BASES FOR QUANTUM ALGEBRAS AND SKEW POINCARÉ-BIRKHOFF-WITT EXTENSIONS
Considering quantum algebras and skew Poincaré-Birkhoff-Witt (PBW for short) extensions defined by a ring and a set of variables with relations between them, we are interesting in finding a criteria and some algorithms which allow us to decide whether an algebraic structure, defined by variables and...
- Autores:
-
Reyes, Armando
Suárez, Héctor
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/67336
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/67336
http://bdigital.unal.edu.co/68365/
- Palabra clave:
- 53 Física / Physics
5 Ciencias naturales y matemáticas / Science
Quantum algebras
skew Poincaré-Birkhoff-Witt
Álgebras cuánticas
extensiones torcidas de Poincaré-Birkhoff-Witt
lema del diamante.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Considering quantum algebras and skew Poincaré-Birkhoff-Witt (PBW for short) extensions defined by a ring and a set of variables with relations between them, we are interesting in finding a criteria and some algorithms which allow us to decide whether an algebraic structure, defined by variables and relations between them, can be expressed as a skew PBW extension, so that the base of the structure is determined. Finally, we illustrate our treatment with examples concerning quantum physics. |
---|