Sλ - entropies

Those entropies H which are characterized by the property that H(P*Q) = H(P) S H(Q) for an Archimedean semigroup operation S will be expressed by additive entropies. The family with respect to the operations S λ (x,y) = x+y+ A xy will be considered. Almost all entropies known from the literature bec...

Full description

Autores:
Weber, Siegfried
Tipo de recurso:
Article of journal
Fecha de publicación:
1987
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43165
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43165
http://bdigital.unal.edu.co/33263/
Palabra clave:
51 Matemáticas / Mathematics
Entropías
operación de Arquímedes
Entropies
property
Archimedean semigroup
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_3c78d0d11ab2903b2e04cc60f5aae818
oai_identifier_str oai:repositorio.unal.edu.co:unal/43165
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Weber, Siegfried9a15c211-8ccd-4d1e-bd5a-1e33da0e35f83002019-06-28T11:38:16Z2019-06-28T11:38:16Z1987ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/43165http://bdigital.unal.edu.co/33263/Those entropies H which are characterized by the property that H(P*Q) = H(P) S H(Q) for an Archimedean semigroup operation S will be expressed by additive entropies. The family with respect to the operations S λ (x,y) = x+y+ A xy will be considered. Almost all entropies known from the literature become special cases. A coding theorem is derived and conditional entropies are constructed.Aquellas entropías H que se caracteriza por la propiedad que H(P*Q) = H(P) S H(Q) para una operación S de semigrupo arquimediano se expresarán como entropías aditivas. Se considerará especialmente la familia con respecto a las operaciones S λ (x,y) = x+y+A λ xy. Casi todas las entropías conocidas de la literatura resultan casos particulares. Se deriva un teorema de código y se construye entropías condicionales.application/pdfspaUniversidad Nacional de Colombiahttp://revistas.unal.edu.co/index.php/recolma/article/view/33062Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasWeber, Siegfried (1987) Sλ - entropies. Revista Colombiana de Matemáticas, 21 (2-4). pp. 285-300. ISSN 2357-410051 Matemáticas / MathematicsEntropíasoperación de ArquímedesEntropiespropertyArchimedean semigroupSλ - entropiesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL33062-122565-1-PB.pdfapplication/pdf4077017https://repositorio.unal.edu.co/bitstream/unal/43165/1/33062-122565-1-PB.pdf1683fe83e7732d178b63bfec1c3c0bcaMD51THUMBNAIL33062-122565-1-PB.pdf.jpg33062-122565-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5472https://repositorio.unal.edu.co/bitstream/unal/43165/2/33062-122565-1-PB.pdf.jpg6e8563cba7144074bbf2141290151221MD52unal/43165oai:repositorio.unal.edu.co:unal/431652023-02-11 23:04:19.138Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Sλ - entropies
title Sλ - entropies
spellingShingle Sλ - entropies
51 Matemáticas / Mathematics
Entropías
operación de Arquímedes
Entropies
property
Archimedean semigroup
title_short Sλ - entropies
title_full Sλ - entropies
title_fullStr Sλ - entropies
title_full_unstemmed Sλ - entropies
title_sort Sλ - entropies
dc.creator.fl_str_mv Weber, Siegfried
dc.contributor.author.spa.fl_str_mv Weber, Siegfried
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Entropías
operación de Arquímedes
Entropies
property
Archimedean semigroup
dc.subject.proposal.spa.fl_str_mv Entropías
operación de Arquímedes
Entropies
property
Archimedean semigroup
description Those entropies H which are characterized by the property that H(P*Q) = H(P) S H(Q) for an Archimedean semigroup operation S will be expressed by additive entropies. The family with respect to the operations S λ (x,y) = x+y+ A xy will be considered. Almost all entropies known from the literature become special cases. A coding theorem is derived and conditional entropies are constructed.
publishDate 1987
dc.date.issued.spa.fl_str_mv 1987
dc.date.accessioned.spa.fl_str_mv 2019-06-28T11:38:16Z
dc.date.available.spa.fl_str_mv 2019-06-28T11:38:16Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-4100
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/43165
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/33263/
identifier_str_mv ISSN: 2357-4100
url https://repositorio.unal.edu.co/handle/unal/43165
http://bdigital.unal.edu.co/33263/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/33062
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.references.spa.fl_str_mv Weber, Siegfried (1987) Sλ - entropies. Revista Colombiana de Matemáticas, 21 (2-4). pp. 285-300. ISSN 2357-4100
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/43165/1/33062-122565-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/43165/2/33062-122565-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 1683fe83e7732d178b63bfec1c3c0bca
6e8563cba7144074bbf2141290151221
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090018036121600