. Almeida, G. A. Romeiro, and D. A. Azevedo, “Comprehensive study of the liquid products from slow pyrolysis of crambe seeds: Bio-oil and organic compounds of the aqueous phase,” Biomass Bioenergy, vol. 123, pp. 78–88, Apr. 2019, doi: 10.1016/j.biombioe.2019.02.014.[128] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil ( pyrolytic lignin ). Part I . PY – GC / MS , FTIR , and functional groups,” vol. 60, pp. 41–54, 2001.[129] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. Garcia-Perez, Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01287.[130] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, “Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils,” Energy and Fuels, vol. 31, no. 2, pp. 1650–1664, Feb. 2017, doi: 10.1021/acs.energyfuels.6b02950.[131] J. Shi, D. Xing, and J. Li, “FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment,” in Energy Procedia, Elsevier Ltd, 2012, pp. 758–762. doi: 10.1016/j.egypro.2012.01.122.[132] T. Kishimoto, Y. Uraki, and M. Ubukata, “Synthesis of β-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy,” Org Biomol Chem, vol. 6, no. 16, pp. 2982–2987, 2008, doi: 10.1039/b805460f.[133] B. Sukhbaatar, P. H. Steele, and M. G. Kim, “Bio-oil lignin for OSB binder,” 2009.[134] X. Dong, M. Dong, Y. Lu, A. Turley, T. Jin, and C. Wu, “Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production,” Ind Crops Prod, vol. 34, no. 3, pp. 1629–1634, Nov. 2011, doi: 10.1016/j.indcrop.2011.06.002.[135] X. Huang, T. I. Korányi, M. D. Boot, and E. J. M. Hensen, “Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics,” Green Chemistry, vol. 17, no. 11, pp. 4941–4950, Jun. 2015, doi: 10.1039/c5gc01120e.[136] F. Leng, Y. Wang, J. Chen, S. Wang, J. Zhou, and Z. Luo, “Characterization of pyrolytic lignins with different activities obtained from bio-oil,” Chin J Chem Eng, vol. 25, no. 3, pp. 324–329, Mar. 2017, doi: 10.1016/j.cjche.2016.06.015.[137] B. Panchal et al., “Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease,” Energy, vol. 219, Mar. 2021, doi: 10.1016/j.energy.2020.119637.[138] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.[139] X. Hu et al., “Polymerization on heating up of bio-oil: A model compound study,” AIChE Journal, vol. 59, no. 3, pp. 888–900, Mar. 2013, doi: 10.1002/aic.13857.[140] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.[141] Y. Han, F. Stankovikj, and M. Garcia-Perez, “Co-hydrotreatment of tire pyrolysis oil and vegetable oil for the production of transportation fuels,” Fuel Processing Technology, vol. 159, pp. 328–339, 2017, doi: 10.1016/j.fuproc.2017.01.048.[142] D. C. Lv, K. Jiang, K. Li, Y. Q. Liu, D. Wang, and Y. Y. Ye, “Effective suppression of coke formation with lignin-derived oil during the upgrading of pyrolysis oils,” Biomass Bioenergy, vol. 159, Apr. 2022, doi: 10.1016/j.biombioe.2022.106425.[143] Y. Han, A. P. P. Pires, and M. Garcia-Perez, “Co-hydrotreatment of the Bio-oil Lignin-Rich Fraction and Vegetable Oil,” Energy and Fuels, vol. 34, no. 1, pp. 516–529, Jan. 2020, doi: 10.1021/acs.energyfuels.9b03344.[144] P. Vozka and G. Kilaz, “How to obtain a detailed chemical composition for middle distillates via GC × GC-FID without the need of GC × GC-TOF/MS,” Fuel, vol. 247, pp. 368–377, Jul. 2019, doi: 10.1016/j.fuel.2019.03.009.[145] A. P. P. Pires, Y. Han, J. Kramlich, and M. Garcia-Perez, “Alternative jet fuel properties,” 2018.[146] S. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels.” [Online]. Available: http://www.fuel[147] A. P. Richards, D. Haycock, J. Frandsen, and T. H. Fletcher, “A review of coal heating value correlations with application to coal char, tar, and other fuels,” Fuel, vol. 283. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.fuel.2020.118942.[148] S. G. Sourelis, “The hydrogenation process,” J Am Oil Chem Soc, vol. 33, no. 10, pp. 488–494, 1956, doi: 10.1007/BF02612307.[149] M. C. Vásquez, E. E. Silva, and E. F. Castillo, “Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production,” Biomass and Bioenergy, vol. 105. Elsevier Ltd, pp. 197–206, 2017. doi: 10.1016/j.biombioe.2017.07.008.[150] Z. Zhang et al., “LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel,” Fuel, vol. 333, Feb. 2023, doi: 10.1016/j.fuel.2022.126341.[151] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, Jan. 2017, doi: 10.1016/j.fuproc.2016.08.021.[152] R. H. Venderbosch, A. R. Ardiyanti, J. Wildschut, A. Oasmaa, and H. J. Heeres, “Stabilization of biomass-derived pyrolysis oils,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 5, pp. 674–686, May 2010, doi: 10.1002/jctb.2354.[153] Z. Tang, Y. Zhang, and Q. Guo, “Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol,” Ind Eng Chem Res, vol. 49, no. 5, pp. 2040–2046, Mar. 2010, doi: 10.1021/ie9015842.[154] C. C. Schmitt et al., “Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1769–1782, Oct. 2018, doi: 10.1007/s11244-018-1009-z.[155] T. A. Al-Attas et al., “Recent Advances in Heavy Oil Upgrading Using Dispersed Catalysts,” Energy and Fuels, vol. 33, no. 9, pp. 7917–7949, Sep. 2019, doi: 10.1021/acs.energyfuels.9b01532.[156] Y. W. Chua, Y. Yu, and H. Wu, “Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures,” Fuel, vol. 200, pp. 70–75, 2017, doi: 10.1016/j.fuel.2017.03.035.[157] M. B. Figueirêdo, Z. Jotic, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts,” Fuel Processing Technology, vol. 189, pp. 28–38, Jun. 2019, doi: 10.1016/j.fuproc.2019.02.020.[158] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.[159] G. Zhou et al., “Preparation and characterization of NiW-nHA composite catalyst for hydrocracking,” Nanoscale, vol. 4, no. 24, pp. 7698–7703, 2012, doi: 10.1039/c2nr31486j.[160] L. M. Orozco, D. A. Echeverri, L. Sánchez, and L. A. Rios, “Second-generation green diesel from castor oil: Development of a new and efficient continuous-production process,” Chemical Engineering Journal, vol. 322, pp. 149–156, 2017, doi: 10.1016/j.cej.2017.04.027.[161] S. Zhou, M. Garcia-Perez, B. Pecha, A. G. McDonald, S. R. A. Kersten, and R. J. M. Westerhof, “Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood,” Energy and Fuels, vol. 27, no. 3, pp. 1428–1438, Mar. 2013, doi: 10.1021/ef3019832.[162] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.[163] C.-Z. Li, F. Wu, H.-Y. Cai, and R. Kandiyoti, “UV-Fluorescence Spectroscopy of Coal Pyrolysis Tars,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelines[164] M. Gholizadeh et al., “Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor,” Fuel Processing Technology, vol. 146, pp. 76–84, Jun. 2016, doi: 10.1016/j.fuproc.2016.01.026.[165] R. K. Sharma et al., “Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts,” Catal Today, vol. 198, no. 1, pp. 314–320, Dec. 2012, doi: 10.1016/j.cattod.2012.05.036.[166] L. M. Balster, S. Zabarnick, R. C. Striebich, L. M. Shafer, and Z. J. West, “Analysis of polar species in jet fuel and determination of their role in autoxidative deposit formation,” Energy and Fuels, vol. 20, no. 6, pp. 2564–2571, Nov. 2006, doi: 10.1021/ef060275l.Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process - Contract number FP44842-210-2018Call 788 of Minciencias Scientific EcosystemPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83957/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152186564.2023.pdf1152186564.2023.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf3870487https://repositorio.unal.edu.co/bitstream/unal/83957/2/1152186564.2023.pdf974c9a89697c8ad36216669f554f3a49MD521152186564.2023.SupplementaryMaterial.pdf1152186564.2023.SupplementaryMaterial.pdfANEXO Tesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf3431398https://repositorio.unal.edu.co/bitstream/unal/83957/3/1152186564.2023.SupplementaryMaterial.pdf9be92b716bc500dc13e9e11b565eb34bMD53THUMBNAIL1152186564.2023.pdf.jpg1152186564.2023.pdf.jpgGenerated Thumbnailimage/jpeg5402https://repositorio.unal.edu.co/bitstream/unal/83957/4/1152186564.2023.pdf.jpge4ef956833307553f8dcafe70c31e064MD541152186564.2023.SupplementaryMaterial.pdf.jpg1152186564.2023.SupplementaryMaterial.pdf.jpgGenerated Thumbnailimage/jpeg4911https://repositorio.unal.edu.co/bitstream/unal/83957/5/1152186564.2023.SupplementaryMaterial.pdf.jpg3d8483e4022eaaa869a1fd5e96bf4b9bMD55unal/83957oai:repositorio.unal.edu.co:unal/839572024-08-09 23:19:58.584Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=