Separation properties and n-point topological extensions
A topological extension of a topological space (X, j) is a topological space (X*,j*) containing (X,j) as a dense subspace. Two topological extensions (X*,j*), and (X*1,j*1) of (X,j) are said to be equivalent if there is a homeomorphism h:(X*,j*) +(X*1,j*1) such that hlX = idx.
- Autores:
-
Albis González, Víctor Samuel
Sabogal, Sonia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1990
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43272
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43272
http://bdigital.unal.edu.co/33370/
- Palabra clave:
- Topological extension
topological space equivalent
homeomorphism
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | A topological extension of a topological space (X, j) is a topological space (X*,j*) containing (X,j) as a dense subspace. Two topological extensions (X*,j*), and (X*1,j*1) of (X,j) are said to be equivalent if there is a homeomorphism h:(X*,j*) +(X*1,j*1) such that hlX = idx. |
---|