Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo

ilustraciones, graficas

Autores:
Rubio Fernández, Diego
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81149
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81149
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Suelos agrícolas
productividad agrícola
agricultural soils
agricultural productivity
Agricultural Soil
Agricultural Productivity
Soil Microbiota
Carbon and Nitrogen Metabolism
Microbiota Functional DIversity
Agent Based Modeling
Carbon metabolism
Nitrogen metabolism
Microbiome
Functional diversity
Suelos Agricolas
Microbiota edáfica
Metabolismo del carbono y del nitrógeno
Modelamiento Basado en Agentes
Netlogo
Productividad agrícola del suelo
Diversidad Funcional
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_3c2ffbf9b37054734b8d29eb02a32eff
oai_identifier_str oai:repositorio.unal.edu.co:unal/81149
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
dc.title.translated.eng.fl_str_mv Modeling agricultural productivity: correlation with rhizospheric microbial diversity, metabolic processes and physicochemical soil properties
title Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
spellingShingle Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
630 - Agricultura y tecnologías relacionadas
Suelos agrícolas
productividad agrícola
agricultural soils
agricultural productivity
Agricultural Soil
Agricultural Productivity
Soil Microbiota
Carbon and Nitrogen Metabolism
Microbiota Functional DIversity
Agent Based Modeling
Carbon metabolism
Nitrogen metabolism
Microbiome
Functional diversity
Suelos Agricolas
Microbiota edáfica
Metabolismo del carbono y del nitrógeno
Modelamiento Basado en Agentes
Netlogo
Productividad agrícola del suelo
Diversidad Funcional
title_short Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
title_full Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
title_fullStr Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
title_full_unstemmed Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
title_sort Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del suelo
dc.creator.fl_str_mv Rubio Fernández, Diego
dc.contributor.advisor.none.fl_str_mv Barreto Hernández, Emiliano
dc.contributor.author.none.fl_str_mv Rubio Fernández, Diego
dc.contributor.researchgroup.spa.fl_str_mv Bioinformática
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Suelos agrícolas
productividad agrícola
agricultural soils
agricultural productivity
Agricultural Soil
Agricultural Productivity
Soil Microbiota
Carbon and Nitrogen Metabolism
Microbiota Functional DIversity
Agent Based Modeling
Carbon metabolism
Nitrogen metabolism
Microbiome
Functional diversity
Suelos Agricolas
Microbiota edáfica
Metabolismo del carbono y del nitrógeno
Modelamiento Basado en Agentes
Netlogo
Productividad agrícola del suelo
Diversidad Funcional
dc.subject.agrovocuri.spa.fl_str_mv Suelos agrícolas
productividad agrícola
dc.subject.agrovocuri.eng.fl_str_mv agricultural soils
agricultural productivity
dc.subject.proposal.eng.fl_str_mv Agricultural Soil
Agricultural Productivity
Soil Microbiota
Carbon and Nitrogen Metabolism
Microbiota Functional DIversity
Agent Based Modeling
Carbon metabolism
Nitrogen metabolism
Microbiome
Functional diversity
dc.subject.proposal.spa.fl_str_mv Suelos Agricolas
Microbiota edáfica
Metabolismo del carbono y del nitrógeno
Modelamiento Basado en Agentes
Netlogo
Productividad agrícola del suelo
dc.subject.proposal.fra.fl_str_mv Diversidad Funcional
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-08T15:07:33Z
dc.date.available.none.fl_str_mv 2022-03-08T15:07:33Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81149
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81149
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ackoff, R. L. (1971). Towards a System of Systems Concepts. Management Science. https://doi.org/10.1287/mnsc.17.11.661
Ademir, S. F. de A., Luiz, F. C. L., Ana, R. L. M., Luis, A. P. L. N., Ricardo, S. de S., Fabio, F. de A., & Wanderley, J. de M. (2016). Different soil tillage systems influence accumulation of soil organic matter in organic agriculture. African Journal of Agricultural Research, 11(51), 5109–5115. https://doi.org/10.5897/ajar2016.11598
Ahmed, M., Rauf, M., Akhtar, M., Mukhtar, Z., & Saeed, N. A. (2020). Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research, 27(15), 17661–17670. https://doi.org/10.1007/s11356-020-08236-y
Alary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J. H., … Scopel, E. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agricultural Systems, 144, 33–45. https://doi.org/10.1016/j.agsy.2016.01.008
Asseng, S., Zhu, Y., Wilson, T., & Cammarano, D. (2014). Simulation Modeling Applications in Cropping Systems. Encyclopedia of Agriculture and Food Systems (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978-0-444-52512-3.00233-3
Baldock, J. (2007). Composition and cycling of organic carbon in soil. In Nutrient cycling in terrestrial ecosystems (p. 409). Springer.
Banitz, T., Gras, A., & Ginovart, M. (2015). Individual-based modeling of soil organic matter in NetLogo: Transparent, user-friendly, and open. Environmental Modelling and Software, 71, 39–45. https://doi.org/10.1016/j.envsoft.2015.05.007
Banos, A., Lang, C., & Marilleau, N. (2015). Agent-Based Spatial Simulation with NetLogo. Agent-Based Spatial Simulation with NetLogo (Vol. 1). https://doi.org/10.1016/c2015-0-01299-0
Berlemont, R., & Martiny, A. C. (2015). Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology, 81(4), 1513–1519. https://doi.org/10.1128/AEM.03718-14
Berlin, T. U. (2008). Models of crop growth. Crop growth simulation model WOFOST, (November), 19–20.
Billings, S. a., Tiemann, L. K., Ballantyne IV, F., Lehmeier, C., & Min, K. (2014). Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation. SOIL Discussions, 1(1), 1097–1145. https://doi.org/10.5194/soild-1-1097-2014
Bonde, T. A., Nielsen, T., Miller, M., & Sørensen, J. (2001). Arginine ammonification assay as a rapid index of gross N mineralization in agricultural soils. Biology and Fertility of Soils, 34(3), 179–184. https://doi.org/10.1007/s003740100395
Boogaard, H. L., Van Diepen, C. A., Rötter, R. P., Cabrera, J. M. C. ., & Van Laar, H. H. (2014). WOFOST Control Centre 2.1 and WOFOST 7.1.7, 1–133. Retrieved from http://www.wageningenur.nl/wofost
Borneman, J., & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology, 63(7), 2647–2653.
Briat, J. F., Gojon, A., Plassard, C., Rouached, H., & Lemaire, G. (2020). Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. European Journal of Agronomy, 116(April), 126069. https://doi.org/10.1016/j.eja.2020.126069
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
Brussaard, L., & Ferrera-Cerrato, R. (1997). Soil ecology in sustainable agricultural systems. (C. Press, Ed.). CRC PRESS.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
Cardoso, E. J. B. N., & Andreote, F. D. (2016). Microbiologia do solo (segunda ed). https://doi.org/10.11606/9788586481567
Chertov, O. G., & Komarov, A. S. (2013). Theoretical approaches to modelling the dynamics of soil organic matter. Eurasian Soil Science, 46(8), 845–853. https://doi.org/10.1134/S1064229313080012
Choi, J., Bach, E., Lee, J., Flater, J., Dooley, S., Howe, A., & Hofmockel, K. S. (2018). Spatial structuring of cellulase gene abundance and activity in soil. Frontiers in Environmental Science, 6(OCT). https://doi.org/10.3389/fenvs.2018.00107
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004
Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389–395. https://doi.org/10.1016/S1360-1385(98)01311-9
Cui, J., Mai, G., Wang, Z., Liu, Q., Zhou, Y., Ma, Y., & Liu, C. (2019). Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Frontiers in Microbiology, 10(MAR), 1–12. https://doi.org/10.3389/fmicb.2019.00618
da C Jesus, E., Marsh, T. L., Tiedje, J. M., & de S Moreira, F. M. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(9), 1004–1011. https://doi.org/10.1038/ismej.2009.98
da Silva, E. F., Lourente, E. P. R., Marchetti, M. E., Mercante, F. M., Ferreira, A. K. T., & Fujii, G. C. (2011). Fracoes labeis e recalcitrantes da materia orgnica em solos sob integracao lavoura-pecuaria. Pesquisa Agropecuaria Brasileira, 46(10), 1321–1331. https://doi.org/10.1590/S0100-204X2011001000028
de Vries, P, Jansen, D. M., Berge, T., & Bakema, A. (1989). Stimulation of Plant Growth and Crop Production. The Journal of Applied Ecology (Vol. 20). Wageningen: Centre for Agricultural Publishing and Documentation. https://doi.org/10.2307/2403549
de Vries, Penning, Teng, P., & Metselaar, K. (1991). Systems Approaches for Sustainable Agricultural Development (First). Dordrecht: Kluwer Academic Publishers
de Vries, W., Kros, J., Dolman, M. A., Vellinga, T. V., de Boer, H. C., Gerritsen, A. L., … Bouma, J. (2015). Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment. Science of the Total Environment, 536, 432–442. https://doi.org/10.1016/j.scitotenv.2015.07.079
Ding, L. J., Cui, H. L., Nie, S. A., Long, X. E., Duan, G. L., & Zhu, Y. G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 95(5). https://doi.org/10.1093/femsec/fiz040
Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567–580. https://doi.org/10.1007/s13593-011-0037-x
Dutta, B., Smith, W. N., Grant, B. B., Pattey, E., Desjardins, R. L., & Li, C. (2016). Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems. Environmental Modelling and Software, 80, 9–25. https://doi.org/10.1016/j.envsoft.2016.02.014
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., … Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112
Fageria, N., Baligar, V., & Jones, A. (2011). Growth and Mineral Nutrition of Field Crops. Books in Soils Plants and The Environmant (Third Edit). CRC PRESS TAYLOR AND FRANCIS GROUP.
Faria Vieira, R. (2017). Ciclo do Nitrogênio em Sistemas Agricolas. Embrapa Meio Ambiente (Primeira). EMBRAPA. Retrieved from https://escolakids.uol.com.br/ciclo-nitrogenio.htm
Fernández, F. J., Blanco, M., Ceglar, A., ’barek, R. M., Ciaian, P., Srivastava, A. K., … Doorslaer, B. Van. (2013). Still a challenge - interaction of biophysical and economic models for crop production and market analysis, 1(3), 4–5. Retrieved from http://www.fp7-ulysses.eu/
Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87
Fierer, N., Bradford, M. a, & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17601128
Fierer, N., Grandy, a. S., Six, J., & Paul, E. a. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41(11), 2249–2256. https://doi.org/10.1016/j.soilbio.2009.06.009
Forrester, J. W. (1968). Principles of Systems (Second Pre). Wright-Allen Press, Inc. Cambridge MAssachusetts. https://doi.org/10.1007/978-1-4939-1920-8
Frei, M. (2013). Lignin: Characterization of a multifaceted crop component. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/436517
Galantini, J. a, & Suñer, J. a L. (2008). Las fracciones orgánicas del suelo : análisis en los suelos de la Argentina. Agriscientia, XXV, 41–55.
Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology, 42(1), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
Geisseler, D., Horwath, W. R., Joergensen, R. G., & Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology and Biochemistry, 42(12), 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021
Ginovart Gisbert, M., Blanco, M., Portell, X., & Ferrer-Closas, P. (2018). Individual-based modeling: an attractive methodology to study bio systems. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 30(2), 93. https://doi.org/10.5565/rev/ec/v30n2.572
Ginovart Gisbert, M., Portell Canal, X., Ferrer-Closas, P., & Blanco Abellan, M. (2011). Modelos basados en el individuo y la plataforma NetLogo. Unión. Revista Iberoamericana de Educación Matemática, 27, 131–150. Retrieved from http://hdl.handle.net/2117/13553
Ginovart, M., López, D., Valls, J., & Silbert, M. (2002). Individual based simulations of bacterial growth on agar plates. Physica A: Statistical Mechanics and Its Applications, 305(3–4), 604–618. https://doi.org/10.1016/S0378-4371(01)00581-7
Ginovart, Marta, López, D., & Gras, A. (2005). Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Analysis: Real World Applications, 6(4), 773–795. https://doi.org/10.1016/j.nonrwa.2004.12.005
Ginovart, Marta, López, D., & Valls, J. (2002). INDISIM, an individual-based discrete simulation model to study bacterial cultures. Journal of Theoretical Biology, 214(2), 305–319. https://doi.org/10.1006/jtbi.2001.2466
Gojon, A., Krouk, G., Perrine-Walker, F., & Laugier, E. (2011). Nitrate transceptor(s) in plants. Journal of Experimental Botany, 62(7), 2299–2308. https://doi.org/10.1093/jxb/erq419
Gojon, A., Nacry, P., & Davidian, J. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology, 12(3), 328–338. https://doi.org/10.1016/j.pbi.2009.04.015
Gregory, P. J., & Nortcliff, S. (2013). Soil Conditions and plant Growth. Journal of Chemical Information and Modeling (Twelve). Oxford: Blackwell Publishing.
Guimarães, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L., da Silva Dias, N., & Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177–182. https://doi.org/10.1016/j.still.2012.07.010
Habig, J., & Swanepoel, C. (2015). Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity. Environments, 2(3), 358–384. https://doi.org/10.3390/environments2030358
Hariharan, J. (2015). Predictive Functional Profiling of Soil Microbes under Different Tillages and Crop Rotations in Ohio. The Ohio State University. https://doi.org/10.1590/s1809-98232013000400007
Hartman, K., van der Heijden, M. G. A., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1–14. https://doi.org/10.1186/s40168-017-0389-9
Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1–2), 7–14. https://doi.org/10.1007/s11104-007-9514-z
Haynes, R. . (2005). LABILE ORGANIC MATTER FRACTIONS AS CENTRAL COMPONENTS OF THE QUALITY OF AGRICULTURAL SOILS: AN OVERVIEW. In Advances in agronomy (Vol. 85, pp. 222–258).
Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling and Software, 72, 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013
Howe, A., Yang, F., Williams, R. J., Meyer, F., & Hofmockel, K. S. (2016). Identification of the core set of carbon-associated genes in a bioenergy grassland soil. PLoS ONE, 11(11), 1–14. https://doi.org/10.1371/journal.pone.0166578
Hoyle, F. (2013). Managing Soil Organic Matter: A Practical Guide. Department of Agriculture and Food.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234
Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584-006-9178-3
Jiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 4(2), 1–16. https://doi.org/10.1128/msystems.00313-18
Jones, J. W., Antle, J. M., Basso, B. O., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. AGSY. https://doi.org/10.1016/j.agsy.2016.05.014
Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms13630
Kriaučiuniene, Z., Velička, R., & Raudonius, S. (2012). The influence of crop residues type on their decomposition rate in the soil: a litterbag study. Zemdirbyste (Agriculture), 99(3), 227–236. Retrieved from http://proxying.lib.ncsu.edu/index.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=lah&AN=20123408862&site=ehost-live&scope=site%5Cnhttp://www.cabi.org/cabdirect/showpdf.aspx?PAN=http://www.cabi.org/cabdirect/showpdf.aspx?PAN=20123408862%5Cn
Krishna, K. . (2014). Agroecosystems Soils, Climate, Crops, Nutrient Dynamics, and Productivity (First). Boca Raton: CRC PRESS TAYLOR AND FRANCIS GROUP.
Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y. F. (2010). Nitrate signaling: Adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265–272. https://doi.org/10.1016/j.pbi.2009.12.003
Lei, S., Xu, X., Cheng, Z., Xiong, J., Ma, R., Zhang, L., … Tian, B. (2019). Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 8(6), 1–10. https://doi.org/10.1002/mbo3.762
Li, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., … Zhao, B. (2018). Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 175(July 2017), 281–290. https://doi.org/10.1016/j.still.2017.08.008
Lin, Y. (2006). General Systems Theory: A Mathematical Approach.
Magdoff, F., & Weil, R. (2004). Soil Organic Matter in Sustainable Agriculture. CRC PRESS.
Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., … Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development (EDP Sciences), 29(1), 43–62. https://doi.org/10.1051/agro
Maron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., … Ranjard, L. (2018). High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84(9), 1–13. https://doi.org/10.1128/AEM.02738-17
Marschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004
Marschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004
Mendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A., & Kuramae, E. E. (2015). Soil-Borne Microbiome: Linking Diversity to Function. Microbial Ecology, 70(1), 255–265. https://doi.org/10.1007/s00248-014-0559-2
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
Mikha, M. M., & Rice, C. W. (2004). Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen. Soil Science Society of America Journal, 68(3), 809. https://doi.org/10.2136/sssaj2004.0809
Miller, A. J., & Cramer, M. D. (2005). Root nitrogen acquisition and assimilation. Plant and Soil (Vol. 274). https://doi.org/10.1007/s11104-004-0965-1
Millner, P. ., & Kaufman, D. D. (1996). Soil Organic Matter Dynamics and Microbiological Interactions.
Mirschel, W., & Wenkel, K. (n.d.). Modelling soil – crop interactions with AGROSIM model family. Landscape Research.
Mirschel, W., & Wenkel, K. (2007). Modelling soil – crop interactions with AGROSIM model family. In Modelling water and nutrient dynamics in soil–crop systems (pp. 59–73). Springer Netherlands.
Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(2–3), 301–322. https://doi.org/10.1016/j.ecolmodel.2004.07.032
Mobus, G. E., & Kalton, M. C. (2015). Principles of Systems Science (first edit). Springer Verlag. https://doi.org/10.1007/978-1-4939-1920-8
Moore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014a). Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems. Biogeochemistry, 117(1), 205–227. https://doi.org/10.1007/s10533-013-9932-3
Moore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014b). ODD DESCRIPTION FOR Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems, 1–11.
Nacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1–2), 1–29. https://doi.org/10.1007/s11104-013-1645-9
Nahielli Solorio Elizalde, Fernando Paz Pellat, M. O. L. y M. A. B. G. (2009). Expolinear Growth Model and Productivity Equivalence of a Greenhouse Grown Tomato. Terra Latinoamericana, 27(2), 143–151.
Nannipieri, P., & Eldor, P. (2009). The chemical and functional characterization of soil N and its biotic components. Soil Biology and Biochemistry. Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2009.07.013
Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 62(1), 105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.x
Nuthall, P. L. (2011). Analysis of Farming Systems. Group. Retrieved from https://www.cabi.org
Orsel, M., & Miller, A. J. (2011). NITROGEN METABOLISM IN THE POST-GENOMIC ERA. In C. Foyer & H. Zhang (Eds.) (FIRST, p. 386). wiley-blackwell.
Paul, E. A. (2015). Soil Microbiology, Ecology, and Biochemistry - Edited by E.A. Paul. European Journal of Soil Science (Fourth). Amsterdam: Elsevier. https://doi.org/10.1111/j.1365-2389.2008.01052_2.x
Paul, E. A. (2016a). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001
Pérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3
Pessarakli, M. (2002). Handbook of plant and crop physiology. (Mohamed Pessarakli, Ed.) (Second Edi). New York Basel: Marcel Dekker. Retrieved from http://books.google.com/books?hl=en&lr=&id=Ab5pDQQD6YUC&pgis=1
Peter J. Gregory, & Nortcliff, S. (2013). Soil conditions and plant growth. (Wiley-Blackwell, Ed.). https://doi.org/10.1002/9781118337295
Piotrowska, A. (2020). Significance of the Enzymes Associated with Soil C and N Trasnformations. In Carbon and Nitrogen Cycling in Soil (pp. 399–437). Springer. https://doi.org/10.1007/978-981-13-7264-3_1
Prats Soler, C. (2008). Individual-based Modelling of bacterial cultures in the study of the lag phase.
Quesada, F. (2018). INTRODUCCIÓN AL LENGUAJE NETLOGO Y LA PROGRAMACIÓN BASADA EN AGENTES. Retrieved from http://franciscoquesada.com/wp-content/uploads/2018/04/netlogo7.pdf
Railsback, S. F., & Grimm, V. (2012). Agent based and individual based modeling A practical introduction. Princeton University Press
Rees, R. ., Ball, B. C., & Watson, C. . (2001). Sustainable management of soil organic matter. CABI Publishing. https://doi.org/10.1079/9780851994659.0009
Reiter, L. (2015). Effect of crop residue incorporation on soil organic carbon dynamics – Changes in carbon stocks and carbon fractions in an Italian long-term field experiment. Swedish University of Agricultural Sciences. Retrieved from https://stud.epsilon.slu.se/8025/11/reiter_l_150617.pdf
Roose, T. (2000). Mathematical model of plant nutrient uptake. A Thesis submitted for the degree of Doctor of Philosophy.
Saleem, M., Hu, J., & Jousset, A. (2019). More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annual Review of Ecology, Evolution, and Systematics, 50(1). https://doi.org/10.1146/annurev-ecolsys-110617-062605
Santi, S., Locci, G., Monte, R., Pinton, R., & Varanini, Z. (2003). Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, 54(389), 1851–1864. https://doi.org/10.1093/jxb/erg208
Schimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00348
Silva, E., Ferreira, M., Santos, K., Silva, T., Ferreira, D., Costa, M., … Royme, P. (2020). Organic Nitrogen in Agricultural Systems. In NITROGEN FIXATION. INTECH OPEN. https://doi.org/http://dx.doi.org/10.5772/57353
Smith, W. N., Grant, B. B., Desjardins, R. L., Worth, D., Li, C., Boles, S. H., & Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems and Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008
Steduto, P, Hsiao, T. C., Raes, D., Fereres, E., Izzi, G., Heng, L., & Hoogeveen, J. (2011). Performance review of AquaCrop - The FAO crop-water productivity model. ICID 21st International Congress on Irrigation and Drainage, 231–248.
Steduto, Pasquale, Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139s
Sylvia, D.M., Fuhrmann, J.J., Hartel, P.G. and Zuberer, D. A. (1998). Principles and applications of soil microbiology (First). New Jersey: Prentice Hall.
U.K. Behera and A.R. Sharma. (2007). Modern concepts of agriculture.
van Elsas, J. D., Trevors, J. T., Soares, A., & Nannipieri, P. (2019). Modern Soil Microbiology (Third edit). CRC PRESS TAYLOR AND FRANCIS GROUP. https://doi.org/10.1017/CBO9781107415324.004
Vaughan, D., & Malcolm, R. . (1985). Soil organic matter and Biological Activity. Martinus Nijhoff/DR W. Junk Publishers. https://doi.org/10.1007/978-94-009-6833-2
Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science (New York, N.Y.), 111(2872), 23–29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15398815
von Bertalanffy, Ludwig. (1950). An Outline of General System Theory. British Journal of the Philosophy of Science, 1, 134–165. https://doi.org/10.1093/bjps/I.2.134
Vos, M., Wolf, A. B., Jennings, S. J., & Kowalchuk, G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 37(6), 936–954. https://doi.org/10.1111/1574-6976.12023
Wallach, D, Makowski, D., Jones, J., & Brun, F. (2014). Working with Dynamic Crop Models. Working with Dynamic Crop Models (Second). Amsterdam: ACADEMIC PRESS, INC.
Wallach, Daniel, Brun, F., Makowski, D., & Jones, J. W. (2006). Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. https://doi.org/10.1016/B978-0-12-397008-4.00008-3
Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., … McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. In European Journal of Agronomy (Vol. 18, pp. 121–140). https://doi.org/10.1016/S1161-0301(02)00100-4
Wang, R., Tischner, R., Gutiérrez, R. a, Hoffman, M., Xing, X., Chen, M., … Crawford, N. M. (2004). Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis Linked references are available on JSTOR for this article : Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis. Plant Physiology, 136(1), 2512–2522. https://doi.org/10.1104/pp.104.044610.that
Wilenski, U., & Rand, W. (2015). An introduction to agent-based modeling. Agent analyst. The MIT Press.
Wilensky, U. (1999). The NetLogo 6 . 0 . 2 User Manual Table of Contents Table of Contents What is NetLogo ? Northwestern University. https://doi.org/10.1007/s10854-012-0795-5
Wolf, B., & Snyder, G. (2003). Sustainable Soils The place of organic matter in sustaining soils and their productivity. Imprint (First). New York: Food Products Press.
Yadav, B., Akhtar, M., & Panwar, J. (2015). Rhizospheric Plant-Microbione Interactions: Key Factors to soil Fertility and Plant Nutrition. In Plant Microbes Symbiosis: Applied Facets (First, pp. 127–145). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2068-8
Yin, X., & van Laar, H. H. Van. (2005). Crop Systems Dynamics An ecophysiological simulation model for genotype-by-environment interactions (First). Wageningen: Wageningen Academic Publishers.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 222 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81149/1/79688976.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81149/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81149/3/79688976.2021.pdf.jpg
bitstream.checksum.fl_str_mv 863ed5a6c99c8db3410e5a85dc0d9710
8153f7789df02f0a4c9e079953658ab2
1ac054cbb3abadb19efac26d8c88f636
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089722341883904
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dRubio Fernández, Diego33d16f7df6919a1e4de79dcdcc8396d5Bioinformática2022-03-08T15:07:33Z2022-03-08T15:07:33Z2021https://repositorio.unal.edu.co/handle/unal/81149Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl modelamiento de suelos agrícolas ha evolucionado de acuerdo con las cuestiones asociadas a problemas específicos como su productividad, en términos de la biodisponibilidad de nutrientes así como de las variables climáticas y de los parámetros de manejo; sin embargo, la microbiota edáfica ha sido establecida en la mayoría de los casos, como una fracción de la materia orgánica y la redundancia funcional se definió como característica predominante en suelos, cuya representación se hace a través de ecuaciones matemáticas que definen la cinética del crecimiento microbiano evitando los aspectos relacionados con la estructura de las comunidades . Nuevas propuestas de modelos de suelos agrícolas, en los que la microbiota es un elemento fundamental, pueden contribuir al entendimiento de los procesos microbiológicos asociados al metabolismo de sustratos y como estos procesos influyen por otra parte en el crecimiento de las plantas. En este trabajo se propone el modelamiento de suelos agrícolas, considerando de manera explícita la diversidad microbiana en términos funcionales y su asociación a procesos concretos como el metabolismo de la celulosa y del nitrógeno orgánico. Se ha considerado como objetivo del trabajo, diseñar e implementar un modelo de la productividad agrícola del suelo basado en la correlación de la diversidad funcional y taxonómica de las comunidades microbianas a nivel rizosférico, sus procesos metabólicos relacionados con el carbono y nitrógeno, y las características fisicoquímicas del suelo. Se han obtenido como resultados, de acuerdo con el objetivo propuesto, la construcción de un sistema con diferentes componentes en los que el suelo se explica desde la diversidad funcional de la microbiota y el procesamiento de dos elementos estructurales (carbono y el nitrógeno), y cuya representación está basada en conceptos de Dinámica de Sistemas. Por otra parte, la implementación del sistema, es decir, el modelo de simulación se construye con base en el concepto de Modelamiento Basado en Agentes en la plataforma de modelamiento Netlogo. La simulación ha permitido definir la dinámica de la microbiota bajo diferentes condiciones en función de su relación con el crecimiento de la planta. (Texto tomado de la fuente)Agricultural soil modeling has evolved based on questions associated with productivity, nutrients bioavailability, climate and management variables; nonetheless, soil microbiome has been considered and established as a fraction of organic matter pools and the functional redundancy defined, in most models, as a prevailing factor in agricultural soils, represented by mathematical equations describing microbial growth kinetics and avoiding details of the microbiome dynamics and structure. Recently, new agricultural soil model approaches based on the microbiome dynamics have been proposed. They can contribute to understand microbiological soil processes directly linked to substrate metabolism and the influence of these processes on plant growth. This work presents an approach to the modelling of agricultural rhizospheric soils that considers explicitly microbial diversity in terms of functions associated to specific processes like cellulose and organic nitrogen metabolism. The work goal was to design and implement a model of soil agricultural productivity based on the correlation between functional and taxonomic diversity of microbial communities at the rhizosphere level, their metabolic processes linked to carbon and nitrogen, and some physicochemical soil aspects. As result, it has been possible to simulate an agricultural soil based on the concept of system dynamics and agent-based modeling. Soil is explained from the microbiome functional diversity and the processing of the structural elements carbon and nitrogen, through a representation based on systems dynamics. On the other hand, the simulation of the system was based on agent-based modelling developed on the Netlogo Platform. The simulations allowed to represent the dynamics of the microbiome in terms of microorganisms and enzymes associated with agricultural parameters of soil managementDoctoradoDoctor en BiotecnologíaModelamiento de Sistemas Biológicosxix, 222 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasSuelos agrícolasproductividad agrícolaagricultural soilsagricultural productivityAgricultural SoilAgricultural ProductivitySoil MicrobiotaCarbon and Nitrogen MetabolismMicrobiota Functional DIversityAgent Based ModelingCarbon metabolismNitrogen metabolismMicrobiomeFunctional diversitySuelos AgricolasMicrobiota edáficaMetabolismo del carbono y del nitrógenoModelamiento Basado en AgentesNetlogoProductividad agrícola del sueloDiversidad FuncionalModelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del sueloModeling agricultural productivity: correlation with rhizospheric microbial diversity, metabolic processes and physicochemical soil propertiesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAckoff, R. L. (1971). Towards a System of Systems Concepts. Management Science. https://doi.org/10.1287/mnsc.17.11.661Ademir, S. F. de A., Luiz, F. C. L., Ana, R. L. M., Luis, A. P. L. N., Ricardo, S. de S., Fabio, F. de A., & Wanderley, J. de M. (2016). Different soil tillage systems influence accumulation of soil organic matter in organic agriculture. African Journal of Agricultural Research, 11(51), 5109–5115. https://doi.org/10.5897/ajar2016.11598Ahmed, M., Rauf, M., Akhtar, M., Mukhtar, Z., & Saeed, N. A. (2020). Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research, 27(15), 17661–17670. https://doi.org/10.1007/s11356-020-08236-yAlary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J. H., … Scopel, E. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agricultural Systems, 144, 33–45. https://doi.org/10.1016/j.agsy.2016.01.008Asseng, S., Zhu, Y., Wilson, T., & Cammarano, D. (2014). Simulation Modeling Applications in Cropping Systems. Encyclopedia of Agriculture and Food Systems (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978-0-444-52512-3.00233-3Baldock, J. (2007). Composition and cycling of organic carbon in soil. In Nutrient cycling in terrestrial ecosystems (p. 409). Springer.Banitz, T., Gras, A., & Ginovart, M. (2015). Individual-based modeling of soil organic matter in NetLogo: Transparent, user-friendly, and open. Environmental Modelling and Software, 71, 39–45. https://doi.org/10.1016/j.envsoft.2015.05.007Banos, A., Lang, C., & Marilleau, N. (2015). Agent-Based Spatial Simulation with NetLogo. Agent-Based Spatial Simulation with NetLogo (Vol. 1). https://doi.org/10.1016/c2015-0-01299-0Berlemont, R., & Martiny, A. C. (2015). Genomic potential for polysaccharide deconstruction in bacteria. Applied and Environmental Microbiology, 81(4), 1513–1519. https://doi.org/10.1128/AEM.03718-14Berlin, T. U. (2008). Models of crop growth. Crop growth simulation model WOFOST, (November), 19–20.Billings, S. a., Tiemann, L. K., Ballantyne IV, F., Lehmeier, C., & Min, K. (2014). Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation. SOIL Discussions, 1(1), 1097–1145. https://doi.org/10.5194/soild-1-1097-2014Bonde, T. A., Nielsen, T., Miller, M., & Sørensen, J. (2001). Arginine ammonification assay as a rapid index of gross N mineralization in agricultural soils. Biology and Fertility of Soils, 34(3), 179–184. https://doi.org/10.1007/s003740100395Boogaard, H. L., Van Diepen, C. A., Rötter, R. P., Cabrera, J. M. C. ., & Van Laar, H. H. (2014). WOFOST Control Centre 2.1 and WOFOST 7.1.7, 1–133. Retrieved from http://www.wageningenur.nl/wofostBorneman, J., & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology, 63(7), 2647–2653.Briat, J. F., Gojon, A., Plassard, C., Rouached, H., & Lemaire, G. (2020). Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. European Journal of Agronomy, 116(April), 126069. https://doi.org/10.1016/j.eja.2020.126069Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005Brussaard, L., & Ferrera-Cerrato, R. (1997). Soil ecology in sustainable agricultural systems. (C. Press, Ed.). CRC PRESS.Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106Cardoso, E. J. B. N., & Andreote, F. D. (2016). Microbiologia do solo (segunda ed). https://doi.org/10.11606/9788586481567Chertov, O. G., & Komarov, A. S. (2013). Theoretical approaches to modelling the dynamics of soil organic matter. Eurasian Soil Science, 46(8), 845–853. https://doi.org/10.1134/S1064229313080012Choi, J., Bach, E., Lee, J., Flater, J., Dooley, S., Howe, A., & Hofmockel, K. S. (2018). Spatial structuring of cellulase gene abundance and activity in soil. Frontiers in Environmental Science, 6(OCT). https://doi.org/10.3389/fenvs.2018.00107Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389–395. https://doi.org/10.1016/S1360-1385(98)01311-9Cui, J., Mai, G., Wang, Z., Liu, Q., Zhou, Y., Ma, Y., & Liu, C. (2019). Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Frontiers in Microbiology, 10(MAR), 1–12. https://doi.org/10.3389/fmicb.2019.00618da C Jesus, E., Marsh, T. L., Tiedje, J. M., & de S Moreira, F. M. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(9), 1004–1011. https://doi.org/10.1038/ismej.2009.98da Silva, E. F., Lourente, E. P. R., Marchetti, M. E., Mercante, F. M., Ferreira, A. K. T., & Fujii, G. C. (2011). Fracoes labeis e recalcitrantes da materia orgnica em solos sob integracao lavoura-pecuaria. Pesquisa Agropecuaria Brasileira, 46(10), 1321–1331. https://doi.org/10.1590/S0100-204X2011001000028de Vries, P, Jansen, D. M., Berge, T., & Bakema, A. (1989). Stimulation of Plant Growth and Crop Production. The Journal of Applied Ecology (Vol. 20). Wageningen: Centre for Agricultural Publishing and Documentation. https://doi.org/10.2307/2403549de Vries, Penning, Teng, P., & Metselaar, K. (1991). Systems Approaches for Sustainable Agricultural Development (First). Dordrecht: Kluwer Academic Publishersde Vries, W., Kros, J., Dolman, M. A., Vellinga, T. V., de Boer, H. C., Gerritsen, A. L., … Bouma, J. (2015). Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment. Science of the Total Environment, 536, 432–442. https://doi.org/10.1016/j.scitotenv.2015.07.079Ding, L. J., Cui, H. L., Nie, S. A., Long, X. E., Duan, G. L., & Zhu, Y. G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 95(5). https://doi.org/10.1093/femsec/fiz040Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567–580. https://doi.org/10.1007/s13593-011-0037-xDutta, B., Smith, W. N., Grant, B. B., Pattey, E., Desjardins, R. L., & Li, C. (2016). Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems. Environmental Modelling and Software, 80, 9–25. https://doi.org/10.1016/j.envsoft.2016.02.014Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., … Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112Fageria, N., Baligar, V., & Jones, A. (2011). Growth and Mineral Nutrition of Field Crops. Books in Soils Plants and The Environmant (Third Edit). CRC PRESS TAYLOR AND FRANCIS GROUP.Faria Vieira, R. (2017). Ciclo do Nitrogênio em Sistemas Agricolas. Embrapa Meio Ambiente (Primeira). EMBRAPA. Retrieved from https://escolakids.uol.com.br/ciclo-nitrogenio.htmFernández, F. J., Blanco, M., Ceglar, A., ’barek, R. M., Ciaian, P., Srivastava, A. K., … Doorslaer, B. Van. (2013). Still a challenge - interaction of biophysical and economic models for crop production and market analysis, 1(3), 4–5. Retrieved from http://www.fp7-ulysses.eu/Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87Fierer, N., Bradford, M. a, & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354–1364. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17601128Fierer, N., Grandy, a. S., Six, J., & Paul, E. a. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41(11), 2249–2256. https://doi.org/10.1016/j.soilbio.2009.06.009Forrester, J. W. (1968). Principles of Systems (Second Pre). Wright-Allen Press, Inc. Cambridge MAssachusetts. https://doi.org/10.1007/978-1-4939-1920-8Frei, M. (2013). Lignin: Characterization of a multifaceted crop component. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/436517Galantini, J. a, & Suñer, J. a L. (2008). Las fracciones orgánicas del suelo : análisis en los suelos de la Argentina. Agriscientia, XXV, 41–55.Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology, 42(1), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455Geisseler, D., Horwath, W. R., Joergensen, R. G., & Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology and Biochemistry, 42(12), 2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021Ginovart Gisbert, M., Blanco, M., Portell, X., & Ferrer-Closas, P. (2018). Individual-based modeling: an attractive methodology to study bio systems. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 30(2), 93. https://doi.org/10.5565/rev/ec/v30n2.572Ginovart Gisbert, M., Portell Canal, X., Ferrer-Closas, P., & Blanco Abellan, M. (2011). Modelos basados en el individuo y la plataforma NetLogo. Unión. Revista Iberoamericana de Educación Matemática, 27, 131–150. Retrieved from http://hdl.handle.net/2117/13553Ginovart, M., López, D., Valls, J., & Silbert, M. (2002). Individual based simulations of bacterial growth on agar plates. Physica A: Statistical Mechanics and Its Applications, 305(3–4), 604–618. https://doi.org/10.1016/S0378-4371(01)00581-7Ginovart, Marta, López, D., & Gras, A. (2005). Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Analysis: Real World Applications, 6(4), 773–795. https://doi.org/10.1016/j.nonrwa.2004.12.005Ginovart, Marta, López, D., & Valls, J. (2002). INDISIM, an individual-based discrete simulation model to study bacterial cultures. Journal of Theoretical Biology, 214(2), 305–319. https://doi.org/10.1006/jtbi.2001.2466Gojon, A., Krouk, G., Perrine-Walker, F., & Laugier, E. (2011). Nitrate transceptor(s) in plants. Journal of Experimental Botany, 62(7), 2299–2308. https://doi.org/10.1093/jxb/erq419Gojon, A., Nacry, P., & Davidian, J. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology, 12(3), 328–338. https://doi.org/10.1016/j.pbi.2009.04.015Gregory, P. J., & Nortcliff, S. (2013). Soil Conditions and plant Growth. Journal of Chemical Information and Modeling (Twelve). Oxford: Blackwell Publishing.Guimarães, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L., da Silva Dias, N., & Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126, 177–182. https://doi.org/10.1016/j.still.2012.07.010Habig, J., & Swanepoel, C. (2015). Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity. Environments, 2(3), 358–384. https://doi.org/10.3390/environments2030358Hariharan, J. (2015). Predictive Functional Profiling of Soil Microbes under Different Tillages and Crop Rotations in Ohio. The Ohio State University. https://doi.org/10.1590/s1809-98232013000400007Hartman, K., van der Heijden, M. G. A., Wittwer, R. A., Banerjee, S., Walser, J. C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 1–14. https://doi.org/10.1186/s40168-017-0389-9Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1–2), 7–14. https://doi.org/10.1007/s11104-007-9514-zHaynes, R. . (2005). LABILE ORGANIC MATTER FRACTIONS AS CENTRAL COMPONENTS OF THE QUALITY OF AGRICULTURAL SOILS: AN OVERVIEW. In Advances in agronomy (Vol. 85, pp. 222–258).Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling and Software, 72, 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013Howe, A., Yang, F., Williams, R. J., Meyer, F., & Hofmockel, K. S. (2016). Identification of the core set of carbon-associated genes in a bioenergy grassland soil. PLoS ONE, 11(11), 1–14. https://doi.org/10.1371/journal.pone.0166578Hoyle, F. (2013). Managing Soil Organic Matter: A Practical Guide. Department of Agriculture and Food.Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584-006-9178-3Jiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 4(2), 1–16. https://doi.org/10.1128/msystems.00313-18Jones, J. W., Antle, J. M., Basso, B. O., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. AGSY. https://doi.org/10.1016/j.agsy.2016.05.014Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms13630Kriaučiuniene, Z., Velička, R., & Raudonius, S. (2012). The influence of crop residues type on their decomposition rate in the soil: a litterbag study. Zemdirbyste (Agriculture), 99(3), 227–236. Retrieved from http://proxying.lib.ncsu.edu/index.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=lah&AN=20123408862&site=ehost-live&scope=site%5Cnhttp://www.cabi.org/cabdirect/showpdf.aspx?PAN=http://www.cabi.org/cabdirect/showpdf.aspx?PAN=20123408862%5CnKrishna, K. . (2014). Agroecosystems Soils, Climate, Crops, Nutrient Dynamics, and Productivity (First). Boca Raton: CRC PRESS TAYLOR AND FRANCIS GROUP.Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y. F. (2010). Nitrate signaling: Adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265–272. https://doi.org/10.1016/j.pbi.2009.12.003Lei, S., Xu, X., Cheng, Z., Xiong, J., Ma, R., Zhang, L., … Tian, B. (2019). Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. MicrobiologyOpen, 8(6), 1–10. https://doi.org/10.1002/mbo3.762Li, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., … Zhao, B. (2018). Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 175(July 2017), 281–290. https://doi.org/10.1016/j.still.2017.08.008Lin, Y. (2006). General Systems Theory: A Mathematical Approach.Magdoff, F., & Weil, R. (2004). Soil Organic Matter in Sustainable Agriculture. CRC PRESS.Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., … Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development (EDP Sciences), 29(1), 43–62. https://doi.org/10.1051/agroMaron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., … Ranjard, L. (2018). High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84(9), 1–13. https://doi.org/10.1128/AEM.02738-17Marschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004Marschner, P., & Rengel, Z. (2007). Nutrient Cycling in Terrestrial Ecosystems. Soil Biology. Springer. https://doi.org/10.1017/CBO9781107415324.004Mendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A., & Kuramae, E. E. (2015). Soil-Borne Microbiome: Linking Diversity to Function. Microbial Ecology, 70(1), 255–265. https://doi.org/10.1007/s00248-014-0559-2Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028Mikha, M. M., & Rice, C. W. (2004). Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen. Soil Science Society of America Journal, 68(3), 809. https://doi.org/10.2136/sssaj2004.0809Miller, A. J., & Cramer, M. D. (2005). Root nitrogen acquisition and assimilation. Plant and Soil (Vol. 274). https://doi.org/10.1007/s11104-004-0965-1Millner, P. ., & Kaufman, D. D. (1996). Soil Organic Matter Dynamics and Microbiological Interactions.Mirschel, W., & Wenkel, K. (n.d.). Modelling soil – crop interactions with AGROSIM model family. Landscape Research.Mirschel, W., & Wenkel, K. (2007). Modelling soil – crop interactions with AGROSIM model family. In Modelling water and nutrient dynamics in soil–crop systems (pp. 59–73). Springer Netherlands.Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(2–3), 301–322. https://doi.org/10.1016/j.ecolmodel.2004.07.032Mobus, G. E., & Kalton, M. C. (2015). Principles of Systems Science (first edit). Springer Verlag. https://doi.org/10.1007/978-1-4939-1920-8Moore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014a). Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems. Biogeochemistry, 117(1), 205–227. https://doi.org/10.1007/s10533-013-9932-3Moore, J. C., Boone, R. B., Koyama, A., & Holfelder, K. (2014b). ODD DESCRIPTION FOR Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems, 1–11.Nacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1–2), 1–29. https://doi.org/10.1007/s11104-013-1645-9Nahielli Solorio Elizalde, Fernando Paz Pellat, M. O. L. y M. A. B. G. (2009). Expolinear Growth Model and Productivity Equivalence of a Greenhouse Grown Tomato. Terra Latinoamericana, 27(2), 143–151.Nannipieri, P., & Eldor, P. (2009). The chemical and functional characterization of soil N and its biotic components. Soil Biology and Biochemistry. Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2009.07.013Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 62(1), 105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.xNuthall, P. L. (2011). Analysis of Farming Systems. Group. Retrieved from https://www.cabi.orgOrsel, M., & Miller, A. J. (2011). NITROGEN METABOLISM IN THE POST-GENOMIC ERA. In C. Foyer & H. Zhang (Eds.) (FIRST, p. 386). wiley-blackwell.Paul, E. A. (2015). Soil Microbiology, Ecology, and Biochemistry - Edited by E.A. Paul. European Journal of Soil Science (Fourth). Amsterdam: Elsevier. https://doi.org/10.1111/j.1365-2389.2008.01052_2.xPaul, E. A. (2016a). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001Pérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3Pessarakli, M. (2002). Handbook of plant and crop physiology. (Mohamed Pessarakli, Ed.) (Second Edi). New York Basel: Marcel Dekker. Retrieved from http://books.google.com/books?hl=en&lr=&id=Ab5pDQQD6YUC&pgis=1Peter J. Gregory, & Nortcliff, S. (2013). Soil conditions and plant growth. (Wiley-Blackwell, Ed.). https://doi.org/10.1002/9781118337295Piotrowska, A. (2020). Significance of the Enzymes Associated with Soil C and N Trasnformations. In Carbon and Nitrogen Cycling in Soil (pp. 399–437). Springer. https://doi.org/10.1007/978-981-13-7264-3_1Prats Soler, C. (2008). Individual-based Modelling of bacterial cultures in the study of the lag phase.Quesada, F. (2018). INTRODUCCIÓN AL LENGUAJE NETLOGO Y LA PROGRAMACIÓN BASADA EN AGENTES. Retrieved from http://franciscoquesada.com/wp-content/uploads/2018/04/netlogo7.pdfRailsback, S. F., & Grimm, V. (2012). Agent based and individual based modeling A practical introduction. Princeton University PressRees, R. ., Ball, B. C., & Watson, C. . (2001). Sustainable management of soil organic matter. CABI Publishing. https://doi.org/10.1079/9780851994659.0009Reiter, L. (2015). Effect of crop residue incorporation on soil organic carbon dynamics – Changes in carbon stocks and carbon fractions in an Italian long-term field experiment. Swedish University of Agricultural Sciences. Retrieved from https://stud.epsilon.slu.se/8025/11/reiter_l_150617.pdfRoose, T. (2000). Mathematical model of plant nutrient uptake. A Thesis submitted for the degree of Doctor of Philosophy.Saleem, M., Hu, J., & Jousset, A. (2019). More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annual Review of Ecology, Evolution, and Systematics, 50(1). https://doi.org/10.1146/annurev-ecolsys-110617-062605Santi, S., Locci, G., Monte, R., Pinton, R., & Varanini, Z. (2003). Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, 54(389), 1851–1864. https://doi.org/10.1093/jxb/erg208Schimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00348Silva, E., Ferreira, M., Santos, K., Silva, T., Ferreira, D., Costa, M., … Royme, P. (2020). Organic Nitrogen in Agricultural Systems. In NITROGEN FIXATION. INTECH OPEN. https://doi.org/http://dx.doi.org/10.5772/57353Smith, W. N., Grant, B. B., Desjardins, R. L., Worth, D., Li, C., Boles, S. H., & Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems and Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008Steduto, P, Hsiao, T. C., Raes, D., Fereres, E., Izzi, G., Heng, L., & Hoogeveen, J. (2011). Performance review of AquaCrop - The FAO crop-water productivity model. ICID 21st International Congress on Irrigation and Drainage, 231–248.Steduto, Pasquale, Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139sSylvia, D.M., Fuhrmann, J.J., Hartel, P.G. and Zuberer, D. A. (1998). Principles and applications of soil microbiology (First). New Jersey: Prentice Hall.U.K. Behera and A.R. Sharma. (2007). Modern concepts of agriculture.van Elsas, J. D., Trevors, J. T., Soares, A., & Nannipieri, P. (2019). Modern Soil Microbiology (Third edit). CRC PRESS TAYLOR AND FRANCIS GROUP. https://doi.org/10.1017/CBO9781107415324.004Vaughan, D., & Malcolm, R. . (1985). Soil organic matter and Biological Activity. Martinus Nijhoff/DR W. Junk Publishers. https://doi.org/10.1007/978-94-009-6833-2Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science (New York, N.Y.), 111(2872), 23–29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15398815von Bertalanffy, Ludwig. (1950). An Outline of General System Theory. British Journal of the Philosophy of Science, 1, 134–165. https://doi.org/10.1093/bjps/I.2.134Vos, M., Wolf, A. B., Jennings, S. J., & Kowalchuk, G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 37(6), 936–954. https://doi.org/10.1111/1574-6976.12023Wallach, D, Makowski, D., Jones, J., & Brun, F. (2014). Working with Dynamic Crop Models. Working with Dynamic Crop Models (Second). Amsterdam: ACADEMIC PRESS, INC.Wallach, Daniel, Brun, F., Makowski, D., & Jones, J. W. (2006). Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. https://doi.org/10.1016/B978-0-12-397008-4.00008-3Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., … McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. In European Journal of Agronomy (Vol. 18, pp. 121–140). https://doi.org/10.1016/S1161-0301(02)00100-4Wang, R., Tischner, R., Gutiérrez, R. a, Hoffman, M., Xing, X., Chen, M., … Crawford, N. M. (2004). Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis Linked references are available on JSTOR for this article : Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis. Plant Physiology, 136(1), 2512–2522. https://doi.org/10.1104/pp.104.044610.thatWilenski, U., & Rand, W. (2015). An introduction to agent-based modeling. Agent analyst. The MIT Press.Wilensky, U. (1999). The NetLogo 6 . 0 . 2 User Manual Table of Contents Table of Contents What is NetLogo ? Northwestern University. https://doi.org/10.1007/s10854-012-0795-5Wolf, B., & Snyder, G. (2003). Sustainable Soils The place of organic matter in sustaining soils and their productivity. Imprint (First). New York: Food Products Press.Yadav, B., Akhtar, M., & Panwar, J. (2015). Rhizospheric Plant-Microbione Interactions: Key Factors to soil Fertility and Plant Nutrition. In Plant Microbes Symbiosis: Applied Facets (First, pp. 127–145). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2068-8Yin, X., & van Laar, H. H. Van. (2005). Crop Systems Dynamics An ecophysiological simulation model for genotype-by-environment interactions (First). Wageningen: Wageningen Academic Publishers.Modelamiento de la productividad agrícola: correlación con la diversidad microbiana rizosférica, sus procesos metabólicos y las propiedades fisicoquímicas del sueloInstituto de Biotecnología - Universidad Nacional de ColombiaInvestigadoresORIGINAL79688976.2021.pdf79688976.2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf8940311https://repositorio.unal.edu.co/bitstream/unal/81149/1/79688976.2021.pdf863ed5a6c99c8db3410e5a85dc0d9710MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81149/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL79688976.2021.pdf.jpg79688976.2021.pdf.jpgGenerated Thumbnailimage/jpeg5439https://repositorio.unal.edu.co/bitstream/unal/81149/3/79688976.2021.pdf.jpg1ac054cbb3abadb19efac26d8c88f636MD53unal/81149oai:repositorio.unal.edu.co:unal/811492024-08-04 23:09:51.365Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK