Separation properties and n-point topological extensions

A topological extension of a topological space (X, j) is a topological space (X*,j*) containing (X,j) as a dense subspace. Two topological extensions (X*,j*), and (X*1,j*1) of (X,j) are said to be equivalent if there is a homeomorphism h:(X*,j*) +(X*1,j*1) such that hlX = idx.

Autores:
Albis González, Víctor Samuel
Sabogal, Sonia
Tipo de recurso:
Article of journal
Fecha de publicación:
1990
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43272
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43272
http://bdigital.unal.edu.co/33370/
Palabra clave:
Topological extension
topological space equivalent
homeomorphism
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:A topological extension of a topological space (X, j) is a topological space (X*,j*) containing (X,j) as a dense subspace. Two topological extensions (X*,j*), and (X*1,j*1) of (X,j) are said to be equivalent if there is a homeomorphism h:(X*,j*) +(X*1,j*1) such that hlX = idx.