Representación integral de soluciones de problemas no locales
En este trabajo estudiamos un problema semilineal que involucra un operador de tipo no local a través de la transformada de Fourier. Investigamos existencia y unicidad local de soluciones vía el principio de Duhamel y las propiedades del kernel asociado al operador involucrado. (Tomado de la fuente)...
- Autores:
-
Agudelo Parra, Nelson Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83328
- Palabra clave:
- 510 - Matemáticas
510 - Matemáticas::515 - Análisis
Funciones de Kernel
Transformaciones de Fourier
Transformada de Fourier
Principio de Duhamel
Solución débil
Fourier transform
Duhamel’s principle
weak solution
Weak solution
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_3c7ca62bf3b77418f9baa7543683a24a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83328 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Representación integral de soluciones de problemas no locales |
dc.title.translated.eng.fl_str_mv |
Integral representation of non local problems solutions |
title |
Representación integral de soluciones de problemas no locales |
spellingShingle |
Representación integral de soluciones de problemas no locales 510 - Matemáticas 510 - Matemáticas::515 - Análisis Funciones de Kernel Transformaciones de Fourier Transformada de Fourier Principio de Duhamel Solución débil Fourier transform Duhamel’s principle weak solution Weak solution |
title_short |
Representación integral de soluciones de problemas no locales |
title_full |
Representación integral de soluciones de problemas no locales |
title_fullStr |
Representación integral de soluciones de problemas no locales |
title_full_unstemmed |
Representación integral de soluciones de problemas no locales |
title_sort |
Representación integral de soluciones de problemas no locales |
dc.creator.fl_str_mv |
Agudelo Parra, Nelson Andrés |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Urrea, Jose Manuel Chica Castaño, Cristian Camilo |
dc.contributor.author.none.fl_str_mv |
Agudelo Parra, Nelson Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de investigación en matemáticas Universidad Nacional de Colombia Sede Medellín |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas 510 - Matemáticas::515 - Análisis |
topic |
510 - Matemáticas 510 - Matemáticas::515 - Análisis Funciones de Kernel Transformaciones de Fourier Transformada de Fourier Principio de Duhamel Solución débil Fourier transform Duhamel’s principle weak solution Weak solution |
dc.subject.lemb.none.fl_str_mv |
Funciones de Kernel Transformaciones de Fourier |
dc.subject.proposal.spa.fl_str_mv |
Transformada de Fourier Principio de Duhamel Solución débil |
dc.subject.proposal.eng.fl_str_mv |
Fourier transform Duhamel’s principle weak solution Weak solution |
description |
En este trabajo estudiamos un problema semilineal que involucra un operador de tipo no local a través de la transformada de Fourier. Investigamos existencia y unicidad local de soluciones vía el principio de Duhamel y las propiedades del kernel asociado al operador involucrado. (Tomado de la fuente) |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09 |
dc.date.accessioned.none.fl_str_mv |
2023-02-06T19:34:52Z |
dc.date.available.none.fl_str_mv |
2023-02-06T19:34:52Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83328 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83328 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
B. P. Palka. An introduction to Complex Function Theory . Undergraduate Texts in Mathe- matics. Springer, 2012. C. Bucur and E. Valdinoci. Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana. Springer, 2015. C. Chica. Some aspects of the obstacle problem. Tesis de maestría. Medellín, 2020. C. IMBERT. A non-local regularization of first order Hamilton-Jacobi equations. Journal of Differential Equations, Elsevier, 2005, 211 (1), pp.218-246. 10.1016/j.jde.2004.06.001. hal- 00176542 C. Zuily. Éléments de distributions et d’équations aux dérivées partielles. Cours et problèmes résolus. Donud, París, 2002. ISBN 2 10 005735 9. D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag. Berlin. Second edition, 1983. D. Restrepo. On the fractional Laplacian and non local operators. Tesis de maestría. Mede- llín, 2018. E. JAKOEBSEN and K. KARLSEN. A maximum principle for semicontinuous function applicable to integro-partial differential equations. Prepint F. Jones. Lebesgue integration on Euclidean space. Jones & Bartlett Learning, 2001. G B. Folland. Higher-Order Derivatives and Taylor’s Formula in Several Variables. https: //sites.math.washington.edu/~folland/Math425/taylor2.pdf G. Ponce and F. Linares. Introduction to Nonlinear Dispersive Equations. Universitext. Springer. New York, 2009. H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010. J. DRONIOU and C. IMBERT. Fractal First-Order Partial Differential Equations. Arch. Rational Mech. Anal. 182 (2006) 299-331. DOI: 10.1007/s00205-006-0429-2. J. DRONIOU, G. THIERRY and J. VOVELLE. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. Article in Journal of Evolution Equations. August 2003. DOI: 10.1007/S00028-003-0503-1. J. HEINONEN. Lectures on Lipschitz Analysis. Lectures at the 14th Jyväskylä Summer School in August 2004. http://www.math.jyu.fi/research/reports/rep100.pdf J. Jiménez. Unique Continuation Properties for Some Nonlinear Dispersive Models. Tesis de Doctorado. Río de Janeiro, 2011. J. Munkres. Analysis on manifolds. Westview Press, 1997. L. C. Evans. Partial differential equations. Graduate studies in mathematics. Ameri- can Mathematical Society, 1998. L. Grafakos. Classical Fourier analysis, volume 2. Springer, 2008. L. Fiske and C. Overturf. Tempered Distributions. University of New Me- xico, 2001. https://www.math.unm.edu/~crisp/courses/math402/spring16/ Distributions402CairnLionel.pdf L. Mattner. Complex differentiation under the integral. Department of Statistics. Univer- sity of Leeds. Leeds, LS2 9JT, England, 2001. http://www.nieuwarchief.nl/serie5/pdf/ naw5-2001-02-1-032.pdf R. Remmert. Theory of Complex Functions. Graduate Texts in Mathematics. Springer Scien- ce & Business Media, 1991. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
86 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83328/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83328/2/1036647202.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83328/3/1036647202.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 20551c4cccab58888cd4d77028b16fd7 732d2f6f570f9ab2c804233def68e1be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089659232288768 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Urrea, Jose Manuelcbb024fa776e7082f46cca2808073c47Chica Castaño, Cristian Camilo67371dfb794466a45638c178cb92c21e600Agudelo Parra, Nelson Andrésb46947cd82070fea3077c0404ddc58ecGrupo de investigación en matemáticas Universidad Nacional de Colombia Sede Medellín2023-02-06T19:34:52Z2023-02-06T19:34:52Z2022-09https://repositorio.unal.edu.co/handle/unal/83328Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En este trabajo estudiamos un problema semilineal que involucra un operador de tipo no local a través de la transformada de Fourier. Investigamos existencia y unicidad local de soluciones vía el principio de Duhamel y las propiedades del kernel asociado al operador involucrado. (Tomado de la fuente)n this work we study a semilinear problem involving a type of non-local operator through the Fourier transform. We investigate the existence and local uniqueness of solutions, using Duhamel’s principle and the properties of the kernel associated with the aforementioned operator.MaestríaMagíster en Ciencias - MatemáticasEcuaciones de evolución no linealesÁrea Curricular en Matemáticas86 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas510 - Matemáticas::515 - AnálisisFunciones de KernelTransformaciones de FourierTransformada de FourierPrincipio de DuhamelSolución débilFourier transformDuhamel’s principleweak solutionWeak solutionRepresentación integral de soluciones de problemas no localesIntegral representation of non local problems solutionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaB. P. Palka. An introduction to Complex Function Theory . Undergraduate Texts in Mathe- matics. Springer, 2012.C. Bucur and E. Valdinoci. Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana. Springer, 2015.C. Chica. Some aspects of the obstacle problem. Tesis de maestría. Medellín, 2020.C. IMBERT. A non-local regularization of first order Hamilton-Jacobi equations. Journal of Differential Equations, Elsevier, 2005, 211 (1), pp.218-246. 10.1016/j.jde.2004.06.001. hal- 00176542C. Zuily. Éléments de distributions et d’équations aux dérivées partielles. Cours et problèmes résolus. Donud, París, 2002. ISBN 2 10 005735 9.D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag. Berlin. Second edition, 1983.D. Restrepo. On the fractional Laplacian and non local operators. Tesis de maestría. Mede- llín, 2018.E. JAKOEBSEN and K. KARLSEN. A maximum principle for semicontinuous function applicable to integro-partial differential equations. PrepintF. Jones. Lebesgue integration on Euclidean space. Jones & Bartlett Learning, 2001.G B. Folland. Higher-Order Derivatives and Taylor’s Formula in Several Variables. https: //sites.math.washington.edu/~folland/Math425/taylor2.pdfG. Ponce and F. Linares. Introduction to Nonlinear Dispersive Equations. Universitext. Springer. New York, 2009.H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010.J. DRONIOU and C. IMBERT. Fractal First-Order Partial Differential Equations. Arch. Rational Mech. Anal. 182 (2006) 299-331. DOI: 10.1007/s00205-006-0429-2.J. DRONIOU, G. THIERRY and J. VOVELLE. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. Article in Journal of Evolution Equations. August 2003. DOI: 10.1007/S00028-003-0503-1.J. HEINONEN. Lectures on Lipschitz Analysis. Lectures at the 14th Jyväskylä Summer School in August 2004. http://www.math.jyu.fi/research/reports/rep100.pdfJ. Jiménez. Unique Continuation Properties for Some Nonlinear Dispersive Models. Tesis de Doctorado. Río de Janeiro, 2011.J. Munkres. Analysis on manifolds. Westview Press, 1997.L. C. Evans. Partial differential equations. Graduate studies in mathematics. Ameri- can Mathematical Society, 1998.L. Grafakos. Classical Fourier analysis, volume 2. Springer, 2008.L. Fiske and C. Overturf. Tempered Distributions. University of New Me- xico, 2001. https://www.math.unm.edu/~crisp/courses/math402/spring16/ Distributions402CairnLionel.pdfL. Mattner. Complex differentiation under the integral. Department of Statistics. Univer- sity of Leeds. Leeds, LS2 9JT, England, 2001. http://www.nieuwarchief.nl/serie5/pdf/ naw5-2001-02-1-032.pdfR. Remmert. Theory of Complex Functions. Graduate Texts in Mathematics. Springer Scien- ce & Business Media, 1991.Problemas en ecuaciones diferenciales del tipo elíptico o dispersivo. Apoyo Ciencias 2021Facultad de Ciencias sede MedellínInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83328/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1036647202.2022.pdf1036647202.2022.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf908074https://repositorio.unal.edu.co/bitstream/unal/83328/2/1036647202.2022.pdf20551c4cccab58888cd4d77028b16fd7MD52THUMBNAIL1036647202.2022.pdf.jpg1036647202.2022.pdf.jpgGenerated Thumbnailimage/jpeg4847https://repositorio.unal.edu.co/bitstream/unal/83328/3/1036647202.2022.pdf.jpg732d2f6f570f9ab2c804233def68e1beMD53unal/83328oai:repositorio.unal.edu.co:unal/833282024-08-17 23:13:05.516Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |